跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/05 23:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳美迦
研究生(外文):Mei-Jia Chen
論文名稱:奈米金-二氧化矽複合載體結合放射線應用於膠質母細胞瘤之癌症幹細胞治療
論文名稱(外文):Au-SiO2 complex nanoparticle & radiation therapy used in treatment of glioblastoma stem cell
指導教授:劉澤英
指導教授(外文):Tse-Ying Liu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物醫學工程學系
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:82
中文關鍵詞:癌症幹細胞放射線增效劑放射線治療
外文關鍵詞:cancer stem cellsradiation enhancersradiotherapy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:235
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
膠質母細胞瘤 ( Glioblastoma multiforme ) 是原發性腦瘤中最常見,也是最為惡性的腦瘤;而腫瘤中的癌症幹細胞被認為是造成癌症復發的原因,因此希望能透過放射線治療及放射線增效劑的結合有效抑制經手術後殘留的癌幹細胞的生長。
我們發現常用化療藥物帝盟多 (TMZ) 對於本實驗中所選用之膠質母細胞瘤之癌幹細胞 (GSC) 有較低的細胞毒性(IC50 = 870 μM),然而正常星狀膠細胞 (SVG p12) 對於TMZ敏感性相對較強 (IC50 = 380 μM),因此使用TMZ化療藥物針對GSC進行治療會有較差的療效。所以本實驗欲透過奈米金-二氧化矽複合載體(Au@mSiO2)SiO2作為輻射增效劑,結合放射線治療增加對於GSC之細胞毒性。在研究中可發現(Au@mSiO2)SiO2 在GSC細胞與SVGp12細胞間即有良好的毒殺選擇性,然而對於結合輻射治療並沒有太大的幫助,但對於正常細胞亦不造成影響。在細胞週期的測定中可發現GSC細胞施予載體並結合輻射治療後,細胞週期G2/M累積比例稍有增加,推測載體仍然對於輻射增效有幫助,但可能由於後期的DNA修復導致效果不顯著,這個部分仍須再進行研究。
Glioblastoma multiforme is the most common and most malignant primary brain tumors. Cancer stem cells in the tumor are thought to be the cause of cancer recurrence. We hope to combine the radiation enhancers with radiation therapy to inhibit the growth of cancer stem cells, which were remained after surgery.
We found that the commonly used chemotherapeutic drugs Temozolomide (TMZ) had lower cytotoxicity (IC50 = 870 μM) for the glioblastoma cancer stem cells (GSC), whereas the astrocytes (SVG p12 ) is more sensitive to TMZ (IC50 = 380 μM), so the use of TMZ for GSC treatment will have a poor effect.
The experiment aims to increase the cytotoxicity to GSC by using Au-silica composite nanoparticles (Au@mSiO2) SiO2 as radiation enhancers, combined with radiation therapy. In the study, we found that there was a good selectivity between GSC cells and SVGp12 cells throughout the usage of (Au@mSiO2) SiO2, but it did not help much for radiation enhance, although it did not affect normal cells.
In the determination of cell cycle, the G2 / M arrested of GSC cells increased slightly during the combination therapy, suggesting that the vector is still helpful for radiation enhancement, but DNA may be repaired due to the GSC characteristic, and this part still needs to be studied.
目錄
致謝.....I
摘要.....II
Abstract.....III
目錄.....IV
圖目錄.....VII
表目錄.....IX
第一章 緒論.....1
第二章 文獻回顧.....2
2.1 膠質母細胞瘤.....2
2.2 癌症幹細胞.....4
癌症幹細胞的輻射抗性.....7
癌症幹細胞的化學抗性.....8
2.3 輻射.....9
X-射線.....10
放射線治療.....11
2.4 放射線增效作用.....13
金奈米顆粒的輻射增效.....14
二氧化矽的輻射增效.....16
第三章 材料與方法.....17
3.1 實驗設計.....17
3.2 材料.....18
3.3 儀器.....19
3.4 實驗方法.....20
載體合成.....20
奈米金-多孔性二氧化矽 ( Au@mSiO 2 ) 合成.....20
異硫氰酸熒光素修飾(Au@mSiO 2- FITC).....21
無孔洞性二氧化矽殼層修飾( (Au@mSiO 2 ) SiO 2 ).....21
載體分析.....23
動 態 光 散 射 粒 徑 分 析 儀 ( Dynamic Light Scatter Analyzer,DLS ).....23
界面電位分析儀 ( Zeta Potential Analyzer).....23
穿 透 式 電 子 顯 微 鏡 / 能 量 散 射 光 譜 儀 (Transmission electron microscope,TEM / Energy Dispersive Spectrometer,EDS).....23
傅 立 葉 轉 換 紅 外 光 譜 儀 ( Fourier transform infrared spectroscopy,FT-IR ).....24
X 光繞射儀 ( X-ray diffractometer,XRD ).....24
體外細胞實驗.....25
細胞培養.....25
帝盟多化療藥物毒性測試.....25
(Au@mSiO 2 ) SiO 2 載體細胞毒性測試.....26
共軛焦顯微鏡觀察細胞載體吞噬情形.....26
X 光輻射治療測試.....27
細胞週期測定.....28
DNA fragmentation assay.....28
第四章 結果與討論.....29
4.1 (Au@mSiO 2 ) SiO 2 載體材料結構分析.....29
4.2 (Au@mSiO 2 ) SiO 2 載體材料性質分析.....32
FT-IR 材料分析.....32
EDS 元素分析.....34
XRD 材料分析.....35
4.3 體外細胞實驗.....36
帝盟多化療藥物毒性測試.....36
(Au@mSiO2) SiO2 載體背景毒性測試.....40
共軛焦顯微鏡觀察細胞載體吞噬情形.....42
X 光輻射治療測試.....44
細胞週期測定.....46
(Au@mSiO 2 ) SiO 2 及 XR 治療造成之細胞凋亡情形.....51
第五章 結論.....54
參考資料.....55
附錄.....60


圖目錄
Fig. 2-1 Distribution of all primary CNS gliomas. [1].....2
Fig. 2-2 A computer-aided volumetric approach to measure an irregularly shaped glioblastoma. [8].....3
Fig. 2-3 Origin, self-renewal, and dedifferentiation of GSCs. [4].....5
Fig. 2-4 Cancer stem cells cause tumour regrowth after apparently successful therapy. [13].....5
Fig. 2-5 (A) The activation state of the checkpoint response in matched CD133 - and CD133 + cells from glioblastoma specimens was assessed before treatment ( - ) and 1 h after 3 Gy of IR ( + ). (B) The presence of DNA damage of CD133 - and CD133 + cells at sequential time points after irradiated with IR was assessed by alkaline comet assay. (C) Quantification of the percentages of cells with comet tails at different time points after IR in CD133 - and CD133 + populations. Data are the means ± s.d. (n=100 cells in three trials; *P < 0.001; **P < 0.002). [5].....7
Fig. 2-6 (A) ABCG2 expression in neurospheres. (B) Evaluation of intracellular Photofrin concentration. (*p < 0.01 versus the control and **p < 0.05 versus the FTC-group). [16].....8
Fig. 2-7 Radiation in daily life......9
Fig. 2-8 X-ray generator......10
Fig. 2-9 X-ray causes DNA damage. [17].....11
Fig. 2-10 Single-cell survival data for various stages of the cell cycle.[18].....12
Fig. 2-11 Interaction of X-rays with high-Z material nanoparticles. [25].....13
Fig. 2-12 ROS production in aqueous suspensions: use of PhOH, FFA, and His as scavengers. Relative scavenger concentration versus X-ray irradiation dose for solutions of 10 -4 M PhOH (filled circle), 10 -4 M His (filled square), 10 -4 M FFA (filled triangle), and 0.50 g/L MMASi-NP suspensions containing 10 -4 M PhOH (open circle), 10 -4 M His (open square), and 10 -4 M FFA (open triangle).[27].....16
Fig. 3-1 Experimental Design......17
Fig. 3-2 Flow chart of (Au@mSiO 2 ) SiO 2 synthesis。.....22
Fig. 4-1 TEM image of (A) Au@mSiO 2 and (B) (Au@mSiO 2 ) SiO 2 , (C) HR-TEM image of (Au@mSiO 2 ) SiO 2 , (D) size distribution, (E) zeta potential analysis. 30
Fig. 4-2 FTIR spectra of the Au@mSiO 2 with CTAB, Au@mSiO 2 remove CTAB, Au@mSiO 2 -FITC, (Au@mSiO 2 -FITC) SiO 2.....33
Fig. 4-3 STEM-EDS line mapping of (Au@mSiO 2 ) SiO 2......34
Fig. 4-4 XRD pattern of (Au@mSiO 2 ) SiO 2.....35
Fig. 4-5 (A) Cytotoxicity of TMZ against GSC and Astrocyte at different concentrations. (B) Determination of IC 50 value through the cell viability assay of TMZ against GSC and Astrocyte......39
Fig. 4-6 Cytotoxicity of (Au@mSiO 2 ) SiO 2 against GSC and Astrocyte at different concentrations, the cell viability was detected by 3 days after treatment......41
Fig. 4-7 (Au@mSiO 2 ) SiO 2 localization detection. Maximum intensity projection images of (A)GSC (C) SVG p12, and section images of (B) GSC (D) SVG p12 treated with 25 μg/mL (Au@mSiO 2 -FITC) SiO 2 for 6 hours, then stain with phalloidin-TRITC and Hoechst 33258......43
Fig. 4-8 Cytotoxicity of (Au@mSiO 2 ) SiO 2 and radiation therapy against GSC and Astrocyte. Cells were treated with 25 μg/mL (Au@mSiO 2 -FITC) SiO 2 for 6 hours, then followed by 4 Gy radiation therapy (XR), the cell viability was detected by 3 days after XR therapy......45
Fig. 4-9 Irradiation induces G1 and G2 cell cycle checkpoint activation and DNA repair. [39].....46
Fig. 4-10 Cell cycle of different hours after GSC treated with 4 Gy XR therapy and (Au@mSiO 2 )SiO 2 + 4 Gy XR therapy......48
Fig. 4-11 Cell cycle of different hours after astrocyte treated with 4 Gy XR therapy and (Au@mSiO 2 )SiO 2 + 4 Gy XR therapy......49
Fig. 4-12 Cell cycle phase percentage of (A) GSC, (B) SVG p12 cell.....50
Fig. 4-13 Schematic of the DNA staining procedure using the TUNEL assay. [40].....51
Fig. 4-14 DNA fragmentation of SVG p12 cells and GSC were analyzed by TUNEL analyses (green). Nuclei of cells were stained with DAPI (blue). Scale bar: 50 µm......53


表目錄
Table 2-1 Mechanisms of Resistance in GSCs. [4].....6
Table 2-2 High-Z nanoparticless and their in vitro radiation sensitizing effects. [21].....15
Table 4-1 Size distribution and zeta potential analysis.....31
[1] C. Adamson, O.O. Kanu, A.I. Mehta, C. Di, N. Lin, A.K. Mattox, D.D. Bigner, Glioblastoma multiforme: a review of where we have been and where we are going, Expert opinion on investigational drugs 18(8) (2009) 1061-83.
[2] D.N. Louis, H. Ohgaki, O.D. Wiestler, W.K. Cavenee, P.C. Burger, A. Jouvet, B.W. Scheithauer, P. Kleihues, The 2007 WHO Classification of Tumours of the Central Nervous System, Acta Neuropathologica 114(2) (2007) 97-109.
[3] R. Stupp, M.E. Hegi, W.P. Mason, M.J. van den Bent, M.J.B. Taphoorn, R.C. Janzer, S.K. Ludwin, A. Allgeier, B. Fisher, K. Belanger, P. Hau, A.A. Brandes, J. Gijtenbeek, C. Marosi, C.J. Vecht, K. Mokhtari, P. Wesseling, S. Villa, E. Eisenhauer, T. Gorlia, M. Weller, D. Lacombe, J.G. Cairncross, R.-O. Mirimanoff, Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial, The Lancet Oncology 10(5) 459-466.
[4] B. Auffinger, D. Spencer, P. Pytel, A.U. Ahmed, M.S. Lesniak, The role of glioma stem cells in chemotherapy resistance and glioblastoma multiforme recurrence, Expert Review of Neurotherapeutics 15(7) (2015) 741-752.
[5] S. Bao, Q. Wu, R.E. McLendon, Y. Hao, Q. Shi, A.B. Hjelmeland, M.W. Dewhirst, D.D. Bigner, J.N. Rich, Glioma stem cells promote radioresistance by preferential activation of the DNA damage response, Nature 444(7120) (2006) 756-60.
[6] A.-M. Bleau, D. Hambardzumyan, T. Ozawa, E.I. Fomchenko, J.T. Huse, C.W. Brennan, E.C. Holland, PTEN/PI3K/Akt Pathway Regulates the Side Population Phenotype and ABCG2 Activity in Glioma Tumor Stem-like Cells, Cell Stem Cell 4(3) (2009) 226-235.
[7] S.R. Chandana, S. Movva, M. Arora, T. Singh, Primary brain tumors in adults, American family physician 77(10) (2008) 1423-30.
[8] J.W. Henson, P. Gaviani, R.G. Gonzalez, MRI in treatment of adult gliomas, The Lancet Oncology 6(3) (2005) 167-175.
[9] D.-Y. Cho, S.-Z. Lin, W.-K. Yang, H.-C. Lee, D.-M. Hsu, H.-L. Lin, C.-C. Chen, C.-L. Liu, W.-Y. Lee, L.-H. Ho, Targeting Cancer Stem Cells for Treatment of Glioblastoma Multiforme, Cell Transplantation 22(4) (2017) 731-739.
[10] A.U. Ahmed, B. Auffinger, M.S. Lesniak, Understanding glioma stem cells: rationale, clinical relevance and therapeutic strategies, Expert Rev Neurother 13(5) (2013) 545-55.
[11] T. Reya, S.J. Morrison, M.F. Clarke, I.L. Weissman, Stem cells, cancer, and cancer stem cells, Nature 414(6859) (2001) 105-11.
[12] K. Chen, Y.H. Huang, J.L. Chen, Understanding and targeting cancer stem cells: therapeutic implications and challenges, Acta Pharmacol Sin 34(6) (2013) 732-40.
[13] S.K. Singh, C. Hawkins, I.D. Clarke, J.A. Squire, J. Bayani, T. Hide, R.M. Henkelman, M.D. Cusimano, P.B. Dirks, Identification of human brain tumour initiating cells, Nature 432(7015) (2004) 396-401.
[14] J. Wang, T.P. Wakeman, J.D. Latha, A.B. Hjelmeland, X.F. Wang, R.R. White, J.N. Rich, B.A. Sullenger, Notch Promotes Radioresistance of Glioma Stem Cells, Stem cells (Dayton, Ohio) 28(1) (2010) 17-28.
[15] T.F. Franke, C.P. Hornik, L. Segev, G.A. Shostak, C. Sugimoto, PI3K//Akt and apoptosis: size matters, Oncogene 22(56) (0000) 8983-8998.
[16] Z.-Y. Xu, K. Wang, X.-Q. Li, S. Chen, J.-M. Deng, Y. Cheng, Z.-G. Wang, The ABCG2 transporter is a key molecular determinant of the efficacy of sonodynamic therapy with Photofrin in glioma stem-like cells, Ultrasonics 53(1) (2013) 232-238.
[17] E.J. Hall, Radiation biology for pediatric radiologists, Pediatric Radiology 39(S1) (2008) 57-64.
[18] W.K. Sinclair, R.A. Morton, X-ray sensitivity during the cell generation cycle of cultured Chinese hamster cells, Radiation research 29(3) (1966) 450-74.
[19] The Science Behind Radiation Therapy, American cancer society (2014).
[20] T.M. Pawlik, K. Keyomarsi, Role of cell cycle in mediating sensitivity to radiotherapy, International Journal of Radiation Oncology*Biology*Physics 59(4) (2004) 928-942.
[21] J.W.J. Bergs, M.G. Wacker, S. Hehlgans, A. Piiper, G. Multhoff, C. Rödel, F. Rödel, The role of recent nanotechnology in enhancing the efficacy of radiation therapy, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 1856(1) (2015) 130-143.
[22] F.W. Spiers, The Influence of Energy Absorption and Electron Range on Dosage in Irradiated Bone, The British Journal of Radiology 22(261) (1949) 521-533.
[23] F.H. Adams, A. Norman, R.S. Mello, D. Bass, Effect of radiation and contrast media on chromosomes. Preliminary report, Radiology 124(3) (1977) 823-6.
[24] A.S. Allal, M. Richter, M. Russo, M. Rouzaud, P. Dulguerov, J.M. Kurtz, Dose Variation at Bone/Titanium Interfaces Using Titanium Hollow Screw Osseointegrating Reconstruction Plates, International Journal of Radiation Oncology*Biology*Physics 40(1) (1998) 215-219.
[25] D. Kwatra, A. Venugopal, S. Anant, Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer, Translational Cancer Research 2(4) (2013) 330-342.
[26] S. Jain, D.G. Hirst, J.M. O'Sullivan, Gold nanoparticles as novel agents for cancer therapy, Br J Radiol 85(1010) (2012) 101-13.
[27] P.M. David Gara, N.I. Garabano, M.J. Llansola Portoles, M.S. Moreno, D. Dodat, O.R. Casas, M.C. Gonzalez, M.L. Kotler, ROS enhancement by silicon nanoparticles in X-ray irradiated aqueous suspensions and in glioma C6 cells, Journal of Nanoparticle Research 14(3) (2012) 741.
[28] J. Chen, R. Zhang, L. Han, B. Tu, D. Zhao, One-pot synthesis of thermally stable gold@mesoporous silica core-shell nanospheres with catalytic activity, Nano Research 6(12) (2013) 871-879.
[29] S.H. Lee, I. Rusakova, D.M. Hoffman, A.J. Jacobson, T.R. Lee, Monodisperse SnO2-Coated Gold Nanoparticles Are Markedly More Stable than Analogous SiO2-Coated Gold Nanoparticles, ACS Applied Materials & Interfaces 5(7) (2013) 2479-2484.
[30] S.Y. Lee, Temozolomide resistance in glioblastoma multiforme, Genes & Diseases 3(3) (2016) 198-210.
[31] R. Rai, M. Banerjee, D.H. Wong, E. McCullagh, A. Gupta, S. Tripathi, E. Riquelme, R. Jangir, S. Yadav, M. Raja, P. Melkani, V. Dixit, U. Patil, R. Shrivastava, S. Middya, F. Olivares, J. Guerrero, A. Surya, S.M. Pham, S. Bernales, A.A. Protter, D.T. Hung, S. Chakravarty, Temozolomide analogs with improved brain/plasma ratios – Exploring the possibility of enhancing the therapeutic index of temozolomide, Bioorganic & Medicinal Chemistry Letters 26(20) (2016) 5103-5109.
[32] A.E. Pegg, M.E. Dolan, R.C. Moschel, Structure, function, and inhibition of O6-alkylguanine-DNA alkyltransferase, Progress in nucleic acid research and molecular biology 51 (1995) 167-223.
[33] K.S. Srivenugopal, X.H. Yuan, H.S. Friedman, F. Ali-Osman, Ubiquitination-dependent proteolysis of O6-methylguanine-DNA methyltransferase in human and murine tumor cells following inactivation with O6-benzylguanine or 1,3-bis(2-chloroethyl)-1-nitrosourea, Biochemistry 35(4) (1996) 1328-34.
[34] Z. Jihong, F.G.S. Malcolm, D.B. Tracey, Temozolomide: Mechanisms of Action, Repair and Resistance, Current Molecular Pharmacology 5(1) (2012) 102-114.
[35] B. Xu, B. Halamoda-Kenzaoui, M. Ceridono, P. Colpo, A. Valsesia, P. Urbán, I. Ojea-Jiménez, S. Gioria, D. Gilliland, F. Rossi, A. Kinsner-Ovaskainen, Dispersion Behaviour of Silica Nanoparticles in Biological Media and Its Influence on Cellular Uptake, Plos One 10(10) (2015) e0141593.
[36] M.B. Kastan, O. Onyekwere, D. Sidransky, B. Vogelstein, R.W. Craig, Participation of p53 protein in the cellular response to DNA damage, Cancer Res 51(23 Pt 1) (1991) 6304-11.
[37] J.M. Brown, L.D. Attardi, The role of apoptosis in cancer development and treatment response, Nat Rev Cancer 5(3) (2005) 231-7.
[38] A.R. Cuddihy, M.J. O'Connell, Cell-cycle responses to DNA damage in G2, International Review of Cytology 222 (2003) 99-140.
[39] A. Hein, M. Ouellette, Y. Yan, Radiation-induced signaling pathways that promote cancer cell survival (Review), International Journal of Oncology (2014).
[40] R. Sharma, G. Ahmad, S.C. Esteves, A. Agarwal, Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay using bench top flow cytometer for evaluation of sperm DNA fragmentation in fertility laboratories: protocol, reference values, and quality control, Journal of Assisted Reproduction and Genetics 33(2) (2016) 291-300.
[41] F. Wei, Y. Wang, Z. Luo, Y. Li, Y. Duan, New findings of silica nanoparticles induced ER autophagy in human colon cancer cell, Scientific Reports 7 (2017) 42591.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top