跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:7358:9a99:61b8:7c06) 您好!臺灣時間:2025/01/19 08:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:歐默漢
研究生(外文):Mohammad Ameen Al-Aghbar
論文名稱:探討T細胞受器活化對CD45分離的依賴性
論文名稱(外文):Investigating the Dependence of T Cell Receptor Triggering on CD45 Segregation
指導教授:羅傅倫
指導教授(外文):Steve R Roffler
學位類別:博士
校院名稱:國立陽明大學
系所名稱:分子醫學博士學位學程
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:92
中文關鍵詞:T細胞受器
外文關鍵詞:affinityTCR triggeringCD45 segregationTIRFOKT3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
Current understanding of T cell receptor (TCR) triggering is based on the segregation of membrane tyrosine phosphatases having large ectodomains upon engagement between T cells and antigen presenting cells, thereby creating a kinases/phosphatases imbalance to phosphorylate immuno-receptor tyrosine-based activation motifs (ITAMs) in CD3 proteins associated with engaged TCRs. We recently observed that elongated OKT3 anti-CD3 single-chain antibodies (scFv) expressed on 3T3 fibroblasts can effectively trigger TCR signaling, inconsistent with a requirement for CD45 segregation from engaged TCRs. Here, we show that TCR triggering by elongated ligands depends on affinity rather than dimension, and CD45 segregation is not a mandatory step to initiate TCR triggering. We created elongated scFv with defined dimensions expressed on the surface of 3T3 APCs and or distributed over planar lipid bilayers to track CD45 movement by TIRF microscopy. We found that elongated scFv (OKT3-CD43) was unable to segregate CD45 from the ligated TCR microclusters, but inconsistent with the KS model, was able to induce T cell calcium flux, and Zap70 phosphorylation. However, within minutes of triggering, CD45 started to segregate partially from the TCR microclusters or pZap70, indicating that CD45 segregation follows rather than initiates TCR triggering. Using a mutated OKT3 scFv that showed low affinity to CD3ε (OKT3MA), we proved that TCR triggering is more dependent on ligand affinity rather than the ligand dimensions and CD45 physical segregation; short, low affinity scFv (OKT3MA-BGP) was able to trigger TCR similarly to wild type scFv (OKT3-BGP), while elongated low affinity OKT3MA scFv (OKT3MA-CD43) was unable to trigger TCR, nor segregate CD45. Longer follow up of T cells showed proliferation, IL-2 and IFN-γ secretion by the short ligands (high and low affinities) while only high affinity elongated ligand was able to produce productive T cell activation.
Abstract ……………………………………………………………………………….. i
Table of Contents ……………………………………………………………………... ii
List of Figures ………………………………………………………………………… v
List of Abbreviations ………………………………………………………………….. vii
I. Introduction ………………………………………………………………………... 1
II. Background ……………………………………………………………………….. 3
1. T Lymphocytes ………………………………………………………………….. 3
2. Elements for TCR Triggering …………………………………………………… 4
2.1. Ligands …………………………………………………………………….. 5
2.2. T Cell Receptor …………………………………………………………….. 5
2.3. Co-Receptors ……………………………………………………………….. 6
2.4. Adhesion Molecules ………………………………………………………... 7
2.5. Kinases and Phosphatases …………………………………………………… 8
2.6. Other Signaling Proteins ……………………………………………………. 11
3. TCR Triggering …………………………………………………………………… 12
4. Immunological Synapse …………………………………………………………… 13
5. Ligand Properties ………………………………………………………………….. 14
5.1. Binding Site …………………………………………………………………. 14
5.2. Affinity ………………………………………………………………………. 15
5.3. Dimension …………………………………………………………………… 16
6. TCR Triggering Models …………………………………………………………… 16
6.1. Serial Triggering Model …………………………………………………… 17
6.2. Kinetic Proof-Reading Model ……………………………………………… 18
6.3. Occupancy Model (Affinity Model) ……………………………………….. 18
6.4. Co-receptor Heterodimerization Model ……………………………………. 19
6.5. Pseudodimer Model ………………………………………………………... 19
6.6. Conformational Change Model ……………………………………………. 20
6.7. Kinetic Segregation Model ………………………………………………… 21
6.8. Lipid Raft Model…………………………………………………………… 22
6.9. Receptor Deformation Model ……………………………………………… 23
7. Mechanical Forces Driving TCR Triggering …………………………………….. 24
III. Study Objective …………………………………………………………………… 28
IV. Material and Methods …………………………………………………………….. 29
V. Results ………………………………………………………………………………. 39
1. Ligands Elongation on 3T3 APCs ……………………………………………….. 39
1.1. Generation of APCs Expressing Ligands with Different Affinities and Dimensions ………………………………………………………………... 39
1.2. Ligand Affinity Determines Potency of TCR Triggering …………………. 40
1.3. Surface Density is not the Major Factor Driving the Dimension-Independent T Cell Activation by Membrane-Tethered OKT3 Anti-CD3 ScFv ………. 40
2. Ligand Elongation on Lipid Bilayers …………………………………………….. 41
2.1. Production of Soluble Anti-CD3ε ScFv Ligands …………………………... 41
2.2. Lipid Bilayer-Coated Glass Beads Decorated with ScFv Ligands Show a Similar Trend of T Cell Activation as 3T3 APCs …………………………. 42
2.3. Ligand Elongation on Lipid Bilayers Has No Effect on Jurkat T Cell Binding …………………………………………………………………….. 43
2.4. Jurkat T Cells Respond by Releasing Calcium upon TCR Triggering …….. 44
2.5. TCR Triggering is Initiated by Elongated High Affinity Ligand Without Clear CD45 Segregation …………………………………………………… 45
2.6. CD45 is Efficiently Segregated from pZap70 by Short Ligands and Partially from Elongated High Affinity Ligands …………………………………… 46
2.7. Elongated Non-Activating Ligand Accumulates CD45 Segregation with Time Without T Cell Activation …………………………………………… 47
VI. Discussion ………………………………………………………………………… 68
VII. References ……………………………………………………………………….. 80
VIII. Appendix ………………………………………………………………………… 93
(Chen BM, Al-Aghbar MA)*, Lee CH, Chang TC, Su YC, Li YC, Chang SE, Chen CC, Chung TH, Liao YC, Lee CH, Roffler SR, 2017. The affinity of elongated membrane tethered ligands determines potency of TCR triggering. Front. Immunol.8:793
* equal contribution …………………………………………………………………….93
VII. References:
1. M. M. Davis, J. J. Boniface, Z. Reich, D. Lyons, J. Hampl, B. Arden and Y. Chien: Ligand recognition by alpha beta T cell receptors. Annu Rev Immunol, 16, 523-44 (1998) doi:10.1146/annurev.immunol.16.1.523
2. R. N. Germain: MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell, 76(2), 287-99 (1994)
3. P. A. van der Merwe and O. Dushek: Mechanisms for T cell receptor triggering. Nat Rev Immunol, 11(1), 47-55 (2011) doi:10.1038/nri2887
4. P. A. van der Merwe: The TCR triggering puzzle. Immunity, 14(6), 665-8 (2001)
5. A. Trautmann and C. Randriamampita: Initiation of TCR signalling revisited. Trends Immunol, 24(8), 425-8 (2003)
6. M. L. Thomas and L. Lefrancois: Differential expression of the leucocyte-common antigen family. Immunol Today, 9(10), 320-6 (1988)
7. V. T. Chang, R. A. Fernandes, K. A. Ganzinger, S. F. Lee, C. Siebold, J. McColl, P. Jonsson, M. Palayret, K. Harlos, C. H. Coles, E. Y. Jones, Y. Lui, E. Huang, R. J. Gilbert, D. Klenerman, A. R. Aricescu and S. J. Davis: Initiation of T cell signaling by CD45 segregation at 'close contacts'. Nat Immunol, 17(5), 574-82 (2016) doi:10.1038/ni.3392
8. M. L. Hermiston, J. Zikherman and J. W. Zhu: CD45, CD148, and Lyp/Pep: critical phosphatases regulating Src family kinase signaling networks in immune cells. Immunol Rev, 228(1), 288-311 (2009) doi:10.1111/j.1600-065X.2008.00752.x
9. S. J. Davis and P. A. van der Merwe: The structure and ligand interactions of CD2: implications for T-cell function. Immunol Today, 17(4), 177-87 (1996)
10. K. Choudhuri, D. Wiseman, M. H. Brown, K. Gould and P. A. van der Merwe: T-cell receptor triggering is critically dependent on the dimensions of its peptide-MHC ligand. Nature, 436(7050), 578-82 (2005) doi:10.1038/nature03843
11. K. Choudhuri, M. Parker, A. Milicic, D. K. Cole, M. K. Shaw, A. K. Sewell, G. Stewart-Jones, T. Dong, K. G. Gould and P. A. van der Merwe: Peptide-major histocompatibility complex dimensions control proximal kinase-phosphatase balance during T cell activation. J Biol Chem, 284(38), 26096-105 (2009) doi:10.1074/jbc.M109.039966
12. Y. C. Li, B. M. Chen, P. C. Wu, T. L. Cheng, L. S. Kao, M. H. Tao, A. Lieber and S. R. Roffler: Cutting Edge: mechanical forces acting on T cells immobilized via the TCR complex can trigger TCR signaling. J Immunol, 184(11), 5959-63 (2010) doi:10.4049/jimmunol.0900775
13. J. Husson, K. Chemin, A. Bohineust, C. Hivroz and N. Henry: Force Generation upon T Cell Receptor Engagement. Plos ONE, 6(5) (2011) doi:10.1371/
14. E. L. Reinherz, P. C. Kung, J. M. Pesando, J. Ritz, G. Goldstein and S. F. Schlossman: Ia determinants on human T-cell subsets defined by monoclonal antibody. Activation stimuli required for expression. J Exp Med, 150(6), 1472-82 (1979)
15. J. S. Klein, P. N. Gnanapragasam, R. P. Galimidi, C. P. Foglesong, A. P. West, Jr. and P. J. Bjorkman: Examination of the contributions of size and avidity to the neutralization mechanisms of the anti-HIV antibodies b12 and 4E10. Proc Natl Acad Sci U S A, 106(18), 7385-90 (2009) doi:10.1073/pnas.0811427106
16. J. G. Cyster, D. M. Shotton and A. F. Williams: The dimensions of the T lymphocyte glycoprotein leukosialin and identification of linear protein epitopes that can be modified by glycosylation. EMBO J, 10(4), 893-902 (1991)
17. B. M. Chen, M. A. Al-Aghbar, C. H. Lee, T. C. Chang, Y. C. Su, Y. C. Li, S. E. Chang, C. C. Chen, T. H. Chung, Y. C. Liao, C. H. Lee and S. R. Roffler: The Affinity of Elongated Membrane-Tethered Ligands Determines Potency of T Cell Receptor Triggering. Front Immunol, 8 (2017) doi:ARTN 793 10.3389/fimmu.2017.00793
18. K. W. Liao, B. M. Chen, T. B. Liu, S. C. Tzou, Y. M. Lin, K. F. Lin, C. I. Su and S. R. Roffler: Stable expression of chimeric anti-CD3 receptors on mammalian cells for stimulation of antitumor immunity. Cancer Gene Ther, 10(10), 779-90 (2003) doi:10.1038/sj.cgt.7700637
19. C. Janeway: Immunobiology : the immune system in health and disease. Garland Science, New York (2005)
20. D. Kabelitz and J. Dechanet-Merville: Editorial: "Recent Advances in Gamma/Delta T Cell Biology: New Ligands, New Functions, and New Translational Perspectives". Front Immunol, 6, 371 (2015) doi:10.3389/fimmu.2015.00371
21. J. Zhu, H. Yamane and W. E. Paul: Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol, 28, 445-89 (2010) doi:10.1146/annurev-immunol-030409-101212
22. R. N. Germain: T-cell development and the CD4-CD8 lineage decision. Nat Rev Immunol, 2(5), 309-22 (2002) doi:10.1038/nri798
23. A. Liston, A. Enders and O. M. Siggs: Unravelling the association of partial T-cell immunodeficiency and immune dysregulation. Nat Rev Immunol, 8(7), 545-58 (2008) doi:10.1038/nri2336
24. J. Hennecke and D. C. Wiley: T cell receptor-MHC interactions up close. Cell, 104(1), 1-4 (2001)
25. P. A. van der Merwe and S. J. Davis: Molecular interactions mediating T cell antigen recognition. Annu Rev Immunol, 21, 659-84 (2003) doi:10.1146/annurev.immunol.21.120601.141036
26. M. M. Davis and P. J. Bjorkman: T-cell antigen receptor genes and T-cell recognition. Nature, 334(6181), 395-402 (1988) doi:10.1038/334395a0
27. M. Baniyash: TCR zeta-chain downregulation: curtailing an excessive inflammatory immune response. Nat Rev Immunol, 4(9), 675-87 (2004) doi:10.1038/nri1434
28. A. Leo, J. Wienands, G. Baier, V. Horejsi and B. Schraven: Adapters in lymphocyte signaling. J Clin Invest, 109(3), 301-9 (2002) doi:10.1172/JCI14942
29. S. J. Davis, S. Ikemizu, E. J. Evans, L. Fugger, T. R. Bakker and P. A. van der Merwe: The nature of molecular recognition by T cells. Nat Immunol, 4(3), 217-24 (2003) doi:10.1038/ni0303-217
30. Y. Xiong, P. Kern, H. Chang and E. Reinherz: T Cell Receptor Binding to a pMHCII Ligand Is Kinetically Distinct from and Independent of CD4. J Biol Chem, 276(8), 5659-67 (2001) doi:10.1074/jbc.M009580200
31. Y. Yin, X. X. Wang and R. A. Mariuzza: Crystal structure of a complete ternary complex of T-cell receptor, peptide-MHC, and CD4. Proc Natl Acad Sci U S A, 109(14), 5405-10 (2012) doi:10.1073/pnas.1118801109
32. Y. Li, Y. Yin and R. A. Mariuzza: Structural and biophysical insights into the role of CD4 and CD8 in T cell activation. Front Immunol, 4, 206 (2013) doi:10.3389/fimmu.2013.00206
33. D. K. Cole, S. M. Dunn, M. Sami, J. M. Boulter, B. K. Jakobsen and A. K. Sewell: T cell receptor engagement of peptide-major histocompatibility complex class I does not modify CD8 binding. Mol Immunol, 45(9), 2700-9 (2008) doi:10.1016/j.molimm.2007.12.009
34. R. Wang, K. Natarajan and D. H. Margulies: Structural basis of the CD8 alpha beta/MHC class I interaction: focused recognition orients CD8 beta to a T cell proximal position. J Immunol, 183(4), 2554-64 (2009) doi:10.4049/jimmunol.0901276
35. N. Jiang, J. Huang, L. J. Edwards, B. Liu, Y. Zhang, C. D. Beal, B. D. Evavold and C. Zhu: Two-stage cooperative T cell receptor-peptide major histocompatibility complex-CD8 trimolecular interactions amplify antigen discrimination. Immunity, 34(1), 13-23 (2011) doi:10.1016/j.immuni.2010.12.017
36. Q. J. Li, A. R. Dinner, S. Qi, D. J. Irvine, J. B. Huppa, M. M. Davis and A. K. Chakraborty: CD4 enhances T cell sensitivity to antigen by coordinating Lck accumulation at the immunological synapse. Nat Immunol, 5(8), 791-9 (2004) doi:10.1038/ni1095
37. K. Chattopadhyay, E. Lazar-Molnar, Q. Yan, R. Rubinstein, C. Zhan, V. Vigdorovich, U. A. Ramagopal, J. Bonanno, S. G. Nathenson and S. C. Almo: Sequence, structure, function, immunity: structural genomics of costimulation. Immunol Rev, 229(1), 356-86 (2009) doi:10.1111/j.1600-065X.2009.00778.x
38. X. Zhang, J. C. Schwartz, S. C. Almo and S. G. Nathenson: Crystal structure of the receptor-binding domain of human B7-2: insights into organization and signaling. Proc Natl Acad Sci U S A, 100(5), 2586-91 (2003) doi:10.1073/pnas.252771499
39. S. J. Davis, E. Y. Jones, D. L. Bodian, A. N. Barclay and P. A. van der Merwe: Analysis of the structure and interactions of CD2. Biochem Soc Trans, 21(4), 952-8 (1993)
40. A. R. Arulanandam, P. Moingeon, M. Concino, M. Recny, K. Kato, H. Yagita, S. Koyasu and E. Reinherz: A soluble multimeric recombinant CD2 protein identifies CD48 as a low affinity ligand for human CD2: divergence of CD2 ligands during the evolution of humans and mice. J Exp Med, 177(5), 1439-1450 (1993)
41. A. G. Wingren, E. Parra, M. Varga, T. Kalland, H. O. Sjogren, G. Hedlund and M. Dohlsten: T cell activation pathways: B7, LFA-3, and ICAM-1 shape unique T cell profiles. Crit Rev Immunol, 15(3-4), 235-53 (1995)
42. T. Schurpf and T. A. Springer: Regulation of integrin affinity on cell surfaces. EMBO J, 30(23), 4712-27 (2011) doi:10.1038/emboj.2011.333
43. M. Shimaoka, C. Lu, R. T. Palframan, U. H. von Andrian, A. McCormack, J. Takagi and T. A. Springer: Reversibly locking a protein fold in an active conformation with a disulfide bond: integrin alphaL I domains with high affinity and antagonist activity in vivo. Proc Natl Acad Sci U S A, 98(11), 6009-14 (2001) doi:10.1073/pnas.101130498
44. M. Kim, C. V. Carman and T. A. Springer: Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science, 301(5640), 1720-5 (2003) doi:10.1126/science.1084174
45. M. Kim, C. V. Carman, W. Yang, A. Salas and T. A. Springer: The primacy of affinity over clustering in regulation of adhesiveness of the integrin {alpha}L{beta}2. J Cell Biol, 167(6), 1241-53 (2004) doi:10.1083/jcb.200404160
46. A. Hashimoto-Tane and T. Saito: Dynamic Regulation of TCR–Microclusters and the Microsynapse for T Cell Activation. Front Immunol, 7 (2016)
47. A. Hashimoto-Tane, M. Sakuma, H. Ike, T. Yokosuka, Y. Kimura, O. Ohara and T. Saito: Micro–adhesion rings surrounding TCR microclusters are essential for T cell activation. J Exp Med (2016) doi:10.1084/jem.20151088
48. C. Wulfing, M. D. Sjaastad and M. M. Davis: Visualizing the dynamics of T cell activation: intracellular adhesion molecule 1 migrates rapidly to the T cell/B cell interface and acts to sustain calcium levels. Proc Natl Acad Sci U S A, 95(11), 6302-7 (1998)
49. S. J. Parsons and J. T. Parsons: Src family kinases, key regulators of signal transduction. Oncogene, 23(48), 7906-9 (2004) doi:10.1038/sj.onc.1208160
50. J. Rossy, D. J. Williamson and K. Gaus: How does the kinase Lck phosphorylate the T cell receptor? Spatial organization as a regulatory mechanism. Front Immunol, 3, 167 (2012) doi:10.3389/fimmu.2012.00167
51. I. Rhee and A. Veillette: Protein tyrosine phosphatases in lymphocyte activation and autoimmunity. Nat Immunol, 13(5), 439-47 (2012) doi:10.1038/ni.2246
52. M. Okada: Regulation of the SRC family kinases by Csk. Int J Biol Sci, 8(10), 1385-97 (2012) doi:10.7150/ijbs.5141
53. E. Hui and R. D. Vale: In vitro membrane reconstitution of the T-cell receptor proximal signaling network. Nat Struct Mol Biol, 21(2), 133-42 (2014) doi:10.1038/nsmb.2762
54. J. R. James and R. D. Vale: Biophysical mechanism of T-cell receptor triggering in a reconstituted system. Nature, 487(7405), 64-9 (2012) doi:10.1038/nature11220
55. C. Irles, A. Symons, F. Michel, T. R. Bakker, P. A. van der Merwe and O. Acuto: CD45 ectodomain controls interaction with GEMs and Lck activity for optimal TCR signaling. Nat Immunol, 4(2), 189-97 (2003) doi:10.1038/ni877
56. S. P. Cordoba, K. Choudhuri, H. Zhang, M. Bridge, A. B. Basat, M. L. Dustin and P. A. van der Merwe: The large ectodomains of CD45 and CD148 regulate their segregation from and inhibition of ligated T-cell receptor. Blood, 121(21), 4295-302 (2013) doi:10.1182/blood-2012-07-442251
57. A. C. Chan, T. A. Kadlecek, M. E. Elder, A. H. Filipovich, W. L. Kuo, M. Iwashima, T. G. Parslow and A. Weiss: ZAP-70 deficiency in an autosomal recessive form of severe combined immunodeficiency. Science, 264(5165), 1599-601 (1994)
58. A. C. Chan, M. Iwashima, C. W. Turck and A. Weiss: ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR zeta chain. Cell, 71(4), 649-62 (1992)
59. J. Sloan-Lancaster, J. Presley, J. Ellenberg, T. Yamazaki, J. Lippincott-Schwartz and L. E. Samelson: ZAP-70 association with T cell receptor zeta (TCRzeta): fluorescence imaging of dynamic changes upon cellular stimulation. J Cell Biol, 143(3), 613-24 (1998)
60. H. Wang, T. A. Kadlecek, B. B. Au-Yeung, H. E. Goodfellow, L. Y. Hsu, T. S. Freedman and A. Weiss: ZAP-70: an essential kinase in T-cell signaling. Cold Spring Harb Perspect Biol, 2(5), a002279 (2010) doi:10.1101/cshperspect.a002279
61. M. Zhu, S. Shen, Y. Liu, O. Granillo and W. Zhang: Cutting Edge: Localization of linker for activation of T cells to lipid rafts is not essential in T cell activation and development. J Immunol, 174(1), 31-5 (2005)
62. B. Malissen, E. Aguado and M. Malissen: Role of the LAT adaptor in T-cell development and Th2 differentiation. Adv Immunol, 87, 1-25 (2005) doi:10.1016/S0065-2776(05)87001-4
63. G. A. Koretzky, F. Abtahian and M. A. Silverman: SLP76 and SLP65: complex regulation of signalling in lymphocytes and beyond. Nat Rev Immunol, 6(1), 67-78 (2006) doi:10.1038/nri1750
64. M. S. Jordan, A. L. Singer and G. A. Koretzky: Adaptors as central mediators of signal transduction in immune cells. Nat Immunol, 4(2), 110-6 (2003) doi:10.1038/ni0203-110
65. A. Weiss and D. R. Littman: Signal transduction by lymphocyte antigen receptors. Cell, 76(2), 263-74 (1994)
66. B. Malissen, C. Gregoire, M. Malissen and R. Roncagalli: Integrative biology of T cell activation. Nat Immunol, 15(9), 790-7 (2014) doi:10.1038/ni.2959
67. K. Nika, C. Soldani, M. Salek, W. Paster, A. Gray, R. Etzensperger, L. Fugger, P. Polzella, V. Cerundolo, O. Dushek, T. Hofer, A. Viola and O. Acuto: Constitutively active Lck kinase in T cells drives antigen receptor signal transduction. Immunity, 32(6), 766-77 (2010) doi:10.1016/j.immuni.2010.05.011
68. M. L. Dustin and D. Depoil: New insights into the T cell synapse from single molecule techniques. Nat Rev Immunol, 11(10), 672-84 (2011) doi:10.1038/nri3066
69. R. N. Germain and I. Stefanova: The dynamics of T cell receptor signaling: complex orchestration and the key roles of tempo and cooperation. Annu Rev Immunol, 17, 467-522 (1999) doi:10.1146/annurev.immunol.17.1.467
70. L. E. Samelson: Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. Annu Rev Immunol, 20, 371-94 (2002) doi:10.1146/annurev.immunol.20.092601.111357
71. J. Lin and A. Weiss: T cell receptor signalling. J Cell Sci, 114(Pt 2), 243-4 (2001)
72. D. Gil, W. W. Schamel, M. Montoya, F. Sanchez-Madrid and B. Alarcon: Recruitment of Nck by CD3 epsilon reveals a ligand-induced conformational change essential for T cell receptor signaling and synapse formation. Cell, 109(7), 901-12 (2002)
73. S. Spiegel, S. Kassis, M. Wilchek and P. H. Fishman: Direct visualization of redistribution and capping of fluorescent gangliosides on lymphocytes. J Cell Biol, 99(5), 1575-81 (1984)
74. M. A. Norcross: A synaptic basis for T-lymphocyte activation. Ann Immunol (Paris), 135D(2), 113-34 (1984)
75. J. B. Huppa and M. M. Davis: T-cell-antigen recognition and the immunological synapse. Nat Rev Immunol, 3(12), 973-83 (2003) doi:10.1038/nri1245
76. A. Hashimoto-Tane, M. Sakuma, H. Ike, T. Yokosuka, Y. Kimura, O. Ohara and T. Saito: Micro-adhesion rings surrounding TCR microclusters are essential for T cell activation. J Exp Med, 213(8), 1609-25 (2016) doi:10.1084/jem.20151088
77. A. S. Shaw and M. L. Dustin: Making the T cell receptor go the distance: a topological view of T cell activation. Immunity, 6(4), 361-9 (1997)
78. C. Wulfing and M. M. Davis: A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science, 282(5397), 2266-9 (1998)
79. C. J. Hsu, W. T. Hsieh, A. Waldman, F. Clarke, E. S. Huseby, J. K. Burkhardt and T. Baumgart: Ligand mobility modulates immunological synapse formation and T cell activation. PLoS One, 7(2), e32398 (2012) doi:10.1371/journal.pone.0032398
80. C. Ferran, J. F. Bach and L. Chatenoud: In vivo T cell activation properties of anti-T cell monoclonal antibodies. Exp Nephrol, 1(2), 83-9 (1993)
81. S. Minguet, M. Swamy, B. Alarcon, I. F. Luescher and W. W. Schamel: Full activation of the T cell receptor requires both clustering and conformational changes at CD3. Immunity, 26(1), 43-54 (2007) doi:10.1016/j.immuni.2006.10.019
82. S. M. Alam, G. M. Davies, C. M. Lin, T. Zal, W. Nasholds, S. C. Jameson, K. A. Hogquist, N. R. Gascoigne and P. J. Travers: Qualitative and quantitative differences in T cell receptor binding of agonist and antagonist ligands. Immunity, 10(2), 227-37 (1999)
83. V. I. Mallet-Designe, T. Stratmann, D. Homann, F. Carbone, M. B. Oldstone and L. Teyton: Detection of low-avidity CD4+ T cells using recombinant artificial APC: following the antiovalbumin immune response. J Immunol, 170(1), 123-31 (2003)
84. J. D. Stone, A. S. Chervin and D. M. Kranz: T-cell receptor binding affinities and kinetics: impact on T-cell activity and specificity. Immunology, 126(2), 165-76 (2009) doi:10.1111/j.1365-2567.2008.03015.x
85. S. Valitutti, S. Muller, M. Cella, E. Padovan and A. Lanzavecchia: Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature, 375(6527), 148-51 (1995) doi:10.1038/375148a0
86. J. D. Stone and D. M. Kranz: Role of T cell receptor affinity in the efficacy and specificity of adoptive T cell therapies. Front Immunol, 4, 244 (2013) doi:10.3389/fimmu.2013.00244
87. J. M. Hexham, D. Dudas, R. Hugo, J. Thompson, V. King, C. Dowling, D. M. Neville, Jr., M. E. Digan and P. Lake: Influence of relative binding affinity on efficacy in a panel of anti-CD3 scFv immunotoxins. Mol Immunol, 38(5), 397-408 (2001)
88. O. Leo, M. Foo, D. H. Sachs, L. E. Samelson and J. A. Bluestone: Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc Natl Acad Sci U S A, 84(5), 1374-8 (1987)
89. C. R. Jost, J. A. Titus, I. Kurucz and D. M. Segal: A single-chain bispecific Fv2 molecule produced in mammalian cells redirects lysis by activated CTL. Mol Immunol, 33(2), 211-9 (1996)
90. C. Anasetti, P. Tan, J. A. Hansen and P. J. Martin: Induction of specific nonresponsiveness in unprimed human T cells by anti-CD3 antibody and alloantigen. J Exp Med, 172(6), 1691-700 (1990)
91. C. L. Law, M. Hayden-Ledbetter, S. Buckwalter, L. McNeill, H. Nguyen, P. Habecker, B. A. Thorne, R. Dua and J. A. Ledbetter: Expression and characterization of recombinant soluble human CD3 molecules: presentation of antigenic epitopes defined on the native TCR-CD3 complex. Int Immunol, 14(4), 389-400 (2002)
92. C. V. Harding and E. R. Unanue: Quantitation of antigen-presenting cell MHC class II/peptide complexes necessary for T-cell stimulation. Nature, 346(6284), 574-6 (1990) doi:10.1038/346574a0
93. S. Demotz, H. M. Grey and A. Sette: The minimal number of class II MHC-antigen complexes needed for T cell activation. Science, 249(4972), 1028-30 (1990)
94. T. W. McKeithan: Kinetic proofreading in T-cell receptor signal transduction. Proc Natl Acad Sci U S A, 92(11), 5042-6 (1995)
95. M. Lever, P. K. Maini, P. A. van der Merwe and O. Dushek: Phenotypic models of T cell activation. Nat Rev Immunol, 14(9), 619-29 (2014) doi:10.1038/nri3728
96. M. W. Schilham, W. P. Fung-Leung, A. Rahemtulla, T. Kuendig, L. Zhang, J. Potter, R. G. Miller, H. Hengartner and T. W. Mak: Alloreactive cytotoxic T cells can develop and function in mice lacking both CD4 and CD8. Eur J Immunol, 23(6), 1299-304 (1993) doi:10.1002/eji.1830230617
97. K. H. Roh, B. F. Lillemeier, F. Wang and M. M. Davis: The coreceptor CD4 is expressed in distinct nanoclusters and does not colocalize with T-cell receptor and active protein tyrosine kinase p56lck. Proc Natl Acad Sci U S A, 112(13), E1604-13 (2015) doi:10.1073/pnas.1503532112
98. M. Krogsgaard, J. Juang and M. M. Davis: A role for "self" in T-cell activation. Semin Immunol, 19(4), 236-44 (2007) doi:10.1016/j.smim.2007.04.003
99. L. Kjer-Nielsen, C. S. Clements, A. W. Purcell, A. G. Brooks, J. C. Whisstock, S. R. Burrows, J. McCluskey and J. Rossjohn: A structural basis for the selection of dominant alphabeta T cell receptors in antiviral immunity. Immunity, 18(1), 53-64 (2003)
100. T. Beddoe, Z. Chen, C. S. Clements, L. K. Ely, S. R. Bushell, J. P. Vivian, L. Kjer-Nielsen, S. S. Pang, M. A. Dunstone, Y. C. Liu, W. A. Macdonald, M. A. Perugini, M. C. Wilce, S. R. Burrows, A. W. Purcell, T. Tiganis, S. P. Bottomley, J. McCluskey and J. Rossjohn: Antigen ligation triggers a conformational change within the constant domain of the alphabeta T cell receptor. Immunity, 30(6), 777-88 (2009) doi:10.1016/j.immuni.2009.03.018
101. M. S. Kuhns, A. T. Girvin, L. O. Klein, R. Chen, K. D. Jensen, E. W. Newell, J. B. Huppa, B. F. Lillemeier, M. Huse, Y. H. Chien, K. C. Garcia and M. M. Davis: Evidence for a functional sidedness to the alphabetaTCR. Proc Natl Acad Sci U S A, 107(11), 5094-9 (2010) doi:10.1073/pnas.1000925107
102. Y. Wang, D. Becker, T. Vass, J. White, P. Marrack and J. W. Kappler: A conserved CXXC motif in CD3epsilon is critical for T cell development and TCR signaling. PLoS Biol, 7(12), e1000253 (2009) doi:10.1371/journal.pbio.1000253
103. N. Martinez-Martin, R. M. Risueno, A. Morreale, I. Zaldivar, E. Fernandez-Arenas, F. Herranz, A. R. Ortiz and B. Alarcon: Cooperativity between T cell receptor complexes revealed by conformational mutants of CD3epsilon. Sci Signal, 2(83), ra43 (2009) doi:10.1126/scisignal.2000402
104. R. M. Risueno, W. W. Schamel and B. Alarcon: T cell receptor engagement triggers its CD3epsilon and CD3zeta subunits to adopt a compact, locked conformation. PLoS One, 3(3), e1747 (2008) doi:10.1371/journal.pone.0001747
105. D. Gil, A. G. Schrum, B. Alarcon and E. Palmer: T cell receptor engagement by peptide-MHC ligands induces a conformational change in the CD3 complex of thymocytes. J Exp Med, 201(4), 517-22 (2005) doi:10.1084/jem.20042036
106. D. Aivazian and L. J. Stern: Phosphorylation of T cell receptor zeta is regulated by a lipid dependent folding transition. Nat Struct Biol, 7(11), 1023-6 (2000) doi:10.1038/80930
107. C. Xu, E. Gagnon, M. E. Call, J. R. Schnell, C. D. Schwieters, C. V. Carman, J. J. Chou and K. W. Wucherpfennig: Regulation of T cell receptor activation by dynamic membrane binding of the CD3epsilon cytoplasmic tyrosine-based motif. Cell, 135(4), 702-13 (2008) doi:10.1016/j.cell.2008.09.044
108. L. M. Deford-Watts, T. C. Tassin, A. M. Becker, J. J. Medeiros, J. P. Albanesi, P. E. Love, C. Wulfing and N. S. van Oers: The cytoplasmic tail of the T cell receptor CD3 epsilon subunit contains a phospholipid-binding motif that regulates T cell functions. J Immunol, 183(2), 1055-64 (2009) doi:10.4049/jimmunol.0900404
109. S. T. Kim, K. Takeuchi, Z.-Y. J. Sun, M. Touma, C. E. Castro, A. Fahmy, M. J. Lang, G. Wagner and E. L. Reinherz: The αβ T cell receptor is an anisotropic mechanosensor. J Biol Chem, 284(45), 31028-31037 (2009)
110. J. Husson, K. Chemin, A. Bohineust, C. Hivroz and N. Henry: Force generation upon T cell receptor engagement. PLoS One, 6(5), e19680 (2011) doi:10.1371/journal.pone.0019680
111. B. Liu, W. Chen, B. D. Evavold and C. Zhu: Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling. Cell, 157(2), 357-68 (2014) doi:10.1016/j.cell.2014.02.053
112. D. K. Das, Y. Feng, R. J. Mallis, X. Li, D. B. Keskin, R. E. Hussey, S. K. Brady, J.-H. Wang, G. Wagner and E. L. Reinherz: Force-dependent transition in the T-cell receptor β-subunit allosterically regulates peptide discrimination and pMHC bond lifetime. Proc Natl Acad Sci U S A, 112(5), 1517-1522 (2015)
113. Y. Liu, L. Blanchfield, V. P.-Y. Ma, R. Andargachew, K. Galior, Z. Liu, B. Evavold and K. Salaita: DNA-based nanoparticle tension sensors reveal that T-cell receptors transmit defined pN forces to their antigens for enhanced fidelity. Proc Natl Acad Sci U S A, 113(20), 5610-5615 (2016)
114. K. H. Hu and M. J. Butte: T cell activation requires force generation. J Cell Biol, 213(5), 535-542 (2016) doi:10.1083/jcb.201511053
115. S. C. Bunnell, D. I. Hong, J. R. Kardon, T. Yamazaki, C. J. McGlade, V. A. Barr and L. E. Samelson: T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J Cell Biol, 158(7), 1263-75 (2002)
116. R. Varma, G. Campi, T. Yokosuka, T. Saito and M. L. Dustin: T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity, 25(1), 117-127 (2006)
117. S. J. Davis and P. A. van der Merwe: The kinetic-segregation model: TCR triggering and beyond. Nat Immunol, 7(8), 803-9 (2006) doi:10.1038/ni1369
118. C. Hivroz and M. Saitakis: Biophysical Aspects of T Lymphocyte Activation at the Immune Synapse. Front Immunol, 7, 46 (2016) doi:10.3389/fimmu.2016.00046
119. X. Su, J. A. Ditlev, E. Hui, W. Xing, S. Banjade, J. Okrut, D. S. King, J. Taunton, M. K. Rosen and R. D. Vale: Phase separation of signaling molecules promotes T cell receptor signal transduction. Science, 352(6285), 595-9 (2016) doi:10.1126/science.aad9964
120. D. Lingwood and K. Simons: Lipid rafts as a membrane-organizing principle. Science, 327(5961), 46-50 (2010) doi:10.1126/science.1174621
121. A. Hashimoto-Tane, T. Yokosuka, C. Ishihara, M. Sakuma, W. Kobayashi and T. Saito: T-cell receptor microclusters critical for T-cell activation are formed independently of lipid raft clustering. Mol Cell Biol, 30(14), 3421-9 (2010) doi:10.1128/MCB.00160-10
122. T. R. Mempel, S. E. Henrickson and U. H. Von Andrian: T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature, 427(6970), 154-9 (2004) doi:10.1038/nature02238
123. M. J. Miller, O. Safrina, I. Parker and M. D. Cahalan: Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes. J Exp Med, 200(7), 847-56 (2004) doi:10.1084/jem.20041236
124. E. Donnadieu, G. Bismuth and A. Trautmann: Antigen recognition by helper T cells elicits a sequence of distinct changes of their shape and intracellular calcium. Curr Biol, 4(7), 584-95 (1994)
125. K. Inaba and R. M. Steinman: Accessory cell-T lymphocyte interactions. Antigen-dependent and -independent clustering. J Exp Med, 163(2), 247-61 (1986)
126. D. M. Underhill, M. Bassetti, A. Rudensky and A. Aderem: Dynamic interactions of macrophages with T cells during antigen presentation. J Exp Med, 190(12), 1909-14 (1999)
127. Z. Ma, P. A. Janmey and T. H. Finkel: The receptor deformation model of TCR triggering. FASEB J, 22(4), 1002-8 (2008) doi:10.1096/fj.07-9331hyp
128. P. T. Sage, L. M. Varghese, R. Martinelli, T. E. Sciuto, M. Kamei, A. M. Dvorak, T. A. Springer, A. H. Sharpe and C. V. Carman: Antigen recognition is facilitated by invadosome-like protrusions formed by memory/effector T cells. J Immunol, 188(8), 3686-99 (2012) doi:10.4049/jimmunol.1102594
129. H. Ueda, M. K. Morphew, J. R. McIntosh and M. M. Davis: CD4+ T-cell synapses involve multiple distinct stages. Proc Natl Acad Sci U S A, 108(41), 17099-104 (2011) doi:10.1073/pnas.1113703108
130. A. Gerard, R. A. van der Kammen, H. Janssen, S. I. Ellenbroek and J. G. Collard: The Rac activator Tiam1 controls efficient T-cell trafficking and route of transendothelial migration. Blood, 113(24), 6138-47 (2009) doi:10.1182/blood-2008-07-167668
131. A. Y. Krol, M. Grinfeldt, S. Levin and A. Smilgavichus: Local mechanical oscillations of the cell surface within the range 0.2–30 Hz. Eur Biophys J, 19(2), 93-99 (1990)
132. C. Monzel, D. Schmidt, C. Kleusch, D. Kirchenbuchler, U. Seifert, A. S. Smith, K. Sengupta and R. Merkel: Measuring fast stochastic displacements of bio-membranes with dynamic optical displacement spectroscopy. Nat Commun, 6, 8162 (2015) doi:10.1038/ncomms9162
133. U. S. Schwarz and M. L. Gardel: United we stand: integrating the actin cytoskeleton and cell-matrix adhesions in cellular mechanotransduction. J Cell Sci, 125(Pt 13), 3051-60 (2012) doi:10.1242/jcs.093716
134. B. H. Hosseini, I. Louban, D. Djandji, G. H. Wabnitz, J. Deeg, N. Bulbuc, Y. Samstag, M. Gunzer, J. P. Spatz and G. J. Hammerling: Immune synapse formation determines interaction forces between T cells and antigen-presenting cells measured by atomic force microscopy. Proc Natl Acad Sci U S A, 106(42), 17852-7 (2009) doi:10.1073/pnas.0905384106
135. P. S. Chang, L. T. McLane, R. Fogg, J. Scrimgeour, J. S. Temenoff, A. Granqvist and J. E. Curtis: Cell Surface Access Is Modulated by Tethered Bottlebrush Proteoglycans. Biophys J, 110(12), 2739-50 (2016) doi:10.1016/j.bpj.2016.05.027
136. M. L. Huang and K. Godula: Nanoscale materials for probing the biological functions of the glycocalyx. Glycobiology, 26(8), 797-803 (2016) doi:10.1093/glycob/cww022
137. A. S. Shaw and M. L. Dustin: Making the T cell receptor go the distance: a topological view of T cell activation. Immunity, 6(4), 361-369 (1997)
138. C. Wülfing, M. D. Sjaastad and M. M. Davis: Visualizing the dynamics of T cell activation: intracellular adhesion molecule 1 migrates rapidly to the T cell/B cell interface and acts to sustain calcium levels. Proc Natl Acad Sci U S A, 95(11), 6302-6307 (1998)
139. N. Blanchard, V. D. Bartolo and C. Hivroz: In the Immune Synapse, ZAP-70 Controls T Cell Polarization and Recruitment of Signaling Proteins but Not Formation of the Synaptic Pattern. Immunity, 17, 389-399 (2002)
140. S. M. Andrew and J. A. Titus: Purification of immunoglobulin G. Curr Protoc Immunol, Chapter 2, Unit 2 7 (2001) doi:10.1002/0471142735.im0207s21
141. K. W. Liao, Y. C. Lo and S. R. Roffler: Activation of lymphocytes by anti-CD3 single-chain antibody dimers expressed on the plasma membrane of tumor cells. Gene Ther, 7(4), 339-47 (2000) doi:10.1038/sj.gt.3301080
142. T. L. Cheng, K. W. Liao, S. C. Tzou, C. M. Cheng, B. M. Chen and S. R. Roffler: Hapten-directed targeting to single-chain antibody receptors. Cancer Gene Ther, 11(5), 380-8 (2004) doi:10.1038/sj.cgt.7700712
143. W. C. Chou, K. W. Liao, Y. C. Lo, S. Y. Jiang, M. Y. Yeh and S. R. Roffler: Expression of chimeric monomer and dimer proteins on the plasma membrane of mammalian cells. Biotechnol Bioeng, 65(2), 160-9 (1999)
144. K. C. Chen, T. L. Cheng, Y. L. Leu, Z. M. Prijovich, C. H. Chuang, B. M. Chen and S. R. Roffler: Membrane-localized activation of glucuronide prodrugs by beta-glucuronidase enzymes. Cancer Gene Ther, 14(2), 187-200 (2007) doi:10.1038/sj.cgt.7700999
145. L. Kjer-Nielsen, M. A. Dunstone, L. Kostenko, L. K. Ely, T. Beddoe, N. A. Mifsud, A. W. Purcell, A. G. Brooks, J. McCluskey and J. Rossjohn: Crystal structure of the human T cell receptor CD3 epsilon gamma heterodimer complexed to the therapeutic mAb OKT3. Proc Natl Acad Sci U S A, 101(20), 7675-80 (2004) doi:10.1073/pnas.0402295101
146. R. A. Fernandes, D. A. Shore, M. T. Vuong, C. Yu, X. Zhu, S. Pereira-Lopes, H. Brouwer, J. A. Fennelly, C. M. Jessup, E. J. Evans, I. A. Wilson and S. J. Davis: T cell receptors are structures capable of initiating signaling in the absence of large conformational rearrangements. J Biol Chem, 287(16), 13324-35 (2012) doi:10.1074/jbc.M111.332783
147. W. C. Lin, C. H. Yu, S. Triffo and J. T. Groves: Supported membrane formation, characterization, functionalization, and patterning for application in biological science and technology. Curr Protoc Chem Biol, 2(4), 235-69 (2010) doi:10.1002/9780470559277.ch100131
148. S. Vardhana and M. Dustin: Supported Planar Bilayers for the Formation of Study of Immunological Synapses and Kinapse. J Vis Exp, 19, 1-2 (2008) doi:10.3791/947
149. S. Feske: Calcium signalling in lymphocyte activation and disease. Nat Rev Immunol, 7(9), 690-702 (2007) doi:10.1038/nri2152
150. T. J. Crites, L. Chen and R. Varma: A TIRF microscopy technique for real-time, simultaneous imaging of the TCR and its associated signaling proteins. J Vis Exp(61) (2012) doi:10.3791/3892
151. A. Trache and G. A. Meininger: Total internal reflection fluorescence (TIRF) microscopy. Curr Protoc Microbiol, Chapter 2, Unit 2A 2 1-2A 2 22 (2008) doi:10.1002/9780471729259.mc02a02s10
152. M. L. Dustin and T. A. Springer: T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature, 341(6243), 619-24 (1989) doi:10.1038/341619a0
153. J. F. Dixon, J. L. Law and J. J. Favero: Activation of human T lymphocytes by crosslinking of anti-CD3 monoclonal antibodies. J Leukoc Biol, 46(3), 214-20 (1989)
154. C. Walker, F. Bettens and W. J. Pichler: T cell activation by cross-linking anti-CD3 antibodies with second anti-T cell antibodies: dual antibody cross-linking mimics physical monocyte interaction. Eur J Immunol, 17(11), 1611-8 (1987) doi:10.1002/eji.1830171114
155. A. K. Chakraborty: Decoding Communications between Cells in the Immune System Using principles of chemical engineering. AIChE Journal, 49(7), 1614-1620 (2003)
156. E. M. Schmid, M. H. Bakalar, K. Choudhuri, J. Weichsel, H. Ann, P. L. Geissler, M. L. Dustin and D. A. Fletcher: Size-dependent protein segregation at membrane interfaces. Nat Phys, 12(7), 704-711 (2016) doi:10.1038/nphys3678
157. S. Kumari, S. Curado, V. Mayya and M. L. Dustin: T cell antigen receptor activation and actin cytoskeleton remodeling. Biochim Biophys Acta, 1838(2), 546-56 (2014) doi:10.1016/j.bbamem.2013.05.004
158. J. K. Burkhardt, E. Carrizosa and M. H. Shaffer: The actin cytoskeleton in T cell activation. Annu Rev Immunol, 26, 233-59 (2008) doi:10.1146/annurev.immunol.26.021607.090347
159. B. Reicher and M. Barda-Saad: Multiple pathways leading from the T-cell antigen receptor to the actin cytoskeleton network. FEBS Lett, 584(24), 4858-64 (2010) doi:10.1016/j.febslet.2010.09.002
160. Y. Yu, N. C. Fay, A. A. Smoligovets, H. J. Wu and J. T. Groves: Myosin IIA modulates T cell receptor transport and CasL phosphorylation during early immunological synapse formation. PLoS One, 7(2), e30704 (2012) doi:10.1371/journal.pone.0030704
161. L. Krshnan, S. Park, W. Im, M. J. Call and M. E. Call: A conserved αβ transmembrane interface forms the core of a compact T-cell receptor–CD3 structure within the membrane. Proc Natl Acad Sci U S A, 113(43), E6649-E6658 (2016) doi:10.1073/pnas.1611445113
162. D. Gil, W. W. Schamel, M. a. Montoya, F. Sánchez-Madrid and B. Alarcón: Recruitment of Nck by CD3ϵ reveals a ligand-induced conformational change essential for T cell receptor signaling and synapse formation. Cell, 109(7), 901-912 (2002)
163. E. Gagnon, D. A. Schubert, S. Gordo, H. H. Chu and K. W. Wucherpfennig: Local changes in lipid environment of TCR microclusters regulate membrane binding by the CD3ε cytoplasmic domain. J Exp Med, 209(13), 2423-2439 (2012) doi:10.1084/jem.20120790
164. Mark S. Lee, Caleb R. Glassman, Neha R. Deshpande, Hemant B. Badgandi, Heather L. Parrish, C. Uttamapinant, Philipp S. Stawski, Alice Y. Ting and Michael S. Kuhns: A Mechanical Switch Couples T Cell Receptor Triggering to the Cytoplasmic Juxtamembrane Regions of CD3ζζ. Immunity, 43(2), 227-239 (2015) doi:dx.doi.org/10.1016/j.immuni.2015.06.018
165. Z. Ma and T. H. Finkel: T cell receptor triggering by force. Trends Immunol, 31(1), 1-6 (2010) doi:10.1016/j.it.2009.09.008
166. C. Monzel, D. Schmidt, U. Seifert, A. S. Smith, R. Merkel and K. Sengupta: Nanometric thermal fluctuations of weakly confined biomembranes measured with microsecond time-resolution. Soft Matter, 12(21), 4755-68 (2016) doi:10.1039/c6sm00412a
167. D. A. F. H. Turlier, B. Audoly, T. Auth, N. S. Gov, C. Sykes, J.-F. Joanny, G. Gompper, T. Betz: Equilibrium physics breakdown reveals the active nature of red blood cell flickering. nat phys, 12(may 2016), 513-520 (2016) doi:10.1038/NPHYS3621
168. T. Yokosuka, K. Sakata-Sogawa, W. Kobayashi, M. Hiroshima, A. Hashimoto-Tane, M. Tokunaga, M. L. Dustin and T. Saito: Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat immunol, 6(12), 1253-1262 (2005)
169. M. Huse, L. O. Klein, A. T. Girvin, J. M. Faraj, Q.-J. Li, M. S. Kuhns and M. M. Davis: Spatial and temporal dynamics of T cell receptor signaling with a photoactivatable agonist. Immunity, 27(1), 76-88 (2007)
170. M. L. Dustin, A. K. Chakraborty and A. S. Shaw: Understanding the structure and function of the immunological synapse. Cold Spring Harb perspect biol, 2(10), a002311 (2010)
171. H. Turlier, D. A. Fedosov, B. Audoly, T. Auth, N. S. Gov, C. Sykes, J. F. Joanny, G. Gompper and T. Betz: Equilibrium physics breakdown reveals the active nature of red blood cell flickering. Nat Phys, 12(5), 513-519 (2016) doi:10.1038/nphys3621
172. S. Pryshchep, V. I. Zarnitsyna, J. Hong, B. D. Evavold and C. Zhu: Accumulation of serial forces on TCR and CD8 frequently applied by agonist antigenic peptides embedded in MHC molecules triggers calcium in T cells. J Immunol, 193(1), 68-76 (2014)
173. J. Rachmilewitz and A. Lanzavecchia: A temporal and spatial summation model for T-cell activation: signal integration and antigen decoding. Trends in Immunology, 23(12), 592-595 (2002) doi:dx.doi.org/10.1016/S1471-4906(02)02342-6
174. M. Faroudi, R. Zaru, P. Paulet, S. Müller and S. Valitutti: Cutting edge: T lymphocyte activation by repeated immunological synapse formation and intermittent signaling. J Immunol, 171(3), 1128-1132 (2003)
175. G. P. O'Donoghue, R. M. Pielak, A. A. Smoligovets, J. J. Lin and J. T. Groves: Direct single molecule measurement of TCR triggering by agonist pMHC in living primary T cells. Elife, 2, e00778 (2013)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top