跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/12 04:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許蕙子
研究生(外文):Hui-Tzu Hsu
論文名稱:PPARγ於肝癌中之臨床病理意義及其抑制 肝癌細胞生長,移動,和血管新生之路徑
論文名稱(外文):Clinicopathological Significance of PPARγ in Hepatocellular Carcinoma and PPARγ-Mediated Suppression of Growth, Migration, and Angiogenesis in Human Hepatocellular Carcinoma Cells
指導教授:戚謹文李新城李新城引用關係
指導教授(外文):Chin-Wen ChiHsin-Chen Lee
學位類別:博士
校院名稱:國立陽明大學
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:97
中文關鍵詞:過氧化小體增生因子活化受體伽碼Krüppel樣因子4肝癌巨觀血管侵襲
外文關鍵詞:peroxisome proliferator-activated receptor γKrüppel-like factor 4hepatocellular carcionmamacroscopic vascular invasion
相關次數:
  • 被引用被引用:1
  • 點閱點閱:311
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
過氧化小體增生因子活化受體伽碼 (peroxisome proliferator-activated receptor γ, PPARγ) 是一種受體活化細胞核接受器,具有調控細胞內脂質和葡萄糖代謝的功能,並在不同癌症中扮演抑制的角色。然而,PPARγ在臨床上肝癌的顯著性仍舊沒有明確的研究結果。厚朴酚(honokiol)是一種天然雙酚類化合物,近年來被發現在肝癌細胞中具有PPARγ促效劑的功能。但目前PPARγ對於厚朴酚的重要性以及PPARγ是否在厚朴酚抑制細胞生長的機轉中扮演角色仍不清楚。此篇研究主要目標為探討PPARγ在臨床肝癌診斷上的價值和其抑制腫瘤進展的角色,並且探討PPARγ是否參與在厚朴酚抑制細胞生長的機轉中。此篇研究中共有83個肝癌病人組織,利用免疫組織染色的方式檢測PPARγ的表現量,透過病理學的方式探討其表現量和臨床參數上的相關性。低表現量之PPARγ相較於高表現量之PPARγ的肝癌病患偏年輕者居多(p = 0.006),並具有較多的腫瘤數量(p = 0.038),較多的巨觀血管侵襲(p = 0.008),和較為惡化的診斷後期(p = 0.013)。此外,分析結果中發現到低表現量之PPARγ可作為預測肝癌病患具有較多巨觀血管侵襲的獨立因子。而針對PPARγ的功能性探討則是利用病毒轉植技術分別於肝癌細胞Mahlavu中使其過度表現及於PLC/PRF/5細胞中降低其表現量。體外細胞實驗中的結果顯示PPARγ具有抑制肝癌細胞生長,移動,以及血管新生的功能。其中cyclin D1和STAT3蛋白可能參與在PPARγ抑制肝癌細胞生長的訊息傳遞路徑中。此外,厚朴酚透過調控細胞週期和KLF4, cyclin D1, p21, 以及cdc2這些細胞週期調控蛋白來抑制肝癌細胞生長。其中,SK-Hep1肝癌細胞株可以觀察到最明顯的效果。由於不同肝癌細胞株的特性,使得過量表現PPARγ於不同肝癌細胞對於增強厚朴酚抑制細胞生長的影響有所差異。此外,透過分析台灣健保資料庫百萬抽樣人檔,結果顯示第二型糖尿病患者使用糖尿病用藥噻唑烷二酮類(thiazolidinedione, TZDs),PPARγ促效劑的一種,能降低後續發生肝癌的風險。總結本研究結果,PPARγ的功能在肝癌細胞中扮演一個抑制腫瘤的角色並且可作為治療肝癌的標的。
Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated nuclear receptor that regulates cellular lipid and glucose metabolism and also plays an inhibitory role in various cancers. However, the clinical significance of PPARγ in hepatocellular carcinoma (HCC) remains unclear. Honokiol, a natural biphenolic compound was found to function as a PPARγ agonist in HCC cells recently. However, the functional importance of PPARγ in honokiol-mediated growth inhibition is not known. This study aimed to investigate the prognostic value of PPARγ in HCC and its role in inhibiting tumor progression, and to investigate whether PPARγ is involved in honokiol-mediated cell growth inhibition of HCC cells. Immunohistochemical PPARγ staining was examined in 83 HCC specimens to investigate the clinicopathological correlations between PPARγ expression and various parameters. The functional role of PPARγ was determined via PPARγ overexpression and knockdown in HCC cell lines Mahlavu and PLC/PRF/5, respectively. Patients with low HCC tissue PPARγ expression were significantly younger (p = 0.006), and exhibited more tumor numbers (p = 0.038), more macroscopic vascular invasion (MVI) (p = 0.008), and more advanced TNM (tumors, nodes, and metastasis) stages at diagnosis (p = 0.013) than patients with high HCC tissue PPARγ expression. These results suggest that low PPARγ expression is an independent predictor of more MVI in HCC patients. In vitro experiments showed that PPARγ contributes to suppression of HCC cell growth, migration, and angiogenesis. Cyclin D1 and STAT3 may be involved in PPARγ-mediated signaling pathways that inhibit HCC cell growth. In addition, honokiol exhibits inhibitory role on cell growth through regulation of cell cycle and the expression of KLF4, cyclin D1, p21, and cdc2. This could be observed especially in SK-Hep1 cells. Particularly, PPARγ enhances honokiol on growth inhibition and results in differential response in different human HCC cell lines. Moreover, the analyses from Taiwan National Health and Insurance Research Database showed that anti-diabetic drugs thiazolidinediones (TZDs), PPARγ agonists, reduces HCC development in patients with type II DM. In conclusion, PPARγ functions as a tumor suppressor in HCC cells and may be therapeutic target in HCC.
Table of Contents 1
Chinese abstract 4
Abstract 6
Abbreviations 8
I. Introduction 11
1.1 Liver cancer 11
1.1.1 Epidemiology 11
1.1.2 Types of liver cancer 11
1.1.2.1 Benign liver tumors 11
1.1.2.2 Primary liver cancer 12
1.1.2.3 Secondary liver cancer 12
1.1.3 Risk factors for hepatocellular carcinoma 13
1.1.4 Diagnosis 13
1.1.5 Stage 14
1.1.5.1 AJCC TNM stage system 14
1.1.5.2 BCLC system 14
1.1.6 Therapeutic strategies 15
1.1.6.1 Surgery—Partial hepatectomy and liver transplantation 15
1.1.6.2 Tumor ablation 15
1.1.6.3 Embolization 16
1.1.6.4 Radiation therapy (RT) 17
1.1.6.5 Chemotherapy 18
1.1.6.6 Targeted therapy 19
1.1.6.7 Combination therapy 19
1.1.7 Ongoing clinical studies 20
1.2 Peroxisome proliferator-activated receptor γ (PPARγ) 20
1.2.1 Molecular structure of PPARγ 20
1.2.2 Expression of PPARγ in HCC 22
1.2.3 Functions of PPARγ in HCC 22
1.3 Functions of PPARγ ligands TZDs in HCC 23
1.4 Use of TZDs and the risk of HCC in patients with type II DM 25
1.5 Honokiol 26
II. Specific aims and rationale 28
III. Materials and Methods 30
3.1 Human tissue specimens and patient information 30
3.2 Immunohistochemical study 30
3.3 Cell culture and drug treatment 31
3.4 Overexpression and knockdown of PPARγ 32
3.5 Measurement of cell proliferation 32
3.6 Cell cycle analysis by flow cytometry 33
3.7 Quantitative real-time polymerase chain reaction (RT-qPCR) analysis 33
3.8 Western blot analysis 34
3.9 Wound healing assay 35
3.10 Matrigel tube formation assay 35
3.11 Big data source and design 36
3.12 Statistical analyses 37
IV. Results 38
4.1 PPARγ protein expression in human HCC tissues and associated clinicopathological characteristics 38
4.2 PPARγ suppresses HCC cell proliferation 39
4.3 PPARγ inhibits HCC cell migration 40
4.4 PPARγ decreases HCC cell angiogenesis 40
4.5 PPARγ enhances honokiol on growth inhibition in human HCC cells 41
4.6 Honokiol-induced cell cycle phase alteration is partially PPARγ-dependent 42
in human HCC cells 42
4.7 Honokiol up-regulates cell cycle arrest-related proteins and down-regulated 43
cell cycle promotion-related proteins 43
4.8 PPARγ agonists TZDs inhibits cell growth in HCC cells 44
4.9 TZDs decreases HCC development in patients with type II DM 45
V. Discussion 47
5.1 Clinical significance of PPARγ in HCC 47
5.2 PPARγ functions as a tumor suppressor in HCC development 48
5.3 Honokiol serves as a PPARγ agonist and has an inhibitory role in HCC 50
5.4. Anti-diabetic medications in HCC treatment 53
VI. Conclusion 54
VII. References 55
VIII. Tables 74
IX. Figures 80
X. Appendices 95
XI. Publications 97
1. L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-Tieulent, A. Jemal, Global cancer statistics, 2012. CA Cancer J Clin 65, 87-108 (2015).
2. A. B. Ryerson, C. R. Eheman, S. F. Altekruse, J. W. Ward, A. Jemal, R. L. Sherman, S. J. Henley, D. Holtzman, A. Lake, A. M. Noone, R. N. Anderson, J. Ma, K. N. Ly, K. A. Cronin, L. Penberthy, B. A. Kohler, Annual Report to the Nation on the Status of Cancer, 1975-2012, featuring the increasing incidence of liver cancer. Cancer 122, 1312-1337 (2016).
3. D. Hashim, P. Boffetta, C. La Vecchia, M. Rota, P. Bertuccio, M. Malvezzi, E. Negri, The global decrease in cancer mortality: trends and disparities. Ann Oncol 27, 926-933 (2016).
4. N. Bajenaru, V. Balaban, F. Savulescu, I. Campeanu, T. Patrascu, Hepatic hemangioma -review. J Med Life 8 Spec Issue, 4-11 (2015).
5. A. Vijay, A. Elaffandi, H. Khalaf, Hepatocellular adenoma: An update. World J Hepatol 7, 2603-2609 (2015).
6. M. Roncalli, A. Sciarra, L. D. Tommaso, Benign hepatocellular nodules of healthy liver: focal nodular hyperplasia and hepatocellular adenoma. Clin Mol Hepatol 22, 199-211 (2016).
7. A. Ananthakrishnan, V. Gogineni, K. Saeian, Epidemiology of primary and secondary liver cancers. Semin Intervent Radiol 23, 47-63 (2006).
8. S. Zheng, Y. Zhu, Z. Zhao, Z. Wu, K. Okanurak, Z. Lv, Liver fluke infection and cholangiocarcinoma: a review. Parasitol Res 116, 11-19 (2017).
9. P. Chaudhary, U. Bhadana, R. A. Singh, A. Ahuja, Primary hepatic angiosarcoma. Eur J Surg Oncol 41, 1137-1143 (2015).
10. L. Bortolasi, L. Marchiori, I. Dal Dosso, R. Colombari, N. Nicoli, Hepatoblastoma in adult age: a report of two cases. Hepatogastroenterology 43, 1073-1078 (1996).
11. N. Kremer, A. E. Walther, G. M. Tiao, Management of hepatoblastoma: an update. Curr Opin Pediatr 26, 362-369 (2014).
12. H. B. El-Serag, Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 142, 1264-1273 (2012).
13. J. A. Davila, R. O. Morgan, Y. Shaib, K. A. McGlynn, H. B. El-Serag, Diabetes increases the risk of hepatocellular carcinoma in the United States: a population based case control study. Gut 54, 533-539 (2005).
14. W. Y. Shau, Y. Y. Shao, Y. C. Yeh, Z. Z. Lin, R. Kuo, C. H. Hsu, C. Hsu, A. L. Cheng, M. S. Lai, Diabetes mellitus is associated with increased mortality in patients receiving curative therapy for hepatocellular carcinoma. Oncologist 17, 856-862 (2012).
15. P. A. Farazi, R. A. DePinho, Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 6, 674-687 (2006).
16. H. C. Wu, R. Santella, The role of aflatoxins in hepatocellular carcinoma. Hepat Mon 12, e7238 (2012).
17. Y. Y. Yang, Can serum cytokines predict hepatic cytokine expression in liver cirrhosis? J Chin Med Assoc 74, 485-486 (2011).
18. E. J. Park, J. H. Lee, G. Y. Yu, G. He, S. R. Ali, R. G. Holzer, C. H. Osterreicher, H. Takahashi, M. Karin, Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140, 197-208 (2010).
19. E. E. Calle, C. Rodriguez, K. Walker-Thurmond, M. J. Thun, Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348, 1625-1638 (2003).
20. H. B. El-Serag, H. Hampel, F. Javadi, The association between diabetes and hepatocellular carcinoma: a systematic review of epidemiologic evidence. Clin Gastroenterol Hepatol 4, 369-380 (2006).
21. J. Trojan, S. Zangos, A. A. Schnitzbauer, Diagnostics and treatment of hepatocellular carcinoma in 2016: Standards and developments. Visc Med 32, 116-120 (2016).
22. J. Bruix, M. Reig, M. Sherman, Evidence-based diagnosis, staging, and treatment of patients With hepatocellular carcinoma. Gastroenterology 150, 835-853 (2016).
23. S. B. Edge, C. C. Compton, The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol 17, 1471-1474 (2010).
24. A. Ziser, D. J. Plevak, R. H. Wiesner, J. Rakela, K. P. Offord, D. L. Brown, Morbidity and mortality in cirrhotic patients undergoing anesthesia and surgery. Anesthesiology 90, 42-53 (1999).
25. J. M. Llovet, C. Bru, J. Bruix, Prognosis of hepatocellular carcinoma: the BCLC staging classification. Semin Liver Dis 19, 329-338 (1999).
26. V. Mazzaferro, E. Regalia, R. Doci, S. Andreola, A. Pulvirenti, F. Bozzetti, F. Montalto, M. Ammatuna, A. Morabito, L. Gennari, Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med 334, 693-699 (1996).
27. G. N. Bachar, F. Greif, E. Mor, R. Tur-Kaspa, A. Belenky, Radiofrequency ablation for the management of liver tumors. Isr Med Assoc J 5, 496-500 (2003).
28. D. Ansari, R. Andersson, Radiofrequency ablation or percutaneous ethanol injection for the treatment of liver tumors. World J Gastroenterol 18, 1003-1008 (2012).
29. K. F. Chu, D. E. Dupuy, Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat Rev Cancer 14, 199-208 (2014).
30. W. Sieghart, F. Hucke, M. Peck-Radosavljevic, Transarterial chemoembolization: modalities, indication, and patient selection. J Hepatol 62, 1187-1195 (2015).
31. R. Sacco, V. Mismas, S. Marceglia, A. Romano, L. Giacomelli, M. Bertini, G. Federici, S. Metrangolo, G. Parisi, E. Tumino, G. Bresci, A. Corti, M. Tredici, M. Piccinno, L. Giorgi, C. Bartolozzi, I. Bargellini, Transarterial radioembolization for hepatocellular carcinoma: An update and perspectives. World J Gastroenterol 21, 6518-6525 (2015).
32. M. A. Kalogeridi, A. Zygogianni, G. Kyrgias, J. Kouvaris, S. Chatziioannou, N. Kelekis, V. Kouloulias, Role of radiotherapy in the management of hepatocellular carcinoma: A systematic review. World J Hepatol 7, 101-112 (2015).
33. S. Ishikura, T. Ogino, J. Furuse, M. Satake, S. Baba, M. Kawashima, K. Nihei, Y. Ito, Y. Maru, H. Ikeda, Radiotherapy after transcatheter arterial chemoembolization for patients with hepatocellular carcinoma and portal vein tumor thrombus. Am J Clin Oncol 25, 189-193 (2002).
34. G. L. Deng, S. Zeng, H. Shen, Chemotherapy and target therapy for hepatocellular carcinoma: New advances and challenges. World J Hepatol 7, 787-798 (2015).
35. U. Asghar, T. Meyer, Are there opportunities for chemotherapy in the treatment of hepatocellular cancer? J Hepatol 56, 686-695 (2012).
36. D. W. Shen, Y. G. Lu, K. V. Chin, I. Pastan, M. M. Gottesman, Human hepatocellular carcinoma cell lines exhibit multidrug resistance unrelated to MRD1 gene expression. J Cell Sci 98 (Pt 3), 317-322 (1991).
37. J. M. Llovet, S. Ricci, V. Mazzaferro, P. Hilgard, E. Gane, J. F. Blanc, A. C. de Oliveira, A. Santoro, J. L. Raoul, A. Forner, M. Schwartz, C. Porta, S. Zeuzem, L. Bolondi, T. F. Greten, P. R. Galle, J. F. Seitz, I. Borbath, D. Haussinger, T. Giannaris, M. Shan, M. Moscovici, D. Voliotis, J. Bruix, Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359, 378-390 (2008).
38. A. L. Cheng, Y. K. Kang, Z. Chen, C. J. Tsao, S. Qin, J. S. Kim, R. Luo, J. Feng, S. Ye, T. S. Yang, J. Xu, Y. Sun, H. Liang, J. Liu, J. Wang, W. Y. Tak, H. Pan, K. Burock, J. Zou, D. Voliotis, Z. Guan, Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 10, 25-34 (2009).
39. M. A. Worns, S. Koch, I. M. Niederle, J. U. Marquardt, M. Nguyen-Tat, T. Gamstatter, M. Schuchmann, H. Schulze-Bergkamen, P. R. Galle, A. Weinmann, The impact of patient and tumour baseline characteristics on the overall survival of patients with advanced hepatocellular carcinoma treated with sorafenib. Dig Liver Dis 45, 408-413 (2013).
40. R. Yamaguchi, H. Yano, A. Iemura, S. Ogasawara, M. Haramaki, M. Kojiro, Expression of vascular endothelial growth factor in human hepatocellular carcinoma. Hepatology 28, 68-77 (1998).
41. V. Berk, M. A. Kaplan, O. Tonyali, S. Buyukberber, O. Balakan, M. Ozkan, U. Demirci, T. Ozturk, A. Bilici, D. Tastekin, N. Ozdemir, O. U. Unal, U. Oflazoglu, E. Turkmen, B. Erdogan, U. Uyeturk, B. Oksuzoglu, H. Y. Cinkir, N. Yasar, M. Gumus, Efficiency and side effects of sorafenib therapy for advanced hepatocellular carcinoma: a retrospective study by the anatolian society of medical oncology. Asian Pac J Cancer Prev 14, 7367-7369 (2013).
42. European Association For The Study Of The Liver, E. O. F. R. T. O. Cancer, EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 56, 908-943 (2012).
43. A. Granito, S. Marinelli, G. Negrini, S. Menetti, F. Benevento, L. Bolondi, Prognostic significance of adverse events in patients with hepatocellular carcinoma treated with sorafenib. Therap Adv Gastroenterol 9, 240-249 (2016).
44. W. Bai, Y. J. Wang, Y. Zhao, X. S. Qi, Z. X. Yin, C. Y. He, R. J. Li, K. C. Wu, J. L. Xia, D. M. Fan, G. H. Han, Sorafenib in combination with transarterial chemoembolization improves the survival of patients with unresectable hepatocellular carcinoma: a propensity score matching study. J Dig Dis 14, 181-190 (2013).
45. Y. Zhao, W. J. Wang, S. Guan, H. L. Li, R. C. Xu, J. B. Wu, J. S. Liu, H. P. Li, W. Bai, Z. X. Yin, D. M. Fan, Z. L. Zhang, G. H. Han, Sorafenib combined with transarterial chemoembolization for the treatment of advanced hepatocellular carcinoma: a large-scale multicenter study of 222 patients. Ann Oncol 24, 1786-1792 (2013).
46. A. M. Intlekofer, C. B. Thompson, At the bench: preclinical rationale for CTLA-4 and PD-1 blockade as cancer immunotherapy. J Leukoc Biol 94, 25-39 (2013).
47. M. Kudo, Immune checkpoint blockade in hepatocellular carcinoma. Liver Cancer 4, 201-207 (2015).
48. I. M. A. B. El-Khoueiry, T. S. Crocenzi, T. H. Welling, T. C. Yau, W. Yeo, A. Chopra, J. Grosso, L. Lang, J. Anderson, C. M. D. Cruz, B. Sangro, Phase I/II safety and antitumor activity of nivolumab in patients with advanced hepatocellular carcinoma (HCC): CA209-040. ASCO Annual Meeting LBA101, (2015).
49. B. Desvergne, W. Wahli, Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20, 649-688 (1999).
50. A. Zieleniak, M. Wojcik, L. A. Wozniak, Structure and physiological functions of the human peroxisome proliferator-activated receptor gamma. Arch Immunol Ther Exp (Warsz) 56, 331-345 (2008).
51. A. Werman, A. Hollenberg, G. Solanes, C. Bjorbaek, A. J. Vidal-Puig, J. S. Flier, Ligand-independent activation domain in the N terminus of peroxisome proliferator-activated receptor gamma (PPARgamma). Differential activity of PPARgamma1 and -2 isoforms and influence of insulin. J Biol Chem 272, 20230-20235 (1997).
52. M. Adams, M. J. Reginato, D. Shao, M. A. Lazar, V. K. Chatterjee, Transcriptional activation by peroxisome proliferator-activated receptor gamma is inhibited by phosphorylation at a consensus mitogen-activated protein kinase site. J Biol Chem 272, 5128-5132 (1997).
53. T. Leff, AMP-activated protein kinase regulates gene expression by direct phosphorylation of nuclear proteins. Biochem Soc Trans 31, 224-227 (2003).
54. C. K. Glass, D. W. Rose, M. G. Rosenfeld, Nuclear receptor coactivators. Curr Opin Cell Biol 9, 222-232 (1997).
55. B. M. Forman, P. Tontonoz, J. Chen, R. P. Brun, B. M. Spiegelman, R. M. Evans, 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 83, 803-812 (1995).
56. T. M. McIntyre, A. V. Pontsler, A. R. Silva, A. St Hilaire, Y. Xu, J. C. Hinshaw, G. A. Zimmerman, K. Hama, J. Aoki, H. Arai, G. D. Prestwich, Identification of an intracellular receptor for lysophosphatidic acid (LPA): LPA is a transcellular PPARgamma agonist. Proc Natl Acad Sci U S A 100, 131-136 (2003).
57. F. J. Schopfer, Y. Lin, P. R. Baker, T. Cui, M. Garcia-Barrio, J. Zhang, K. Chen, Y. E. Chen, B. A. Freeman, Nitrolinoleic acid: an endogenous peroxisome proliferator-activated receptor gamma ligand. Proc Natl Acad Sci U S A 102, 2340-2345 (2005).
58. G. J. Murphy, J. C. Holder, PPAR-gamma agonists: therapeutic role in diabetes, inflammation and cancer. Trends Pharmacol Sci 21, 469-474 (2000).
59. H. Yau, K. Rivera, R. Lomonaco, K. Cusi, The future of thiazolidinedione therapy in the management of type 2 diabetes mellitus. Curr Diab Rep 13, 329-341 (2013).
60. Y. Zhu, C. Qi, J. R. Korenberg, X. N. Chen, D. Noya, M. S. Rao, J. K. Reddy, Structural organization of mouse peroxisome proliferator-activated receptor gamma (mPPAR gamma) gene: alternative promoter use and different splicing yield two mPPAR gamma isoforms. Proc Natl Acad Sci U S A 92, 7921-7925 (1995).
61. A. Elbrecht, Y. Chen, C. A. Cullinan, N. Hayes, M. Leibowitz, D. E. Moller, J. Berger, Molecular cloning, expression and characterization of human peroxisome proliferator activated receptors gamma 1 and gamma 2. Biochem Biophys Res Commun 224, 431-437 (1996).
62. B. Grygiel-Gorniak, Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications--a review. Nutr J 13, 17 (2014).
63. L. Fajas, D. Auboeuf, E. Raspe, K. Schoonjans, A. M. Lefebvre, R. Saladin, J. Najib, M. Laville, J. C. Fruchart, S. Deeb, A. Vidal-Puig, J. Flier, M. R. Briggs, B. Staels, H. Vidal, J. Auwerx, The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem 272, 18779-18789 (1997).
64. N. Saraf, P. K. Sharma, S. C. Mondal, V. K. Garg, A. K. Singh, Role of PPARg2 transcription factor in thiazolidinedione-induced insulin sensitization. J Pharm Pharmacol 64, 161-171 (2012).
65. H. Koga, S. Sakisaka, M. Harada, T. Takagi, S. Hanada, E. Taniguchi, T. Kawaguchi, K. Sasatomi, R. Kimura, O. Hashimoto, T. Ueno, H. Yano, M. Kojiro, M. Sata, Involvement of p21(WAF1/Cip1), p27(Kip1), and p18(INK4c) in troglitazone-induced cell-cycle arrest in human hepatoma cell lines. Hepatology 33, 1087-1097 (2001).
66. K. L. Schaefer, K. Wada, H. Takahashi, N. Matsuhashi, S. Ohnishi, M. M. Wolfe, J. R. Turner, A. Nakajima, S. C. Borkan, L. J. Saubermann, Peroxisome proliferator-activated receptor gamma inhibition prevents adhesion to the extracellular matrix and induces anoikis in hepatocellular carcinoma cells. Cancer Res 65, 2251-2259 (2005).
67. J. Yu, L. Qiao, L. Zimmermann, M. P. Ebert, H. Zhang, W. Lin, C. Rocken, P. Malfertheiner, G. C. Farrell, Troglitazone inhibits tumor growth in hepatocellular carcinoma in vitro and in vivo. Hepatology 43, 134-143 (2006).
68. Y. M. Lin, B. K. Velmurugan, Y. L. Yeh, C. C. Tu, T. J. Ho, T. Y. Lai, C. H. Tsai, F. J. Tsai, C. H. Tsai, C. Y. Huang, Activation of estrogen receptors with E2 downregulates peroxisome proliferator-activated receptor gamma in hepatocellular carcinoma. Oncol Rep 30, 3027-3031 (2013).
69. J. Yu, B. Shen, E. S. Chu, N. Teoh, K. F. Cheung, C. W. Wu, S. Wang, C. N. Lam, H. Feng, J. Zhao, A. S. Cheng, K. F. To, H. L. Chan, J. J. Sung, Inhibitory role of peroxisome proliferator-activated receptor gamma in hepatocarcinogenesis in mice and in vitro. Hepatology 51, 2008-2019 (2010).
70. B. Shen, E. S. Chu, G. Zhao, K. Man, C. W. Wu, J. T. Cheng, G. Li, Y. Nie, C. M. Lo, N. Teoh, G. C. Farrell, J. J. Sung, J. Yu, PPARgamma inhibits hepatocellular carcinoma metastases in vitro and in mice. Br J Cancer 106, 1486-1494 (2012).
71. K. F. Cheung, J. Zhao, Y. Hao, X. Li, A. W. Lowe, A. S. Cheng, J. J. Sung, J. Yu, CITED2 is a novel direct effector of peroxisome proliferator-activated receptor gamma in suppressing hepatocellular carcinoma cell growth. Cancer 119, 1217-1226 (2013).
72. H. J. Lee, Y. Su, P. H. Yin, H. C. Lee, C. W. Chi, PPAR(gamma)/PGC-1(alpha) pathway in E-cadherin expression and motility of HepG2 cells. Anticancer Res 29, 5057-5063 (2009).
73. I. P. Uray, J. M. Rodenberg, R. P. Bissonnette, P. H. Brown, M. A. Mancini, Cancer-preventive rexinoid modulates neutral lipid contents of mammary epithelial cells through a peroxisome proliferator-activated receptor gamma-dependent mechanism. Mol Pharmacol 81, 228-238 (2012).
74. P. Mishra, S. K. Paramasivam, R. P. Thylur, A. Rana, B. Rana, Peroxisome proliferator-activated receptor gamma ligand-mediated apoptosis of hepatocellular carcinoma cells depends upon modulation of PI3Kinase pathway independent of Akt. J Mol Signal 5, 1-17 (2010).
75. L. Q. Cao, X. L. Wang, Q. Wang, P. Xue, X. Y. Jiao, H. P. Peng, H. W. Lu, Q. Zheng, X. L. Chen, X. H. Huang, X. H. Fu, J. S. Chen, Rosiglitazone sensitizes hepatocellular carcinoma cell lines to 5-fluorouracil antitumor activity through activation of the PPARgamma signaling pathway. Acta Pharmacol Sin 30, 1316-1322 (2009).
76. H. Okano, K. Shiraki, H. Inoue, Y. Yamanaka, T. Kawakita, Y. Saitou, Y. Yamaguchi, N. Enokimura, N. Yamamoto, K. Sugimoto, K. Murata, T. Nakano, 15-deoxy-delta-12-14-PGJ2 regulates apoptosis induction and nuclear factor-kappaB activation via a peroxisome proliferator-activated receptor-gamma-independent mechanism in hepatocellular carcinoma. Lab Invest 83, 1529-1539 (2003).
77. J. Shim, B. H. Kim, Y. I. Kim, K. Y. Kim, Y. Hwangbo, J. Y. Jang, S. H. Dong, H. J. Kim, Y. W. Chang, R. Chang, The peroxisome proliferator-activated receptor gamma ligands, pioglitazone and 15-deoxy-Delta(12,14)-prostaglandin J(2), have antineoplastic effects against hepatitis B virus-associated hepatocellular carcinoma cells. Int J Oncol 36, 223-231 (2010).
78. N. N. Zhang, Q. S. Sun, Z. Chen, F. Liu, Y. Y. Jiang, Homeostatic regulatory role of Pokemon in NF-kappaB signaling: stimulating both p65 and IkappaBalpha expression in human hepatocellular carcinoma cells. Mol Cell Biochem 372, 57-64 (2013).
79. W. Zhang, N. Wu, Z. Li, L. Wang, J. Jin, X. L. Zha, PPARgamma activator rosiglitazone inhibits cell migration via upregulation of PTEN in human hepatocarcinoma cell line BEL-7404. Cancer Biol Ther 5, 1008-1014 (2006).
80. X. Pang, Y. Wei, Y. Zhang, M. Zhang, Y. Lu, P. Shen, Peroxisome proliferator-activated receptor-gamma activation inhibits hepatocellular carcinoma cell invasion by upregulating plasminogen activator inhibitor-1. Cancer Sci 104, 672-680 (2013).
81. K. R. Kim, H. N. Choi, H. J. Lee, H. A. Baek, H. S. Park, K. Y. Jang, M. J. Chung, W. S. Moon, A peroxisome proliferator-activated receptor gamma antagonist induces vimentin cleavage and inhibits invasion in high-grade hepatocellular carcinoma. Oncol Rep 18, 825-832 (2007).
82. S. W. Lai, P. C. Chen, K. F. Liao, C. H. Muo, C. C. Lin, F. C. Sung, Risk of hepatocellular carcinoma in diabetic patients and risk reduction associated with anti-diabetic therapy: a population-based cohort study. Am J Gastroenterol 107, 46-52 (2012).
83. C. H. Chang, J. W. Lin, L. C. Wu, M. S. Lai, L. M. Chuang, K. A. Chan, Association of thiazolidinediones with liver cancer and colorectal cancer in type 2 diabetes mellitus. Hepatology 55, 1462-1472 (2012).
84. S. Singh, P. P. Singh, A. G. Singh, M. H. Murad, W. Sanchez, Anti-diabetic medications and the risk of hepatocellular cancer: a systematic review and meta-analysis. Am J Gastroenterol 108, 881-891(2013).
85. L. E. Fried, J. L. Arbiser, Honokiol, a multifunctional antiangiogenic and antitumor agent. Antioxid Redox Signal 11, 1139-1148 (2009).
86. H. Kotani, H. Tanabe, H. Mizukami, M. Makishima, M. Inoue, Identification of a naturally occurring rexinoid, honokiol, that activates the retinoid X receptor. J Nat Prod 73, 1332-1336 (2010).
87. E. Perez, W. Bourguet, H. Gronemeyer, A. R. de Lera, Modulation of RXR function through ligand design. Biochim Biophys Acta 1821, 57-69 (2012).
88. H. Kotani, H. Tanabe, H. Mizukami, S. Amagaya, M. Inoue, A naturally occurring rexinoid, honokiol, can serve as a regulator of various retinoid x receptor heterodimers. Biol Pharm Bull 35, 1-9 (2012).
89. A. G. Atanasov, J. N. Wang, S. P. Gu, J. Bu, M. P. Kramer, L. Baumgartner, N. Fakhrudin, A. Ladurner, C. Malainer, A. Vuorinen, S. M. Noha, S. Schwaiger, J. M. Rollinger, D. Schuster, H. Stuppner, V. M. Dirsch, E. H. Heiss, Honokiol: a non-adipogenic PPARgamma agonist from nature. Biochim Biophys Acta 1830, 4813-4819 (2013).
90. C. Y. Li, L. K. Chao, S. C. Wang, H. Z. Chang, M. L. Tsai, S. H. Fang, P. C. Liao, C. L. Ho, S. T. Chen, W. C. Cheng, C. S. Chiang, Y. H. Kuo, K. F. Hua, I. C. Hsu, Honokiol inhibits LPS-induced maturation and inflammatory response of human monocyte-derived dendritic cells. J Cell Physiol 226, 2338-2349 (2011).
91. C. Zhao, Z. Q. Liu, Comparison of antioxidant abilities of magnolol and honokiol to scavenge radicals and to protect DNA. Biochimie 93, 1755-1760 (2011).
92. C. M. Teng, C. C. Chen, F. N. Ko, L. G. Lee, T. F. Huang, Y. P. Chen, H. Y. Hsu, Two antiplatelet agents from Magnolia officinalis. Thromb Res 50, 757-765 (1988).
93. C. Chen, J. K. Lin, S. H. Liu, S. Y. Lin-Shiau, Characterization of neurotoxic effects of NMDA and the novel neuroprotection by phytopolyphenols in mice. Behav Neurosci 124, 541-553 (2010).
94. Y. J. Lai, C. I. Lin, C. L. Wang, J. I. Chao, Expression of survivin and p53 modulates honokiol-induced apoptosis in colorectal cancer cells. J Cell Biochem 115, 1888-1899 (2014).
95. S. H. Liu, C. C. Shen, Y. C. Yi, J. J. Tsai, C. C. Wang, J. T. Chueh, K. L. Lin, T. C. Lee, H. C. Pan, M. L. Sheu, Honokiol inhibits gastric tumourigenesis by activation of 15-lipoxygenase-1 and consequent inhibition of peroxisome proliferator-activated receptor-gamma and COX-2-dependent signals. Br J Pharmacol 160, 1963-1972 (2010).
96. J. Deng, Y. Qian, L. Geng, J. Chen, X. Wang, H. Xie, S. Yan, G. Jiang, L. Zhou, S. Zheng, Involvement of p38 mitogen-activated protein kinase pathway in honokiol-induced apoptosis in a human hepatoma cell line (hepG2). Liver Int 28, 1458-1464 (2008).
97. S. Liang, A. Fu, Q. Zhang, M. Tang, J. Zhou, Y. Wei, L. Chen, Honokiol inhibits HepG2 migration via down-regulation of IQGAP1 expression discovered by a quantitative pharmaceutical proteomic analysis. Proteomics 10, 1474-1483 (2010).
98. P. Rajendran, F. Li, M. K. Shanmugam, S. Vali, T. Abbasi, S. Kapoor, K. S. Ahn, A. P. Kumar, G. Sethi, Honokiol inhibits signal transducer and activator of transcription-3 signaling, proliferation, and survival of hepatocellular carcinoma cells via the protein tyrosine phosphatase SHP-1. J Cell Physiol 227, 2184-2195 (2012).
99. Y. C. Lee, Y. T. Huang, Y. W. Tsai, S. M. Huang, K. N. Kuo, M. McKee, E. Nolte, The impact of universal National Health Insurance on population health: the experience of Taiwan. BMC Health Serv Res 10, 225 (2010).
100. G. Vitale, S. Zappavigna, M. Marra, A. Dicitore, S. Meschini, M. Condello, G. Arancia, S. Castiglioni, P. Maroni, P. Bendinelli, R. Piccoletti, P. M. van Koetsveld, F. Cavagnini, A. Budillon, A. Abbruzzese, L. J. Hofland, M. Caraglia, The PPAR-gamma agonist troglitazone antagonizes survival pathways induced by STAT-3 in recombinant interferon-beta treated pancreatic cancer cells. Biotechnol Adv 30, 169-184 (2012).
101. Y. Yang, L. H. Zhao, B. Huang, R. Y. Wang, S. X. Yuan, Q. F. Tao, Y. Xu, H. Y. Sun, C. Lin, W. P. Zhou, Pioglitazone, a PPARgamma agonist, inhibits growth and invasion of human hepatocellular carcinoma via blockade of the rage signaling. Mol Carcinog 54, 1584-1595 (2015).
102. H. Nojima, S. Kuboki, K. Shinoda, H. Shimizu, M. Ohtsuka, A. Kato, H. Yoshitomi, K. Furukawa, T. Takayashiki, M. Miyazaki, Activation of peroxisome proliferator-activated receptor-gamma inhibits tumor growth by negatively regulating nuclear factor-kappaB activation in patients with hepatocellular carcinoma. J Hepatobiliary Pancreat Sci 23, 574-584 (2016).
103. S. Li, Q. Zhou, H. He, Y. Zhao, Z. Liu, Peroxisome proliferator-activated receptor gamma agonists induce cell cycle arrest through transcriptional regulation of Kruppel-like factor 4 (KLF4). J Biol Chem 288, 4076-4084 (2013).
104. Q. Li, Y. Gao, Z. Jia, L. Mishra, K. Guo, Z. Li, X. Le, D. Wei, S. Huang, K. Xie, Dysregulated Kruppel-like factor 4 and vitamin D receptor signaling contribute to progression of hepatocellular carcinoma. Gastroenterology 143, 799-810 (2012).
105. H. T. Hsu, P. R. Wu, C. J. Chen, L. S. Hsu, C. M. Yeh, M. T. Hsing, Y. S. Chiang, M. T. Lai, K. T. Yeh, High cytoplasmic expression of Kruppel-like factor 4 is an independent prognostic factor of better survival in hepatocellular carcinoma. Int J Mol Sci 15, 9894-9906 (2014).
106. W. Faber, M. Stockmann, J. E. Kruschke, T. Denecke, M. Bahra, D. Seehofer, Implication of microscopic and macroscopic vascular invasion for liver resection in patients with hepatocellular carcinoma. Dig Surg 31, 204-209 (2014).
107. S. Roayaie, J. S. Frischer, S. H. Emre, T. M. Fishbein, P. A. Sheiner, M. Sung, C. M. Miller, M. E. Schwartz, Long-term results with multimodal adjuvant therapy and liver transplantation for the treatment of hepatocellular carcinomas larger than 5 centimeters. Ann Surg 235, 533-539 (2002).
108. C. W. Wu, G. C. Farrell, J. Yu, Functional role of peroxisome-proliferator-activated receptor gamma in hepatocellular carcinoma. J Gastroenterol Hepatol 27, 1665-1669 (2012).
109. D. Panigrahy, S. Huang, M. W. Kieran, A. Kaipainen, PPARgamma as a therapeutic target for tumor angiogenesis and metastasis. Cancer Biol Ther 4, 687-693 (2005).
110. D. Panigrahy, S. Singer, L. Q. Shen, C. E. Butterfield, D. A. Freedman, E. J. Chen, M. A. Moses, S. Kilroy, S. Duensing, C. Fletcher, J. A. Fletcher, L. Hlatky, P. Hahnfeldt, J. Folkman, A. Kaipainen, PPARgamma ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis. J Clin Invest 110, 923-932 (2002).
111. L. L. Peeters, J. L. Vigne, M. K. Tee, D. Zhao, L. L. Waite, R. N. Taylor, PPAR gamma represses VEGF expression in human endometrial cells: implications for uterine angiogenesis. Angiogenesis 8, 373-379 (2005).
112. Y. Shirakami, H. Sakai, M. Shimizu, Retinoid roles in blocking hepatocellular carcinoma. Hepatobiliary Surg Nutr 4, 222-228 (2015).
113. S. Adachi, M. Okuno, R. Matsushima-Nishiwaki, Y. Takano, S. Kojima, S. L. Friedman, H. Moriwaki, Y. Okano, Phosphorylation of retinoid X receptor suppresses its ubiquitination in human hepatocellular carcinoma. Hepatology 35, 332-340 (2002).
114. R. Matsushima-Nishiwaki, M. Okuno, Y. Takano, S. Kojima, S. L. Friedman, H. Moriwaki, Molecular mechanism for growth suppression of human hepatocellular carcinoma cells by acyclic retinoid. Carcinogenesis 24, 1353-1359 (2003).
115. M. Shimizu, K. Takai, H. Moriwaki, Strategy and mechanism for the prevention of hepatocellular carcinoma: phosphorylated retinoid X receptor alpha is a critical target for hepatocellular carcinoma chemoprevention. Cancer Sci 100, 369-374 (2009).
116. K. Okita, N. Izumi, K. Ikeda, Y. Osaki, K. Numata, M. Ikeda, N. Kokudo, K. Imanaka, S. Nishiguchi, S. Kondo, Y. Nishigaki, S. Shiomi, K. Ueshima, N. Isoda, Y. Karino, M. Kudo, K. Tanaka, S. Kaneko, H. Moriwaki, M. Makuuchi, T. Okusaka, N. Hayashi, Y. Ohashi, H. Kumada, G. Peretinoin Study, Survey of survival among patients with hepatitis C virus-related hepatocellular carcinoma treated with peretinoin, an acyclic retinoid, after the completion of a randomized, placebo-controlled trial. J Gastroenterol 50, 667-674 (2015).
117. K. Okita, N. Izumi, O. Matsui, K. Tanaka, S. Kaneko, H. Moriwaki, K. Ikeda, Y. Osaki, K. Numata, K. Nakachi, N. Kokudo, K. Imanaka, S. Nishiguchi, T. Okusaka, Y. Nishigaki, S. Shiomi, M. Kudo, K. Ido, Y. Karino, N. Hayashi, Y. Ohashi, M. Makuuchi, H. Kumada, G. Peretinoin Study, Peretinoin after curative therapy of hepatitis C-related hepatocellular carcinoma: a randomized double-blind placebo-controlled study. J Gastroenterol 50, 191-202 (2015).
118. M. Flandez, S. Guilmeau, P. Blache, L. H. Augenlicht, KLF4 regulation in intestinal epithelial cell maturation. Exp Cell Res 314, 3712-3723 (2008).
119. Z. S. Lin, H. C. Chu, Y. C. Yen, B. C. Lewis, Y. W. Chen, Kruppel-like factor 4, a tumor suppressor in hepatocellular carcinoma cells reverts epithelial mesenchymal transition by suppressing slug expression. PLoS One 7, e43593 (2012).
120. M. T. Sung, H. T. Hsu, C. C. Lee, H. C. Lee, Y. J. Kuo, K. Hua, C. Y. Hsia, C. W. Chi, Kruppel-like factor 4 modulates the migration and invasion of hepatoma cells by suppressing TIMP-1 and TIMP-2. Oncol Rep 34, 439-446 (2015).
121. J. L. Shie, Z. Y. Chen, M. Fu, R. G. Pestell, C. C. Tseng, Gut-enriched Kruppel-like factor represses cyclin D1 promoter activity through Sp1 motif. Nucleic Acids Res 28, 2969-2976 (2000).
122. W. K. Si, J. W. Chung, J. Cho, J. Y. Baeg, E. S. Jang, H. Yoon, J. Kim, C. M. Shin, Y. S. Park, J. H. Hwang, S. H. Jeong, N. Kim, D. H. Lee, S. Lim, J. W. Kim, Predictors of Increased Risk of Hepatocellular Carcinoma in Patients with Type 2 Diabetes. PLoS One 11, e0158066 (2016).
123. H. K. Dyal, M. Aguilar, G. Bartos, E. W. Holt, T. Bhuket, B. Liu, R. Cheung, R. J. Wong, Diabetes Mellitus Increases Risk of Hepatocellular Carcinoma in Chronic Hepatitis C Virus Patients: A Systematic Review. Dig Dis Sci 61, 636-645 (2016).
124. Y. Y. Zhou, G. Q. Zhu, T. Liu, J. N. Zheng, Z. Cheng, T. T. Zou, M. Braddock, S. W. Fu, M. H. Zheng, Systematic Review with Network Meta-Analysis: Antidiabetic Medication and Risk of Hepatocellular Carcinoma. Sci Rep 6, 33743 (2016).
125. M. Bhat, A. Yanagiya, T. Graber, N. Razumilava, S. Bronk, D. Zammit, Y. Zhao, C. Zakaria, P. Metrakos, M. Pollak, N. Sonenberg, G. Gores, M. Jaramillo, M. Morita, T. Alain, Metformin requires 4E-BPs to induce apoptosis and repress translation of Mcl-1 in hepatocellular carcinoma cells. Oncotarget, (2016). DOI: 10.18632/oncotarget.10671. [Epub ahead of print]
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top