跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 01:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林哲丞
研究生(外文):Che-Cheng Lin
論文名稱:結合功能性電刺激及足底振動以改善帕金森患者步行能力與動作控制之研究
論文名稱(外文):Improving the mobility and postural control ability by combined functional electric simulation with vibration for subjects with Parkinson’s disease
指導教授:楊世偉楊世偉引用關係單定一單定一引用關係
指導教授(外文):Sai-Wei YangDin-E Shan
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物醫學工程學系
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:237
中文關鍵詞:帕金森症動作控制步態分析腦部頻譜分析外部刺激功能性鞋墊
外文關鍵詞:Parkinson's diseasemotor controlgait analysiselectroencephalogram power spectral densityexternal cuefunctional orthosis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:274
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
帕金森氏症是一種常見的中樞神經系統退化性疾病,據統計,台灣65歲以上人口中約有1%的人罹患此疾病而目前有超過四萬人為重度帕金森氏症患者。帕金森氏症在臨床上的症狀為靜止性震顫、肌肉僵直、運動失能、動作遲緩、姿勢平衡不佳與步態不穩。其異常的步態表現,如凍結步態、較小的跨步距離、較慢的走路速率、過度的軀幹前傾、足部屈曲角度不足等都會造成患者姿勢控制異常、步行不穩定,因而容易發生跌倒。目前治療的方式大多著重在口服藥物、手術治療、復健訓練以及輔具介入等,但相關副作用與風險都會影響治療成效。在近年研究中發現帕金森氏症患者的步態可藉由視或聽覺提示、提高本體感覺回饋如足底振動或微電刺激、或下肢功能性電刺激等,其在姿勢控制及步行能力具明顯且快速的成效,然目前未有將二者以上刺激結合探討其效益的研究。因此,本研究目的乃以生物力學之動作分析探討以足底振動或混合下肢肌群功能性電刺激,及僅穿著功能性鞋墊探討帕金森氏症患者之步行能力與姿勢平衡控制改善之成效;同時探討在外部刺激時大腦皮質活化對動作控制及肌肉協同作用對於之調控機制。
本研究共招募16位帕金森氏症患者(年齡: 63.31±7.68;BMI: 24.52±1.65;MMSE: 27.81±0.88; H & Y Stage: 2.594±0.195)及12位同年齡層正常族群(年齡:62.86±7.55;BMI: 25.07±1.10;MMSE: 28.00±0.76)為控制組。實驗設計:首先說明研究目的及填寫受測者同意書,基本量測及問卷填寫,再進行各種刺激情境在跑步機上的暖身運動,接著單盲隨機給予受試者刺激情境,進行計時坐到站、計時站到走與跨越10%腿長障礙高度之障礙物的十公尺步行、感覺整合與平衡臨床測試,探討在不同刺激情境下的動作控制與靜態平衡表現。
結果顯示帕金森氏症患者與健康老人在未進行外部刺激介入下,計時坐到站與計時站到走的各分期時間與足壓晃動軌跡明顯大於正常族群,但左右腳步幅、平均步幅、左右腳速率、平均速率等均明顯小於正常族群。在加入外部四種刺激後帕金森氏症族群在坐到站足壓晃動軌跡總長、晃動面積與計時坐到站、站到走的基本步態空間參數,分期時間,肌肉活化比率以及跨越障礙物的足壓軌跡總長、足壓最大位移、雙腳對稱性均顯著接近正常族群的步態。其中坐到站足壓晃動面積及總長以單獨電刺激為最佳(p=0.959)。跨障雙腳對稱性、前進腳與跟隨腳的足壓總長、ML位移亦以電刺激效果較佳(p=0.700, 0.817)。但在TP3、轉身時及回走步態空間參數則整合刺激效果最佳(p=0.487)。整体上以結合兩種刺激情境的『振動結合功能性電刺激之情境』的影響最大。
腦波頻譜分析在加入外部四種刺激後帕金森氏症族群在TP1的Alpha以電刺激與振動刺激效果最佳,TP2的Alpha四種刺激都有效果以振動刺激與鞋墊介入效果最佳,TP3的Alpha以電刺激與振動刺激效果最佳,TP4的Alpha四種刺激都有效果以電刺激與振動刺激效果最佳。而計時站到走在往前行走的Alpha、Beta、Gamma在四種刺激都有效果以電刺激與鞋墊介入效果最佳,起身向前的High_Alpha、Beta、Gamma在四種刺激都有效果以電刺激與振動刺激效果最佳,轉身的Alpha在振動整合電刺激與振動刺激效果最佳,轉身回走的Alpha、Beta、Gamma在四種刺激都有效果,轉身及時回走的Alpha、Beta、Gamma在四種刺激都有效果,站到做的Alpha、Beta、Gamma在四種刺激都有效果以振動刺激與振動整合電刺激效果最佳。

在腦波頻譜分析中,計時坐到站中TP1在進行的動作中有低頭到抬頭故而會影響到前庭的作用。而TP3與TP4處於伸直期和穩定期所以需要進行空間定位因此前庭腦波亦會增強。在計時站到走的過程中Forward_Stand_1與Forward_Stand_3以及Back_Stand_1都是在兩種不同動作之間的銜接與調控,腦部需要完成的資訊處理包括動作、平衡、感知覺整合,故在Fz、T3、Cz因分別調控平衡、運動以及運動感覺整合的區域會有較大的活化比率。而在進行轉彎的過程中受試者因需要借助較多的視覺輔助所以在Oz有較大的活化比率。在跨障步行,前進腳由於持續有外部刺激介入,所以Pz有較大的活化比率,而跟隨腳因為處於一隻腳跨障後一隻還沒有跨出的階段所以腦部比較需要平衡、動作感覺整合、感覺上的資訊處理所以在Fz、T3、C會有較大的活化比率。

綜上所述,帕金森氏症族群在步態穩定性、姿勢控制、動作控制連續性均明顯較正常族群差;但在四種外部刺激介入後,可以在一定程度上的增加軀幹穩定性及步態對稱性。外部刺激的介入能增加皮質骨區腦波的活化率,可能進而改善受測者的動作控制能力,帕金森氏症族群的步態穩定度與平衡能力得到改善。同時結合兩種刺激的效果相較於單一刺激也較佳,受測者若不適應電流或振動的外部刺激,穿著功能性鞋墊即可改善姿勢平衡及步態穩定度。
Parkinson's disease is a common central nervous system degenerative disease. Approximately 1% of the population over 65 years old are suffering in Taiwan, and currently has more than 40,000 people with severe Parkinson's disease. The clinical symptoms include the resting tremor, muscular rigidity, akinesia, bradykinesia, postural instability, frozen gait et al. The characteristic abnormal gait patterns such as small step length (around 40-90 cm), slower walking speed (around 67-100 cm/s), excessive trunk anterior tilt and insufficient ankle and knee joint range of motion may result in postural instability and risk of falling.
The most common treatments are drug, surgical operation, rehabilitation or the assistive device intervention. However, the side effects may affect the treatment efficacies. The assistive devices of visual or auditory cues were employed to improve the frozon and tremble gait and mobility. In addition, plantar vibration or electrical stimulation, or lower limb, functional electrical stimulation is applied to improve the gait pattern. The purpose of this study was to evaluate the efficacy of the intergrated external stimulation plantar vibration and peroneal nerve functional electric stimition to improve the mobility and motor control of the Parkinson subjects and the mechanicsm of efficacy by the EEG spectrum analysis.
This study recruited 16 Parkinson's patient (Age: 63.31±7.68;BMI: 24.528±1.65;MMSE: 27.81±0.88; H & Y Stage: 2.594±0.195) and 12 Normal person(Age:62.86±7.55;BMI: 25.07±1.10;MMSE: 28.00±0.76). The experimental design included first all of the situation in the treadmill on the warm-up exercise, and then let the subjects in the random stimulation to do sit-to-stand ,time-up and go , 10% of the height of obstacles across the obstacles and sensory integration and balance of clinical testing, to explore the different stimuli under the action control and static balance performance.
Result: The Parkinson group and Normal group in No stimulation situation has significant differences between groups(Normal>Parkinson) with phase time ,COP trajectory ,left/right step length , left/right speed and the leading leg COP_ML trajectory ,trailing leg COP_AP displantment , trailing leg COP_ML displantment , right symmetry ,symmetry ratio has significant differences between groups( Parkinson > Normal ) , the stimulation intervention the sit-to-stand sway trajectory ,sway area , left/right step length , left/right speed ,phase time ,muscle RMS ,cross-obstacle COP trajectory ,COP maximum displantment ,symmetry all have significant differences between stimulation especially the vibration combine with electrical stimulation has greatest impact.
In the electroencephalogram power spectral density ,sit-to-stand TP1 in the action of the bow to the rise of the head will affect the effect of the vestibule, and TP3 and TP4 is due to the extension and stability for space positioning so vestibular of the effect ,the time-up and go Forward_Stand_1 ,Forward_Stand_3 ,Back_Stand_1 can be deduced in the case of these actions are in the two different actions between the convergence and regulation of the circumstances, in this case the brain needs to complete the information processing, including action, balance , sensory, so in the Fz, T3, Cz, channel, which charge balance, movement and movement of the integration of the region will have a greater activation rate. We suggested that the patients need to use more visual support in the Turn, so Oz, which charge the visual signal, will have a larger activation rate. In the process of crossing the obstacle, there is a large activation ratio in the Pz, where controlled the sensory, because there is an external stimulus intervention. And in the following, there was no stage of crossing, so the brain needs more information processing of balance, sensorimotor integrated and sensory induced Pz had a greater activation rate.

In this study, we concluded that Parkinson's disease in the gait stability, postural control, action continuity was significantly poor than the normal population. But after the external stimulus intervention, were increased the trunk and lumber stability and gait symmetry. In addition, the involvement of external stimulation in the portion of the brain wave can induce a relatively high activation rate in the corresponding regions of the brain. Although it is not possible to determine whether the higher activation rate is helpful, this study can prove that the involvement of external stimuli does improve the problem of Parkinson's disease in gait. Furthermore, combining the both stimuli were better than a single stimulation.
目錄
誌謝 I
目錄 II
圖目錄 V
表目錄 VI
中文摘要 XI
ABSTRACT XIV
第一章 前言 1
1-1帕金森氏症簡介 1
1-1-1帕金森氏症的病因 1
1-1-2帕金森氏症的發生率 2
1-1-3帕金森氏症的臨床診斷與分級 2
1-1-4帕金森氏症的臨床症狀 4
1-1-4-1. 靜止時震顫(resting tremor): 4
1-1-4-2. 肌肉僵直(muscular rigidity): 4
1-1-4-3. 運動失能(akinesia): 4
1-1-4-4. 動作遲緩(bradykinesia): 4
1-1-4-5. 姿態穩定障礙(postural instability): 4
1-1-5帕金森氏症的神經傳遞路徑 5
1-1-6帕金森氏症患者之步態研究 7
1-1-7帕金森氏症患者的軀幹功能的改變研究 8
1-1-8帕金森氏症患者的腦部活化研究 9
1-2帕金森氏症臨床治療方式 9
1-2-1藥物治療 10
1-2-2手術治療 10
1-2-3輔助治療 11
1-2-4功能性步行訓練與外部刺激 12
1-2-3-1. 振動刺激 13
1-2-3-2. 功能性電刺激 14
1-2-3-3. 功能性鞋墊 15
1-2-4小結 16
1-3研究目的 17
1-4研究假設 17
第二章 材料與方法 18
2-1研究對象 18
2-2實驗設計 18
2-3-1功能性電刺激 19
2-3-2振動刺激 19
2-3-3刺激時機 20
2-3-4鞋墊介入 21
2-4 評估儀器 22
2-4-1. 肌電訊號儀(ELECTROMYOGRAPHY, EMG) 22
2-4-2. 測力板(AMTI, USA) 23
2-4-3. APDM動作捕捉感測系統(OPAL, APDM, USA) 23
2-4-4. 足底壓力量測系統(RSSCAN, INC., BELGIUM) 24
2-4-5. 腦波訊號量測系統(NUAMPS, NEUROSCAN, USA) 24
2-5實驗設計與流程 26
2-5-1. 智能狀態評估 27
2-5-2. 疾病嚴重程度評估 27
2-5-3. 帕金森氏症生活品質問卷 28
2-5-4. 平衡測試 29
2-5-5. 暖身運動 29
2-5-6. 計時坐到站、站到走 29
2-5-7. 一般行走與跨越10%腿長障礙高度 30
2-6資料處理 30
2-7統計方法 36
第三章 結果 38
3-1. 受試者基本資料 38
3-2. 計時坐到站分析 39
3-2-1. 計時坐到站分期時間分析 39
3-2-2. 足底晃動軌跡分析 39
3-2-3. 晃動面積分析 39
3-2-4. IMU三軸方向位移分析 41
3-2-5. IMU三軸最大運動角度分析 45
3-2-6. 坐到站腦波頻譜分析 49
3-3. 計時站到走分析 64
3-3-1. 計時到走基本步態空間參數分析 64
3-3-2. 計時站到走分期時間分析 66
3-3-3. 計時站到走肌肉活化比率分析 68
3-3-4. 計時站到走腦波頻譜分析 77
3-4. 跨越障礙物分析 127
3-4-1. 足底壓力中心軌跡分析 127
3-4-2. 足底壓力中心最大位移分析 127
3-4-3. 雙腳對稱性分析 129
3-4-4. IMU三軸方向位移分析 131
3-4-5. IMU三軸最大運動角度分析 135
3-4-6. 跨越障礙物腦波頻譜分析 139
3-5. 平衡感覺統整(CTSIB)分析 173
3-5-1. 足底壓力中心軌跡分析 173
3-5-2. 足底晃動面積分析 173
3-5-3. 感覺輸入比例分析 173
3-5-4. 平衡感覺統整頻譜分析 175
第四章 討論 191
4-1. 族群行為與動作控制比較 191
4-2. 刺激情境效益比對 192
4-3. 步態參數比對 195
4-4. 肌肉活化比率比對 195
4-5. 功能性活動在軀幹功能影響 197
4-6. 平衡感覺統整比對 198
4-7. 腦波頻譜分析資料比對 198
第五章 結論 201
第六章 參考文獻 203
第七章 附錄 208









圖目錄
圖1-1:神經傳遞路徑 6
圖2-1功能性電刺激及足底振動鞋具示意圖 20
圖2-2刺激時機示意圖 21
圖2-3 半客製化鞋墊 22
圖2-4:肌電訊號截取系統 22
圖2-5:力板量測系統 23
圖2-6:慣性感測動作分析系統 24
圖2-7:足底壓力量測系統 24
圖2-8: 腦波訊號量測系統 25
圖2-9:實驗設計與流程 26
圖2-10:跨越障礙物 30
圖2-11: 雙腳對稱性 32
圖2-12:步態週期判斷 32
圖2-13坐到站分期 34
圖2-14: 坐到站、站到走5公尺轉身之分期 35
圖2-15: 以角速度變化區分步態各期 35





表目錄
表1: HOEHN & YAHR STAGE
表2-1:依據不同年齡層與計時坐到站、站到走完成時間範圍(BOHANNON,2006)
表2-2:感覺輸入比率
表3-1、受試者基本資料
表3-2:坐到站分期時間
表3-3: 坐到站足底晃動軌跡與晃動面積
表3-4: X軸方向位移
表3-5: Y軸方向位移
表3-6: Z軸方向位移
表3-7: FLEXION/EXTENSION (PITCH)最大運動角度
表3-8: ABDUCTION/ADDUCTION (ROLL)最大運動角度
表3-9: INTERNAL/EXTERNAL ROTATION (YAW)最大運動角度
表3-10: 坐到站TP1-頻譜分析(FZ&T3)
表3-11: 坐到站TP1-頻譜分析(CZ&T4)
表3-12: 坐到站TP1-頻譜分析(PZ&OZ)
表3-13: 坐到站TP2-頻譜分析(FZ&T3)
表3-14: 坐到站TP2-頻譜分析(CZ&T4)
表3-15: 坐到站TP2-頻譜分析(PZ&OZ)
表3-16: 坐到站TP3-頻譜分析(FZ&T3)
表3-17: 坐到站TP3-頻譜分析(CZ&T4)
表3-18: 坐到站TP3-頻譜分析(PZ&OZ)
表3-19: 坐到站TP4-頻譜分析(FZ&T3)
表3-20: 坐到站TP4-頻譜分析(CZ&T4)
表3-21: 坐到站TP4-頻譜分析(PZ&OZ)
表3-22: 計時站到走基本步態參數
表3-23: 計時站到走分期時間
表3-24: 計時坐到站、站到走肌肉活化比率(STS& FORWARD_STAND_1)
表3-25: 計時坐到站、站到走肌肉活化比率(FORWARD_SWING_1& FORWARD_STAND_3)
表3-26: 計時坐到站、站到走肌肉活化比率(FORWARD_SWING_3& TURN)
表3-27: 計時坐到站、站到走肌肉活化比率(BACK _STAND_1& BACK _SWING_1)
表3-28: 計時坐到站、站到走肌肉活化比率(BACK _STAND_3& BACK _SWING_3)
表3-29: 計時坐到站、站到走肌肉活化比率(TTS)
表3-30: 計時站到走STS-頻譜分析(FZ&T3)
表3-31: 計時站到走STS-頻譜分析(CZ&T4)
表3-32: 計時站到走STS-頻譜分析(PZ&OZ)
表3-33: 計時站到走FORWARD -頻譜分析(FZ&T3)
表3-34: 計時站到走FORWARD -頻譜分析(CZ&T4)
表3-35: 計時站到走FORWARD -頻譜分析(PZ&OZ)
表3-36: 計時站到走FORWARD_STAND_1 -頻譜分析(FZ&T3)
表3-37: 計時站到走FORWARD_STAND_1 -頻譜分析(CZ&T4)
表3-38: 計時站到走FORWARD_STAND_1 -頻譜分析(PZ&OZ)
表3-39: 計時站到走FORWARD_SWING _1-頻譜分析(FZ&T3)
表3-40: 計時站到走FORWARD_SWING_1-頻譜分析(CZ&T4)
表3-41: 計時站到走FORWARD_SWING_1-頻譜分析(PZ&OZ)
表3-42: 計時站到走FORWARD_STAND_3-頻譜分析(FZ&T3)
表3-43: 計時站到走FORWARD_STAND_3-頻譜分析(CZ&T4)
表3-44: 計時站到走FORWARD_STAND_3-頻譜分析(PZ&OZ)
表3-45: 計時站到走FORWARD_SWING_3-頻譜分析(FZ&T3)
表3-46: 計時站到走FORWARD_SWING_3-頻譜分析(CZ&T4)
表3-47: 計時站到走FORWARD_SWING_3-頻譜分析(PZ&OZ)
表3-48: 計時站到走TURN -頻譜分析(FZ&T3)
表3-49: 計時站到走TURN-頻譜分析(CZ&T4)
表3-50: 計時站到走TURN-頻譜分析(PZ&OZ)
表3-51: 計時站到走BACK -頻譜分析(FZ&T3)
表3-52: 計時站到走BACK-頻譜分析(CZ&T4)
表3-53: 計時站到走BACK-頻譜分析(PZ&OZ)
表3-54: 計時站到走BACK_STAND_1-頻譜分析(FZ&T3)
表3-55: 計時站到走BACK_STAND_1-頻譜分析(CZ&T4)
表3-56: 計時站到走BACK_STAND_1-頻譜分析(PZ&OZ)
表3-57: 計時站到走BACK_SWING_1-頻譜分析(FZ&T3)
表3-58: 計時站到走BACK_SWING_1-頻譜分析(CZ&T4)
表3-59: 計時站到走BACK_SWING_1-頻譜分析(PZ&OZ)
表3-60: 計時站到走BACK_STAND_3-頻譜分析(FZ&T3)
表3-61: 計時站到走BACK_STAND_3-頻譜分析(CZ&T4)
表3-62: 計時站到走BACK_STAND_3-頻譜分析(PZ&OZ)
表3-63: 計時站到走BACK_SWING_3-頻譜分析(FZ&T3)
表3-64: 計時站到走BACK_SWING_3-頻譜分析(CZ&T4)
表3-65: 計時站到走BACK_SWING_3-頻譜分析(PZ&OZ)
表3-66: 計時站到走TTS -頻譜分析(FZ&T3)
表3-67: 計時站到走TTS-頻譜分析(CZ&T4)
表3-68: 計時站到走TTS-頻譜分析(PZ&OZ)
表3-69: 跨越障礙物-足底壓力中心分析
表3-70: 跨越障礙物-雙腳對稱性分析
表3-71: 跨越障礙物- X軸方向位移
表3-72: 跨越障礙物- Y軸方向位移
表3-73: 跨越障礙物- Z軸方向位移
表3-74: FLEXION/EXTENSION (PITCH)最大運動角度
表3-75: ABDUCTION/ADDUCTION (ROLL)最大運動角度
表3-76: INTERNAL/EXTERNAL ROTATION (YAW)最大運動角度
表3-77: 跨越障礙物TRAILING-頻譜分析(FZ&T3)
表3-78: 跨越障礙物TRAILING-頻譜分析(CZ&T4)
表3-79: 跨越障礙物TRAILING-頻譜分析(PZ&OZ)
表3-80: 跨越障礙物TRAILING_TO_LEADING -頻譜分析(FZ&T3)
表3-81: 跨越障礙物TRAILING_TO_LEADING -頻譜分析(CZ&T4)
表3-82: 跨越障礙物TRAILING_TO_LEADING -頻譜分析(PZ&OZ)
表3-83: 跨越障礙物LEADING -頻譜分析(FZ&T3)
表3-84: 跨越障礙物LEADING -頻譜分析(CZ&T4)
表3-85: 跨越障礙物LEADING -頻譜分析(PZ&OZ)
表3-86: 跨越障礙物AFTER_CROSS_OBSTACLE_1-頻譜分析(FZ&T3)
表3-87: 跨越障礙物AFTER_CROSS_OBSTACLE_1-頻譜分析(CZ&T4)
表3-88: 跨越障礙物AFTER_CROSS_OBSTACLE_1-頻譜分析(PZ&OZ)
表3-89: 跨越障礙物BEFORE_CROSS_OBSTACLE_1-頻譜分析(FZ&T3)
表3-90: 跨越障礙物BEFORE_CROSS_OBSTACLE_1-頻譜分析(CZ&T4)
表3-91: 跨越障礙物BEFORE_CROSS_OBSTACLE_1-頻譜分析(PZ&OZ)
表3-92: 平衡感覺統整參數
表3-93: 平衡感覺統整EYES_CLOSE -頻譜分析(FZ&T3)
表3-94: 平衡感覺統整EYES_CLOSE -頻譜分析(CZ&T4)
表3-95: 平衡感覺統整EYES_CLOSE -頻譜分析(PZ&OZ)
表3-96: 平衡感覺統整EYES_OPEN -頻譜分析(FZ&T3)
表3-97: 平衡感覺統整EYES_OPEN -頻譜分析(CZ&T4)
表3-98: 平衡感覺統整EYES_OPEN -頻譜分析(PZ&OZ)
表3-99: 平衡感覺統整FOAM_EYES_CLOSE -頻譜分析(FZ&T3)
表3-100: 平衡感覺統整FOAM_EYES_CLOSE -頻譜分析(CZ&T4)
表3-101: 平衡感覺統整FOAM_EYES_CLOSE -頻譜分析(PZ&OZ)
表3-102: 平衡感覺統整FOAM_EYES_OPEN -頻譜分析(FZ&T3)
表3-103: 平衡感覺統整FOAM_EYES_OPEN -頻譜分析(CZ&T4)
表3-104: 平衡感覺統整FOAM_EYES_OPEN -頻譜分析(PZ&OZ)
[1] Behrmann, M., Geng, J. J., & Shomstein, S. (2004). Parietal cortex and attention. Current opinion in neurobiology, 14(2), 212-217.
[2] Benatru, I., Vaugoyeau, M., & Azulay, J. P. (2008). Postural disorders in Parkinson’s disease. Neurophysiologie Clinique/Clinical Neurophysiology, 38(6), 459-465.
[3] Bloem, B. R., Hausdorff, J. M., Visser, J. E., & Giladi, N. (2004). Falls and freezing of gait in Parkinson's disease: a review of two interconnected, episodic phenomena. Movement Disorders, 19(8), 871-884.
[4] Bohannon, R. W. (2006). Reference values for the timed Up and Go test: a descriptive meta‐analysis. Journal of geriatric physical therapy, 29(2), 64-68.
[5] Burleigh‐Jacobs, A., Horak, F. B., Nutt, J. G., & Obeso, J. A. (1997). Step initiation in Parkinson's disease: influence of levodopa and external sensory triggers. Movement disorders, 12(2), 206-215.
[6] Cantello, R., Gianelli, M., Bettucci, D., Civardi, C., De Angelis, M. S., & Mutani, R. (1991). Parkinson's disease rigidity Magnetic motor evoked potentials in a small hand muscle. Neurology, 41(9), 1449-1449.
[7] Cantello, R., Gianelli, M., Civardi, C., & Mutani, R. (1995). Parkinson's disease rigidity: EMG in a small hand muscle at “rest”. Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control, 97(5), 215-222.
[8] Chastan, N., Debono, B., Maltête, D., & Weber, J. (2008). Discordance between measured postural instability and absence of clinical symptoms in Parkinson's disease patients in the early stages of the disease. Movement Disorders, 23(3), 366-372.
[9] De Lau, L. M., & Breteler, M. M. (2006). Epidemiology of Parkinson's disease. The Lancet Neurology, 5(6), 525-535.
[10] Debaere, F., Wenderoth, N., Sunaert, S., Van Hecke, P., & Swinnen, S. P. (2003). Internal vs external generation of movements: differential neural pathways involved in bimanual coordination performed in the presence or absence of augmented visual feedback. Neuroimage, 19(3), 764-776.
[11] Ebrahim, N. K. C., Krishna, A. P., & Ovallath, S. (2017). Effectiveness of electrical stimulation in idiopathic Parkinson’s disease. International Journal of Research in Medical Sciences, 3(4), 963-967.
[12] Ferraye, M. U., Debû, B., & Pollak, P. (2008). Deep brain stimulation effect on freezing of gait. Movement Disorders, 23(S2).
204
[13] Frank, J. S., Horak, F. B., & Nutt, J. (2000). Centrally initiated postural adjustments in parkinsonian patients on and off levodopa. Journal of Neurophysiology, 84(5), 2440-2448.
[14] Freeman, J. S., Cody, F. W., & Schady, W. (1993). The influence of external timing cues upon the rhythm of voluntary movements in Parkinson9s disease. Journal of Neurology, Neurosurgery & Psychiatry, 56(10), 1078-1084.
[15] Glickstein, M. (2000). How are visual areas of the brain connected to motor areas for the sensory guidance of movement?. Trends in neurosciences, 23(12), 613-617.
[16] Goetz, C. G., Poewe, W., Rascol, O., Sampaio, C., Stebbins, G. T., Counsell, C., ... & Yahr, M. D. (2004). Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: status and recommendations the Movement Disorder Society Task Force on rating scales for Parkinson's disease. Movement disorders, 19(9), 1020-1028.
[17] Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M., & Deisseroth, K. (2009). Optical deconstruction of parkinsonian neural circuitry. science, 324(5925), 354-359.
[18] Halliday, S. E., Winter, D. A., Frank, J. S., Patla, A. E., & Prince, F. (1998). The initiation of gait in young, elderly, and Parkinson's disease subjects. Gait & posture, 8(1), 8-14.
[19] He, Z., Jiang, Y., Xu, H., Jiang, H., Jia, W., Sun, P., & Xie, J. (2014). High frequency stimulation of subthalamic nucleus results in behavioral recovery by increasing striatal dopamine release in 6-hydroxydopamine lesioned rat. Behavioural brain research, 263, 108-114.
[20] Herzog, J., Volkmann, J., Krack, P., Kopper, F., Pötter, M., Lorenz, D., ... & Weinert, D. (2003). Two‐year follow‐up of subthalamic deep brain stimulation in Parkinson's disease. Movement disorders, 18(11), 1332-1337.
[21] Hoehn, M. M., & Yahr, M. D. (1967). Parkinsonism onset, progression, and mortality. Neurology, 17(5), 427-427.
[22] Hwa-ann, C., & Krebs, D. E. (1999). Dynamic balance control in elders: gait initiation assessment as a screening tool. Archives of physical medicine and rehabilitation, 80(5), 490-494.
[23] Jankovic, J. (1999). Complications and limitations of drug therapy for Parkinson's disease. Neurology, 55(12 Suppl 6), S2-6.
[24] Jian, Y., Winter, D. A., Ishac, M. G., & Gilchrist, L. (1993). Trajectory of the body COG and COP during initiation and termination of gait. Gait & Posture, 1(1), 9-22.
[25] Jiang, Y., & Norman, K. E. (2006). Effects of visual and auditory cues on gait initiation in people with Parkinson's disease. Clinical rehabilitation, 20(1), 36-45.
205
[26] Keus, S. H. J., Bloem, B. R., Van Hilten, J. J., Ashburn, A., & Munneke, M. (2007). Effectiveness of physiotherapy in Parkinson's disease: the feasibility of a randomised controlled trial. Parkinsonism & related disorders, 13(2), 115-121.
[27] Kristensen, M. T., Foss, N. B., & Kehlet, H. (2007). Timed “up & go” test as a predictor of falls within 6 months after hip fracture surgery. Physical therapy, 87(1), 24-30.
[28] Lefaucheur, J. P., Drouot, X., Von Raison, F., Ménard-Lefaucheur, I., Cesaro, P., & Nguyen, J. P. (2004). Improvement of motor performance and modulation of cortical excitability by repetitive transcranial magnetic stimulation of the motor cortex in Parkinson's disease. Clinical Neurophysiology, 115(11), 2530-2541.
[29] Lim, I., van Wegen, E., de Goede, C., Deutekom, M., Nieuwboer, A., Willems, A., ... & Kwakkel, G. (2005). Effects of external rhythmical cueing on gait in patients with Parkinson's disease: a systematic review. Clinical rehabilitation, 19(7), 695-713.
[30] Martínez‐Martín, P., Gil‐Nagel, A., Gracia, L. M., Gómez, J. B., Martínez‐Sarriés, J., & Bermejo, F. (1994). Unified Parkinson's disease rating scale characteristics and structure. Movement disorders, 9(1), 76-83.
[31] McIntosh, G. C., Brown, S. H., Rice, R. R., & Thaut, M. H. (1997). Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson's disease. Journal of Neurology, Neurosurgery & Psychiatry, 62(1), 22-26.
[32] Misulis, K. E., & Head, T. C. (2003). Essentials of clinical neurophysiology (Vol. 1). Garland Science.
[33] Morris, M. E., Iansek, R., Matyas, T. A., & Summers, J. J. (1996). Stride length regulation in Parkinson's disease: normalization strategies and underlying mechanisms. Brain, 119(2), 551-568.
[34] Morris, M. E., Iansek, R., Matyas, T. A., & Summers, J. J. (1996). Stride length regulation in Parkinson's disease: normalization strategies and underlying mechanisms. Brain, 119(2), 551-568.
[35] Nieuwboer, A., Kwakkel, G., Rochester, L., Jones, D., van Wegen, E., Willems, A. M., ... & Lim, I. (2007). Cueing training in the home improves gait-related mobility in Parkinson’s disease: the RESCUE trial. Journal of Neurology, Neurosurgery & Psychiatry, 78(2), 134-140.
[36] Novak, P., & Novak, V. (2006). Effect of step-synchronized vibration stimulation of soles on gait in Parkinson's disease: a pilot study. Journal of neuroengineering and rehabilitation, 3(1), 9.
[37] Okuma, Y., & Yanagisawa, N. (2008). The clinical spectrum of freezing of gait in Parkinson's disease. Movement Disorders, 23(S2).
206
[38] O'Sullivan, J. D., Said, C. M., Dillon, L. C., Hoffman, M., & Hughes, A. J. (1998). Gait analysis in patients with Parkinson's disease and motor fluctuations: influence of levodopa and comparison with other measures of motor function. Movement disorders, 13(6), 900-906.
[39] O'Sullivan, S. B., Schmitz, T. J., & Fulk, G. (2013). Physical rehabilitation. FA Davis.
[40] Pringsheim, T., Jette, N., Frolkis, A., & Steeves, T. D. (2014). The prevalence of Parkinson's disease: A systematic review and meta‐analysis. Movement disorders, 29(13), 1583-1590.
[41] Priori, A., Berardelli, A., Inghilleri, M., Polidori, L., & Manfredi, M. (1994). Electromyographic silent period after transcranial brain stimulation in Huntington's disease. Movement disorders, 9(2), 178-182.
[42] Qiu, F., Cole, M. H., Davids, K. W., Hennig, E. M., Silburn, P. A., Netscher, H., & Kerr, G. K. (2013). Effects of textured insoles on balance in people with Parkinson’s disease. PloS one, 8(12), e83309.
[43] Ridding, M. C., Rothwell, J. C., & Inzelberg, R. (1995). Changes in excitability of motor cortical circuitry in patients with Parkinson's disease. Annals of neurology, 37(2), 181-188.
[44] Rochester, L., Nieuwboer, A., Baker, K., Hetherington, V., Willems, A. M., Chavret, F., ... & Jones, D. (2007). The attentional cost of external rhythmical cues and their impact on gait in Parkinson’s disease: effect of cue modality and task complexity. Journal of neural transmission, 114(10), 1243.
[45] Romito, L. M., & Albanese, A. (2010). Dopaminergic therapy and subthalamic stimulation in Parkinson’s disease: a review of 5-year reports. Journal of neurology, 257(2), 298-304.
[46] Rubinstein, T. C., Giladi, N., & Hausdorff, J. M. (2002). The power of cueing to circumvent dopamine deficits: a review of physical therapy treatment of gait disturbances in Parkinson's disease. Movement Disorders, 17(6), 1148-1160.
[47] Schaafsma, J. D., Giladi, N., Balash, Y., Bartels, A. L., Gurevich, T., & Hausdorff, J. M. (2003). Gait dynamics in Parkinson's disease: relationship to Parkinsonian features, falls and response to levodopa. Journal of the neurological sciences, 212(1), 47-53.
[48] Schenkman, M., Shipp, K. M., Chandler, J., Studenski, S. A., & Kuchibhatla, M. (1996). Relationships between mobility of axial structures and physical performance. Physical therapy, 76(3), 276-285.
[49] Shan, D. E., Lee, S. J., Chao, L. Y., & Yeh, S. I. (2001). Gait analysis in advanced Parkinson's disease–effect of levodopa and tolcapone. Canadian journal of neurological sciences, 28(1), 70-55.
207
[50] Shumway-Cook, A., Brauer, S., & Woollacott, M. (2000). Predicting the probability for falls in community-dwelling older adults using the Timed Up & Go Test. Physical therapy, 80(9), 896-903.
[51] Siegel, K. L., & Metman, L. V. (2000). Effects of bilateral posteroventral pallidotomy on gait of subjects with Parkinson disease. Archives of neurology, 57(2), 198-204.
[52] Sofuwa, O., Nieuwboer, A., Desloovere, K., Willems, A. M., Chavret, F., & Jonkers, I. (2005). Quantitative gait analysis in Parkinson’s disease: comparison with a healthy control group. Archives of physical medicine and rehabilitation, 86(5), 1007-1013.
[53] Suarez, H., Geisinger, D., Suarez, A., Carrera, X., Buzo, R., & Amorin, I. (2009). Postural control and sensory perception in patients with Parkinson's disease. Acta oto-laryngologica, 129(4), 354-360.
[54] Suteerawattananon, M., Morris, G. S., Etnyre, B. R., Jankovic, J., & Protas, E. J. (2004). Effects of visual and auditory cues on gait in individuals with Parkinson's disease. Journal of the neurological sciences, 219(1), 63-69.
[55] Valls-Sole, J., Pascual-Leone, A., Brasil-Neto, J. P., Cammarota, A., McShane, L., & Hallett, M. (1994). Abnormal facilitation of the response to transcranial magnetic stimulation in patients with Parkinson's disease. Neurology, 44(4), 735-735.
[56] Wang, C. C., & Yang, W. H. (2012). Using detrended fluctuation analysis (DFA) to analyze whether vibratory insoles enhance balance stability for elderly fallers. Archives of gerontology and geriatrics, 55(3), 673-676.
[57] Weeks, R. A., Honda, M., Catalan, M. J., & Hallett, M. (2001). Comparison of auditory, somatosensory, and visually instructed and internally generated finger movements: a PET study. Neuroimage, 14(1), 219-230.
[58] Yogev, G., Giladi, N., Peretz, C., Springer, S., Simon, E. S., & Hausdorff, J. M. (2005). Dual tasking, gait rhythmicity, and Parkinson's disease: which aspects of gait are attention demanding?. European journal of neuroscience, 22(5), 1248-1256.
[59]邱馨儀, 王瑞瑤, 曾琴雁, 林松佑, 鄭世榮, & 楊雅如. (2014). 巴金森氏病患者雙側大腦皮質神經活性與行走速度之探討. 物理治療, 39(1), 18-24.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top