|
[1] W.M. Pardridge, Blood-brain barrier drug targeting: the future of brain drug development, Molecular interventions 3(2) (2003) 90. [2] W.M. Pardridge, The blood-brain barrier: bottleneck in brain drug development, NeuroRx 2(1) (2005) 3-14. [3] W.M. Pardridge, Molecular Trojan horses for blood–brain barrier drug delivery, Current opinion in pharmacology 6(5) (2006) 494-500. [4] B.T. Hawkins, T.P. Davis, The blood-brain barrier/neurovascular unit in health and disease, Pharmacological reviews 57(2) (2005) 173-185. [5] S. Ohtsuki, T. Terasaki, Contribution of carrier-mediated transport systems to the blood–brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development, Pharmaceutical research 24(9) (2007) 1745-1758. [6] M. Eckley, K.A. Wargo, A review of glioblastoma multiforme, US Pharm 35(5) (2010) 3-10. [7] I.D. M. Herold, CC Stobbe, RV Iyer, JD Chapman, D, Gold microspheres: a selective technique for producing biologically effective dose enhancement, International journal of radiation biology 76(10) (2000) 1357-1364. [8] J.H. Hubbell, S.M. Seltzer, Tables of x-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements Z= 1 to 92 and 48 additional substances of dosimetric interest, National Inst. of Standards and Technology-PL, Gaithersburg, MD (United States). Ionizing Radiation Div., 1995. [9] M.-C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chemical reviews 104(1) (2004) 293-346. [10] J. Takahashi, M. Misawa, M. Murakami, T. Mori, K. Nomura, H. Iwahashi, 5-Aminolevulinic acid enhances cancer radiotherapy in a mouse tumor model, SpringerPlus 2(1) (2013) 602. [11] A.P. McHale, J.F. Callan, N. Nomikou, C. Fowley, B. Callan, Sonodynamic therapy: concept, mechanism and application to cancer treatment, Therapeutic Ultrasound, Springer2016, pp. 429-450. [12] M. Bailey, V. Khokhlova, O. Sapozhnikov, S. Kargl, L. Crum, Physical mechanisms of the therapeutic effect of ultrasound, Acoust. Phys 49(4) (2003) 437-464. [13] J.A. Schwartzbaum, J.L. Fisher, K.D. Aldape, M. Wrensch, Epidemiology and molecular pathology of glioma, Nature clinical practice Neurology 2(9) (2006) 494-503. [14] S. Agnihotri, K.E. Burrell, A. Wolf, S. Jalali, C. Hawkins, J.T. Rutka, G. Zadeh, Glioblastoma, a brief review of history, molecular genetics, animal models and novel therapeutic strategies, Archivum immunologiae et therapiae experimentalis 61(1) (2013) 25-41. [15] A. Messali, R. Villacorta, J.W. Hay, A review of the economic burden of glioblastoma and the cost effectiveness of pharmacologic treatments, Pharmacoeconomics 32(12) (2014) 1201-1212. [16] M.S. Lesniak, H. Brem, Targeted therapy for brain tumours, Nature reviews Drug discovery 3(6) (2004) 499-508. [17] F.B. Furnari, T. Fenton, R.M. Bachoo, A. Mukasa, J.M. Stommel, A. Stegh, W.C. Hahn, K.L. Ligon, D.N. Louis, C. Brennan, Malignant astrocytic glioma: genetics, biology, and paths to treatment, Genes & development 21(21) (2007) 2683-2710. [18] D.N. Louis, H. Ohgaki, O.D. Wiestler, W.K. Cavenee, P.C. Burger, A. Jouvet, B.W. Scheithauer, P. Kleihues, The 2007 WHO classification of tumours of the central nervous system, Acta neuropathologica 114(2) (2007) 97-109. [19] I. Jovčevska, N. Kočevar, R. Komel, Glioma and glioblastoma‑how much do we (not) know?(Review), Molecular and clinical oncology 1(6) (2013) 935-941. [20] D.G. Pfister, D.H. Johnson, C.G. Azzoli, W. Sause, T.J. Smith, S. Baker Jr, J. Olak, D. Stover, J.R. Strawn, A.T. Turrisi, American Society of Clinical Oncology treatment of unresectable non–small-cell lung cancer guideline: Update 2003, Journal of Clinical Oncology 22(2) (2004) 330-353. [21] M.M. Mrugala, Advances and challenges in the treatment of glioblastoma: a clinician’s perspective, Discovery medicine 15(83) (2013) 221-230. [22] S. Kesari, Understanding glioblastoma tumor biology: the potential to improve current diagnosis and treatments, Seminars in oncology, Elsevier, 2011, pp. S2-S10. [23] G. Iacob, E.B. Dinca, Current data and strategy in glioblastoma multiforme, J Med Life 2(4) (2009) 386-393. [24] J.E. Chang, D. Khuntia, H.I. Robins, M.P. Mehta, Radiotherapy and radiosensitizers in the treatment of glioblastoma multiforme, Clin Adv Hematol Oncol 5(11) (2007) 894-902. [25] A.D. Norden, P.Y. Wen, Glioma therapy in adults, The neurologist 12(6) (2006) 279-292. [26] T. Reithmeier, E. Graf, T. Piroth, M. Trippel, M.O. Pinsker, G. Nikkhah, BCNU for recurrent glioblastoma multiforme: efficacy, toxicity and prognostic factors, BMC cancer 10(1) (2010) 30. [27] A. Brandes, A. Tosoni, P. Amista, L. Nicolardi, D. Grosso, F. Berti, M. Ermani, How effective is BCNU in recurrent glioblastoma in the modern era? A phase II trial, Neurology 63(7) (2004) 1281-1284. [28] K. Jain, Use of nanoparticles for drug delivery in glioblastoma multiforme, Expert review of neurotherapeutics 7(4) (2007) 363-372. [29] G.F. Woodworth, G.P. Dunn, E.A. Nance, J. Hanes, H. Brem, Emerging insights into barriers to effective brain tumor therapeutics, Frontiers in oncology 4 (2014) 126. [30] P. Retif, S. Pinel, M. Toussaint, C. Frochot, R. Chouikrat, T. Bastogne, M. Barberi-Heyob, Nanoparticles for radiation therapy enhancement: the key parameters, Theranostics 5(9) (2015) 1030. [31] S. Jain, J.A. Coulter, A.R. Hounsell, K.T. Butterworth, S.J. McMahon, W.B. Hyland, M.F. Muir, G.R. Dickson, K.M. Prise, F.J. Currell, Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies, International Journal of Radiation Oncology* Biology* Physics 79(2) (2011) 531-539. [32] D. Kwatra, A. Venugopal, S. Anant, Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer, Translational Cancer Research 2(4) (2013) 330-342. [33] B. Jeremic, A.R. Aguerri, N. Filipovic, Radiosensitization by gold nanoparticles, Clinical and Translational Oncology 15(8) (2013) 593-601. [34] J.F. Dorsey, L. Sun, D.Y. Joh, A. Witztum, G.D. Kao, M. Alonso-Basanta, S. Avery, S.M. Hahn, A. Al Zaki, A. Tsourkas, Gold nanoparticles in radiation research: potential applications for imaging and radiosensitization, Translational cancer research 2(4) (2013) 280. [35] M.Y. Chang, A.L. Shiau, Y.H. Chen, C.J. Chang, H.H.W. Chen, C.L. Wu, Increased apoptotic potential and dose‐enhancing effect of gold nanoparticles in combination with single‐dose clinical electron beams on tumor‐bearing mice, Cancer science 99(7) (2008) 1479-1484. [36] W.N. Rahman, N. Bishara, T. Ackerly, C.F. He, P. Jackson, C. Wong, R. Davidson, M. Geso, Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy, Nanomedicine: Nanotechnology, Biology and Medicine 5(2) (2009) 136-142. [37] C. Chien, C. Wang, T. Hua, P. Tseng, T. Yang, Y. Hwu, Y. Chen, K. Chung, J. Je, G. Margaritondo, Synchrotron X‐Ray Synthesized Gold Nanoparticles for Tumor Therapy, AIP Conference Proceedings, AIP, 2007, pp. 1908-1911. [38] C.-J. Liu, C.-H. Wang, S.-T. Chen, H.-H. Chen, W.-H. Leng, C.-C. Chien, C.-L. Wang, I.M. Kempson, Y. Hwu, T.-C. Lai, Enhancement of cell radiation sensitivity by pegylated gold nanoparticles, Physics in medicine and biology 55(4) (2010) 931. [39] J.N. Kavanagh, K.M. Redmond, G. Schettino, K.M. Prise, DNA double strand break repair: a radiation perspective, Antioxidants & redox signaling 18(18) (2013) 2458-2472. [40] E.I. Azzam, J.-P. Jay-Gerin, D. Pain, Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury, Cancer letters 327(1) (2012) 48-60. [41] R.I. Berbeco, H. Korideck, W. Ngwa, R. Kumar, J. Patel, S. Sridhar, S. Johnson, B.D. Price, A. Kimmelman, G.M. Makrigiorgos, DNA damage enhancement from gold nanoparticles for clinical MV photon beams, Radiation research 178(6) (2012) 604-608. [42] D. Regulla, E. Schmid, W. Friedland, W. Panzer, U. Heinzmann, D. Harder, Enhanced values of the RBE and H ratio for cytogenetic effects induced by secondary electrons from an X-irradiated gold surface, Radiation research 158(4) (2002) 505-515. [43] S.J. McMahon, H. Paganetti, K.M. Prise, Optimising element choice for nanoparticle radiosensitisers, Nanoscale 8(1) (2016) 581-589. [44] K.T. Butterworth, S.J. McMahon, F.J. Currell, K.M. Prise, Physical basis and biological mechanisms of gold nanoparticle radiosensitization, Nanoscale 4(16) (2012) 4830-4838. [45] K.T. Butterworth, S.J. McMahon, L.E. Taggart, K.M. Prise, Radiosensitization by gold nanoparticles: effective at megavoltage energies and potential role of oxidative stress, Translational Cancer Research 2(4) (2013) 269-279. [46] T.K. Hei, H. Zhou, V.N. Ivanov, M. Hong, H.B. Lieberman, D.J. Brenner, S.A. Amundson, C.R. Geard, Mechanism of radiation‐induced bystander effects: a unifying model, Journal of Pharmacy and Pharmacology 60(8) (2008) 943-950. [47] N. Sanvicens, M.P. Marco, Multifunctional nanoparticles–properties and prospects for their use in human medicine, Trends in biotechnology 26(8) (2008) 425-433. [48] Z. Zhang, A. Berg, H. Levanon, R.W. Fessenden, D. Meisel, On the interactions of free radicals with gold nanoparticles, Journal of the American Chemical Society 125(26) (2003) 7959-7963. [49] J.A. Coulter, S. Jain, K.T. Butterworth, L.E. Taggart, G.R. Dickson, S.J. McMahon, W.B. Hyland, M.F. Muir, C. Trainor, A.R. Hounsell, Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles, Int J Nanomedicine 7(1) (2012) 2673-85. [50] R. Wahab, S. Dwivedi, F. Khan, Y.K. Mishra, I. Hwang, H.-S. Shin, J. Musarrat, A.A. Al-Khedhairy, Statistical analysis of gold nanoparticle-induced oxidative stress and apoptosis in myoblast (C2C12) cells, Colloids and Surfaces B: Biointerfaces 123 (2014) 664-672. [51] J.K. Fard, S. Jafari, M.A. Eghbal, A review of molecular mechanisms involved in toxicity of nanoparticles, Advanced pharmaceutical bulletin 5(4) (2015) 447. [52] G.M. Cooper, R.E. Hausman, The cell, Sinauer Associates Sunderland2000. [53] M.T. Madigan, J.M. Martinko, J. Parker, Brock biology of microorganisms, prentice hall Upper Saddle River, NJ1997. [54] H. Kitano, Systems biology: a brief overview, Science 295(5560) (2002) 1662-1664. [55] H. Lodish, D. Baltimore, A. Berk, S.L. Zipursky, P. Matsudaira, J. Darnell, Molecular cell biology, Scientific American Books New York1995. [56] T.M. Pawlik, K. Keyomarsi, Role of cell cycle in mediating sensitivity to radiotherapy, International Journal of Radiation Oncology* Biology* Physics 59(4) (2004) 928-942. [57] T.Y. Seiwert, J.K. Salama, E.E. Vokes, The concurrent chemoradiation paradigm—general principles, Nature clinical practice Oncology 4(2) (2007) 86-100. [58] M.B. Kastan, J. Bartek, Cell-cycle checkpoints and cancer, Nature 432(7015) (2004) 316-323. [59] W. Roa, X. Zhang, L. Guo, A. Shaw, X. Hu, Y. Xiong, S. Gulavita, S. Patel, X. Sun, J. Chen, Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle, Nanotechnology 20(37) (2009) 375101. [60] A. Choudhury, A. Cuddihy, R.G. Bristow, Radiation and new molecular agents part I: targeting ATM-ATR checkpoints, DNA repair, and the proteasome, Seminars in radiation oncology, Elsevier, 2006, pp. 51-58. [61] L.B. Harrison, M. Chadha, R.J. Hill, K. Hu, D. Shasha, Impact of tumor hypoxia and anemia on radiation therapy outcomes, The oncologist 7(6) (2002) 492-508. [62] W.M. Bonner, C.E. Redon, J.S. Dickey, A.J. Nakamura, O.A. Sedelnikova, S. Solier, Y. Pommier, γH2AX and cancer, Nature Reviews Cancer 8(12) (2008) 957-967. [63] E.P. Rogakou, D.R. Pilch, A.H. Orr, V.S. Ivanova, W.M. Bonner, DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139, Journal of biological chemistry 273(10) (1998) 5858-5868. [64] D.B. Chithrani, S. Jelveh, F. Jalali, M. van Prooijen, C. Allen, R.G. Bristow, R.P. Hill, D.A. Jaffray, Gold nanoparticles as radiation sensitizers in cancer therapy, Radiation research 173(6) (2010) 719-728. [65] J.P. Banáth, P.L. Olive, Expression of phosphorylated histone H2AX as a surrogate of cell killing by drugs that create DNA double-strand breaks, Cancer Research 63(15) (2003) 4347-4350. [66] L.J. Kuo, L.-X. Yang, γ-H2AX-a novel biomarker for DNA double-strand breaks, In vivo 22(3) (2008) 305-309. [67] C.E. Redon, A.J. Nakamura, Y.-W. Zhang, J.J. Ji, W.M. Bonner, R.J. Kinders, R.E. Parchment, J.H. Doroshow, Y. Pommier, Histone γH2AX and poly (ADP-ribose) as clinical pharmacodynamic biomarkers, Clinical cancer research 16(18) (2010) 4532-4542. [68] S. Kwon, R.K. Singh, R.A. Perez, E.A. Abou Neel, H.-W. Kim, W. Chrzanowski, Silica-based mesoporous nanoparticles for controlled drug delivery, Journal of tissue engineering 4 (2013) 2041731413503357. [69] C. Bharti, U. Nagaich, A.K. Pal, N. Gulati, Mesoporous silica nanoparticles in target drug delivery system: a review, International journal of pharmaceutical investigation 5(3) (2015) 124. [70] C. Tourne-Peteilh, S. Begu, D.A. Lerner, A. Galarneau, U. Lafont, J.-M. Devoisselle, Sol–gel one-pot synthesis in soft conditions of mesoporous silica materials ready for drug delivery system, Journal of sol-gel science and technology 61(3) (2012) 455-462. [71] M. Liong, J. Lu, M. Kovochich, T. Xia, S.G. Ruehm, A.E. Nel, F. Tamanoi, J.I. Zink, Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery, ACS nano 2(5) (2008) 889-896. [72] H. Chen, Z. Zhen, W. Tang, T. Todd, Y.-J. Chuang, L. Wang, Z. Pan, J. Xie, Label-free luminescent mesoporous silica nanoparticles for imaging and drug delivery, Theranostics 3(9) (2013) 650. [73] J. Xie, S. Lee, X. Chen, Nanoparticle-based theranostic agents, Advanced drug delivery reviews 62(11) (2010) 1064-1079. [74] X. Lin, J. Xie, G. Niu, F. Zhang, H. Gao, M. Yang, Q. Quan, M.A. Aronova, G. Zhang, S. Lee, Chimeric ferritin nanocages for multiple function loading and multimodal imaging, Nano letters 11(2) (2011) 814-819. [75] N.-T. Chen, S.-H. Cheng, J.S. Souris, C.-T. Chen, C.-Y. Mou, L.-W. Lo, Theranostic applications of mesoporous silica nanoparticles and their organic/inorganic hybrids, Journal of Materials Chemistry B 1(25) (2013) 3128-3135. [76] K.P. Tamarov, L.A. Osminkina, S.V. Zinovyev, K.A. Maximova, J.V. Kargina, M.B. Gongalsky, Y. Ryabchikov, A. Al-Kattan, A.P. Sviridov, M. Sentis, Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy, Scientific reports 4 (2014). [77] L.T. Canham, Bioactive silicon structure fabrication through nanoetching techniques, Advanced Materials 7(12) (1995) 1033-1037. [78] J.G. Croissant, Y. Fatieiev, N.M. Khashab, Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles, Advanced Materials (2017). [79] J.-H. Park, L. Gu, G. Von Maltzahn, E. Ruoslahti, S.N. Bhatia, M.J. Sailor, Biodegradable luminescent porous silicon nanoparticles for in vivo applications, Nature materials 8(4) (2009) 331-336. [80] E. Gross, D. Kovalev, N. Künzner, J. Diener, F. Koch, V.Y. Timoshenko, M. Fujii, Spectrally resolved electronic energy transfer from silicon nanocrystals to molecular oxygen mediated by direct electron exchange, Physical Review B 68(11) (2003) 115405. [81] C. Lee, H. Kim, C. Hong, M. Kim, S. Hong, D. Lee, W.I. Lee, Porous silicon as an agent for cancer thermotherapy based on near-infrared light irradiation, Journal of Materials Chemistry 18(40) (2008) 4790-4795. [82] S. Shen, H. Tang, X. Zhang, J. Ren, Z. Pang, D. Wang, H. Gao, Y. Qian, X. Jiang, W. Yang, Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation, Biomaterials 34(12) (2013) 3150-3158. [83] N. Zhao, Z. Yang, B. Li, J. Meng, Z. Shi, P. Li, S. Fu, RGD-conjugated mesoporous silica-encapsulated gold nanorods enhance the sensitization of triple-negative breast cancer to megavoltage radiation therapy, International journal of nanomedicine 11 (2016) 5595. [84] P. Huang, L. Bao, C. Zhang, J. Lin, T. Luo, D. Yang, M. He, Z. Li, G. Gao, B. Gao, Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy, Biomaterials 32(36) (2011) 9796-9809. [85] W. Stummer, A. Novotny, H. Stepp, C. Goetz, K. Bise, H.J. Reulen, Fluorescence-guided resection of glioblastoma multiforme utilizing 5-ALA-induced porphyrins: a prospective study in 52 consecutive patients, Journal of neurosurgery 93(6) (2000) 1003-1013. [86] W. Stummer, U. Pichlmeier, T. Meinel, O.D. Wiestler, F. Zanella, H.-J. Reulen, A.-G.S. Group, Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial, The lancet oncology 7(5) (2006) 392-401. [87] W. Stummer, J.-C. Tonn, C. Goetz, W. Ullrich, H. Stepp, A. Bink, T. Pietsch, U. Pichlmeier, 5-Aminolevulinic acid-derived tumor fluorescence: the diagnostic accuracy of visible fluorescence qualities as corroborated by spectrometry and histology and postoperative imaging, Neurosurgery 74(3) (2013) 310-320. [88] M.S. Eljamel, C. Goodman, H. Moseley, ALA and Photofrin® Fluorescence-guided resection and repetitive PDT in glioblastoma multiforme: a single centre Phase III randomised controlled trial, Lasers in medical science 23(4) (2008) 361-367. [89] Q. Peng, T. Warloe, K. Berg, J. Moan, M. Kongshaug, K.E. Giercksky, J.M. Nesland, 5‐Aminolevulinic acid‐based photodynamic therapy, Cancer 79(12) (1997) 2282-2308. [90] M. Toda, Intraoperative navigation and fluorescence imagings in malignant glioma surgery, The Keio journal of medicine 57(3) (2008) 155-161. [91] K. Takahashi, N. Ikeda, N. Nonoguchi, Y. Kajimoto, S.-I. Miyatake, Y. Hagiya, S.-I. Ogura, H. Nakagawa, T. Ishikawa, T. Kuroiwa, Enhanced expression of coproporphyrinogen oxidase in malignant brain tumors: CPOX expression and 5-ALA–induced fluorescence, Neuro-oncology 13(11) (2011) 1234-1243. [92] W. Stummer, H. Reulen, A. Novotny, H. Stepp, J. Tonn, Fluorescence-guided resections of malignant gliomas--an overview, Acta Neurochirurgica-Supplements only (88) (2003) 9-12. [93] L. Teng, M. Nakada, Y. Hayashi, T. Yoneyama, S.-G. Zhao, J.-I. Hamada, Current applications of 5-ALA in glioma diagnostics and therapy, Clinical Management and Evolving Novel Therapeutic Strategies for Patients with Brain Tumors, InTech2013. [94] E. Buytaert, M. Dewaele, P. Agostinis, Molecular effectors of multiple cell death pathways initiated by photodynamic therapy, Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1776(1) (2007) 86-107. [95] I.J. Macdonald, T.J. Dougherty, Basic principles of photodynamic therapy, Journal of Porphyrins and Phthalocyanines 5(02) (2001) 105-129. [96] N.L. Oleinick, R.L. Morris, I. Belichenko, The role of apoptosis in response to photodynamic therapy: what, where, why, and how, Photochemical & Photobiological Sciences 1(1) (2002) 1-21. [97] G. Iacob, E.B. Dinca, Current data and strategy in glioblastoma multiforme, Journal of medicine and life 2(4) (2009) 386. [98] S. Karmakar, N.L. Banik, S.J. Patel, S.K. Ray, 5-Aminolevulinic acid-based photodynamic therapy suppressed survival factors and activated proteases for apoptosis in human glioblastoma U87MG cells, Neuroscience letters 415(3) (2007) 242-247. [99] L. Teng, M. Nakada, S. Zhao, Y. Endo, N. Furuyama, E. Nambu, I. Pyko, Y. Hayashi, J. Hamada, Silencing of ferrochelatase enhances 5-aminolevulinic acid-based fluorescence and photodynamic therapy efficacy, British journal of cancer 104(5) (2011) 798-807. [100] A. Nabavi, H. Thurm, B. Zountsas, T. Pietsch, H. Lanfermann, U. Pichlmeier, M. Mehdorn, Five-aminolevulinic acid for fluorescence-guided resection of recurrent malignant gliomas: a phase II study, Neurosurgery 65(6) (2009) 1070-1077. [101] Z. Mohammadi, A. Sazgarnia, O. Rajabi, M. Seilanian Toosi, Comparative study of X-ray treatment and photodynamic therapy by using 5-aminolevulinic acid conjugated gold nanoparticles in a melanoma cell line, Artificial cells, nanomedicine, and biotechnology 45(3) (2017) 467-473. [102] B. Wang, D. Cvetkovic, R. Gupta, L. Chen, C. Ma, Q. Zhang, J. Zeng, Radiation Therapy Combined With 5-Aminolevulinic Acid: A Preliminary Study With an In Vivo Mouse Model Implanted With Human PC-3 Tumor Cells, International Journal of Radiation Oncology• Biology• Physics 93(3) (2015) E522. [103] J. Takahashi, M. Misawa, H. Iwahashi, Transcriptome analysis of porphyrin-accumulated and x-ray-irradiated cell cultures under limited proliferation and non-lethal conditions, Microarrays 4(1) (2015) 25-40. [104] T. Kitagawa, J. Yamamoto, T. Tanaka, Y. Nakano, D. Akiba, K. Ueta, S. Nishizawa, 5-Aminolevulinic acid strongly enhances delayed intracellular production of reactive oxygen species (ROS) generated by ionizing irradiation: Quantitative analyses and visualization of intracellular ROS production in glioma cells in vitro, Oncology reports 33(2) (2015) 583-590. [105] M. Trendowski, G. Yu, V. Wong, C. Acquafondata, T. Christen, T.P. Fondy, The real deal: using cytochalasin B in sonodynamic therapy to preferentially damage leukemia cells, Anticancer research 34(5) (2014) 2195-2202. [106] X. Wang, Y. Wang, P. Wang, X. Cheng, Q. Liu, Sonodynamically induced anti-tumor effect with protoporphyrin IX on hepatoma-22 solid tumor, Ultrasonics 51(5) (2011) 539-546. [107] I. Rosenthal, J.Z. Sostaric, P. Riesz, Sonodynamic therapy––a review of the synergistic effects of drugs and ultrasound, Ultrasonics sonochemistry 11(6) (2004) 349-363. [108] L. Lagneaux, E.C. de Meulenaer, A. Delforge, M. Dejeneffe, M. Massy, C. Moerman, B. Hannecart, Y. Canivet, M.-F. Lepeltier, D. Bron, Ultrasonic low-energy treatment: a novel approach to induce apoptosis in human leukemic cells, Experimental hematology 30(11) (2002) 1293-1301. [109] X. Wang, Q. Liu, Z. Wang, P. Wang, P. Zhao, X. Zhao, L. Yang, Y. Li, Role of autophagy in sonodynamic therapy-induced cytotoxicity in S180 cells, Ultrasound in medicine & biology 36(11) (2010) 1933-1946. [110] D. Song, W. Yue, Z. Li, J. Li, J. Zhao, N. Zhang, Study of the mechanism of sonodynamic therapy in a rat glioma model, OncoTargets and therapy 7 (2014) 1801. [111] T. Yoshida, T. Kondo, R. Ogawa, L.B. Feril Jr, Q.-L. Zhao, A. Watanabe, K. Tsukada, Combination of doxorubicin and low-intensity ultrasound causes a synergistic enhancement in cell killing and an additive enhancement in apoptosis induction in human lymphoma U937 cells, Cancer chemotherapy and pharmacology 61(4) (2008) 559-567. [112] F.W. Kremkau, J.S. Kaufmann, M.M. Walker, P.G. Burch, C.L. Spurr, Ultrasonic enhancement of nitrogen mustard cytotoxicity in mouse leukemia, Cancer 37(4) (1976) 1643-1647. [113] M.J. Povey, T.J. Mason, Ultrasound in food processing, Springer Science & Business Media1998. [114] V. MišÍk, P. Riesz, Free radical intermediates in sonodynamic therapy, Annals of the New York Academy of Sciences 899(1) (2000) 335-348. [115] K. Byun, K.Y. Kim, H. Kwak, Sonoluminescence characteristics from micron and submicron bubbles, JOURNAL-KOREAN PHYSICAL SOCIETY 47(6) (2005) 1010. [116] D. Kessel, J. Lo, R. Jeffers, J.B. Fowlkes, C. Cain, Modes of photodynamic vs. sonodynamic cytotoxicity, Journal of Photochemistry and Photobiology B: Biology 28(3) (1995) 219-221. [117] G.-Y. Wan, Y. Liu, B.-W. Chen, Y.-Y. Liu, Y.-S. Wang, N. Zhang, Recent advances of sonodynamic therapy in cancer treatment, Cancer biology & medicine 13(3) (2016) 325. [118] Q. Liu, X. Wang, P. Wang, L. Xiao, Q. Hao, Comparison between sonodynamic effect with protoporphyrin IX and hematoporphyrin on sarcoma 180, Cancer chemotherapy and pharmacology 60(5) (2007) 671-680. [119] M.S. Eljamel, New light on the brain: the role of photosensitizing agents and laser light in the management of invasive intracranial tumors, Technology in cancer research & treatment 2(4) (2003) 303-309. [120] S.J. Madsen, E. Angell‐Petersen, S. Spetalen, S.W. Carper, S.A. Ziegler, H. Hirschberg, Photodynamic therapy of newly implanted glioma cells in the rat brain, Lasers in surgery and medicine 38(5) (2006) 540-548. [121] F. Fry, Intense focused ultrasound in medicine: some practical guiding physical principles from sound source to focal site in tissue, European urology 23 (1993) 2-7. [122] T. Ohmura, T. Fukushima, H. Shibaguchi, S. Yoshizawa, T. Inoue, M. Kuroki, K. Sasaki, S.-I. Umemura, Sonodynamic therapy with 5-aminolevulinic acid and focused ultrasound for deep-seated intracranial glioma in rat, Anticancer research 31(7) (2011) 2527-2533. [123] L. Osminkina, E. Luckyanova, M. Gongalsky, A. Kudryavtsev, A.K. Gaydarova, R. Poltavtseva, P. Kashkarov, V.Y. Timoshenko, G. Sukhikh, Effects of nanostructurized silicon on proliferation of stem and cancer cell, Bulletin of experimental biology and medicine 151(1) (2011) 79-83. [124] A. Sviridov, V. Andreev, E. Ivanova, L. Osminkina, K. Tamarov, V.Y. Timoshenko, Porous silicon nanoparticles as sensitizers for ultrasonic hyperthermia, Applied Physics Letters 103(19) (2013) 193110. [125] L. Osminkina, A. Nikolaev, A. Sviridov, N. Andronova, K. Tamarov, M. Gongalsky, A. Kudryavtsev, H. Treshalina, V.Y. Timoshenko, Porous silicon nanoparticles as efficient sensitizers for sonodynamic therapy of cancer, Microporous and Mesoporous Materials 210 (2015) 169-175. [126] P. Auvinen, R. Tammi, V.M. Kosma, R. Sironen, Y. Soini, A. Mannermaa, R. Tumelius, E. Uljas, M. Tammi, Increased hyaluronan content and stromal cell CD44 associate with HER2 positivity and poor prognosis in human breast cancer, International journal of cancer 132(3) (2013) 531-539. [127] J.M. Louderbough, J.A. Schroeder, Understanding the dual nature of CD44 in breast cancer progression, Molecular Cancer Research 9(12) (2011) 1573-1586. [128] M. Dohadwala, J. Luo, L. Zhu, Y. Lin, G.J. Dougherty, S. Sharma, M. Huang, M. Põld, R.K. Batra, S.M. Dubinett, Non-small cell lung cancer cyclooxygenase-2-dependent invasion is mediated by CD44, Journal of Biological Chemistry 276(24) (2001) 20809-20812. [129] V.J. Wielenga, K.-H. Heider, G. Johan, A. Offerhaus, G.R. Adolf, F.M. van den Berg, H. Ponta, P. Herrlich, S.T. Pals, Expression of CD44 variant proteins in human colorectal cancer is related to tumor progression, Cancer Research 53(20) (1993) 4754-4756. [130] S. Arpicco, G. De Rosa, E. Fattal, Lipid-based nanovectors for targeting of CD44-overexpressing tumor cells, Journal of drug delivery 2013 (2013). [131] K.Y. Choi, G. Saravanakumar, J.H. Park, K. Park, Hyaluronic acid-based nanocarriers for intracellular targeting: interfacial interactions with proteins in cancer, Colloids and Surfaces B: Biointerfaces 99 (2012) 82-94. [132] R. Asher, A. Bignami, Hyaluronate binding and CD44 expression in human glioblastoma cells and astrocytes, Experimental cell research 203(1) (1992) 80-90. [133] T. Yoshida, Y. Matsuda, Z. Naito, T. Ishiwata, CD44 in human glioma correlates with histopathological grade and cell migration, Pathology international 62(7) (2012) 463-470. [134] A. Merzak, S. Koocheckpour, G.J. Pilkington, CD44 mediates human glioma cell adhesion and invasion in vitro, Cancer Research 54(15) (1994) 3988-3992. [135] J.B. Park, H.-J. Kwak, S.-H. Lee, Role of hyaluronan in glioma invasion, Cell adhesion & migration 2(3) (2008) 202-207. [136] X. Qian, X.-H. Peng, D.O. Ansari, Q. Yin-Goen, G.Z. Chen, D.M. Shin, L. Yang, A.N. Young, M.D. Wang, S. Nie, In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags, Nature biotechnology 26(1) (2008) 83. [137] C. Zhang, D. Ni, Y. Liu, H. Yao, W. Bu, J. Shi, Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy, Nature nanotechnology 12(4) (2017) 378-386. [138] E. Eruslanov, S. Kusmartsev, Identification of ROS using oxidized DCFDA and flow-cytometry, Advanced protocols in oxidative stress II (2010) 57-72. [139] R.M. Day, Y.J. Suzuki, Cell proliferation, reactive oxygen and cellular glutathione, Dose-Response 3(3) (2005) 425. [140] W.K. Kaufmann, R.S. Paules, DNA damage and cell cycle checkpoints, The FASEB Journal 10(2) (1996) 238-247. [141] M. Moroni, D. Maeda, M.H. Whitnall, W.M. Bonner, C.E. Redon, Evaluation of the gamma-H2AX assay for radiation biodosimetry in a swine model, International journal of molecular sciences 14(7) (2013) 14119-14135. [142] A.P. Castano, T.N. Demidova, M.R. Hamblin, Mechanisms in photodynamic therapy: part two—cellular signaling, cell metabolism and modes of cell death, Photodiagnosis and photodynamic therapy 2(1) (2005) 1-23.
|