跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/15 09:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊昕穎
研究生(外文):Hsin-Ying Yang
論文名稱:抑制CCL4對動脈硬化的保護作用
論文名稱(外文):The Protective Effects of CCL4 Inhibition in Atherosclerosis
指導教授:陳肇文陳肇文引用關係
指導教授(外文):Jaw-Wen Chen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:38
中文關鍵詞:動脈硬化巨噬細胞炎性蛋白1β單株抗體
外文關鍵詞:AtherosclerosisMIP-1β /CCL4monoclonal antibodyinflammation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:262
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
動脈粥狀硬化是全球導致心血管疾病以及死亡的主要原因之一,它是一種血管慢性發炎性疾病,主要導因於白血球所介導的血管內皮功能障礙,並促進富含脂肪酸的斑塊發展。在動脈粥狀硬化發展過程中,趨化因子能吸引單核球到血管壁上,促使單核球活化為成熟的巨噬泡沫細胞、誘導平滑肌細胞遷移和生長、以及進行血小板的活化和斑塊不穩定。
趨化因子之一的C-C motif chemokine ligand 4 (CCL4)也稱為巨噬細胞炎性蛋白1β(Macrophage inflammatory protein-1β;MIP-1β),目前被認為是自然殺手細胞,單核球以及其它免疫細胞的化學趨化物。研究顯示在動脈硬化斑塊中可見CCL4的表現;並在動脈粥狀硬化病人的血中也發現具有高濃度的CCL4,而具有較高濃度CCL4的病人,中風及心血管疾病的風險也比較高。因此本篇研究的目的就是去探討CCL4在動脈粥狀硬化所扮演的角色。
本篇研究假設CCL4之所以與中風有關是由於其會促使動脈粥狀硬化斑塊趨向不穩定的狀態發展,因此本篇研究使用apolipoprotein E knock out (ApoE KO)老鼠作為動物模組,評估當使用CCL4抗體抑制老鼠體內CCL4濃度時,對動脈粥狀硬化的影響。結果顯示在給予CCL4抗體的老鼠,血清中的發炎因子interleukin 6(IL-6)、tumor necrosis factor alpha (TNF-α)比起控制組有明顯下降,血脂也降低。其血管壁上的動脈粥狀硬化斑塊減少,所造成的斑塊具有較厚的纖維帽,及較少的巨噬細胞累積,並且其斑塊內的matrix metalloproteinase-2 (MMP-2)、matrix metalloproteinase-9 (MMP-9)較少,顯示其發展的動脈粥狀硬化斑塊較為穩定。
本篇研究的研究結果顯示CCL4可能對動脈粥樣化形成至關重要。CCL4可能是未來治療動脈粥樣硬化的潛在治療標靶。
Atherosclerosis, a chronic inflammatory disease, is a major cause of cardiovascular disease and death worldwide. It begins with endothelial dysfunction, followed by the activation of white blood cell, and leads to fatty-rich plaque formation. During development of atherosclerosis, chemokines attract monocytes into the arterial wall, promote maturation of monocytes to macrophage foam cells, induce growth and migration of smooth muscle cells, and conduct platelet activation, which may lead to plaque destabilization, resulting in plaque rupture and thrombosis formation as the major cause of ischemic stroke and acute myocardial infarction.
Chemokine (C-C motif) ligand 4 (CCL4), also known as macrophage inflammatory protein-1β (MIP-1β), has been regarded as a chemoattractant for natural killer cells, monocytes and a variety of other immune cells. Studies have indicated that CCL4 was expressed in atherosclerotic plaques. In addition, elevated levels of circulating CCL4 have been detected in atherosclerotic patients. Patients with the highest quartile of CCL4 showed a higher risk of stroke and cardiovascular events. Accordingly, we hypothesized that CCL4 might contribute to unstable plaque formation and facilitate the development of plaque rapture for clinical cardiovascular events.
The purpose of this study was to clarify the role of CCL4 in the development and progression of atherosclerosis. In the in vivo study, apolipoprotein E –knockout mice were used as an atherosclerosis model. Anti-CCL4 antibody was given to evaluate the in vivo effect of CCL4 inhibition on atheroma plaque formation and progression. In anti-CCL4 antibody treatment animals, the serum levels of IL-6 and TNF-α were reduced and the blood lipid profiles were modified in a dose-dependent fashion. Moreover, anti-CCL4 antibody inhibited plaque progression efficiently. Moreover, anti-CCL4 antibody could significantly reduce the size and prohibit the progression of atheroma plaques. Compared to that in control group, the plaques consist of a thicker fibrous cap, with reduced macrophage content and less MMP-2 and MMP-9 expression in anti-CCL4 antibody treatment animals, suggesting that anti-CCL4 antibody may suppress and stabilize the plaques.
The findings of this studies indicated that CCL4 may contribute to the development and progression of atheroma plaques. Given the critical role of unstable plaques in clinical cardiovascular events, CCL4 might be a potential therapeutic target for the prevention and treatment of atherosclerosis cardiovascular diseases.
Content …………………….………………………………...…………………..i
Acknowledgments…………………………………………………………………iii
Chinese abstract …………………………………………………………………..iv
English abstract …………………………………………………………………....v
Chapter 1. Introduction ………………………………………………………..1
1.1 Atherosclerosis ……………………………………………………………...1
1.2 Formation of Atherosclerotic Plaques ………………………………………2
1.3 Symptoms of Atherosclerosis ……………………………………………….2
1.4 Complications of Atherosclerosis …………………………………………...2
1.5 Risk Factors of Atherosclerosis……………………………………………...3
1.6 CC chemokine family and Atherosclerosis ………………………………....3
1.7 Chemokine (C-C motif) Ligand 4, CCL4 and Atherosclerosis ……………..4
1.8 C-C Chemokine Receptor Type 5, CCR5 and Atherosclerosis ……………..5
1.9 Aim ………………………………………………………………………….5
Chapter 2. Materials and Methods ……………………………………………6
2.1 Animal Model ………………………………………………………………6
2.2 Tissue Harvesting …………………………………………………………..6
2.3 Histologic Staining ………………………………………………………....6
2.4 Immunohistochemical Staining …………………………………………….7
2.5 Biochemical Indexes ……………………………………………………….7
2.6 Enzyme Linked Immunosorbant Assay ………………………………….....8
2.7 Western Blot ……………………………………………………………..…8
2.8 Statistical Analyses………………………………………………………….9
Chapter 3. Experimental Design ……………………………………………...10
Chapter 4. Results ……………………………………………………………..11
4.1 Elevated Levels of CCL4 in Serum and Aorta of Atherosclerotic Mice Was Reduced After 4 Weeks Antibody Treatment. ………………………...….11
4.2 CCL4 Neutralization Attenuated Pro-Inflammatory Factors in Circulation and Atherosclerotic Plaques. ……………………………………………...11
4.3 CCL4 Neutralization Effect on Metabolic Parameters. …………….….12
4.4 Effect of CCL4 Depletion on Atherosclerotic Plaque Development. ……….12
4.5 Effect of CCL4 Depletion on Atherosclerotic Plaque Quality. ……….……..12
Chapter 5. Discussion ………………………………………………………..…14
Chapter 6. Conclusion ……………………………………………………….....19
Chapter 7. References ………………………………………………………….20

Tables ……………………………………………….………………………….…..28
Table 1. Metabolic Data in Healthy and Atherosclerotic Mice ……….……28
Figures …………………………………………………………….……………….29
Figure 1. Anti-CCL4 Antibody Effect on Cytokine in Serum. ………………………………………………………………….29
Figure 2. Anti-CCL4 Antibody Effect on Metabolic Parameters. ………………………………………………………..…....30
Figure 3. Anti-CCL4 Antibody Reduces Atherosclerosis Lesion Size. ………………………………………………………………….....32
Figure 4. Anti-CCL4 Antibody Reduce Necrotic Area and Increase Fibrous Cap Thickness. ……………………..………………………………………33
Figure 5. Anti-CCL4 Antibody Reduce CCL4 Protein Expression in Aorta ……………………………………………………………………...34
Figure 6. Anti-CCL4 Antibody Reduce the Levels of Macrophages and CCL4 in Plaques. ……………………………….……………………………… 35
Figure 7. Anti-CCL4 Antibody Reduce MMP-2, MMP-9 Level in Plaques. ……………………………………………………………........37
Appendices…………………………………………………………….……………38
1. Hansson GK and Hermansson A. The immune system in atherosclerosis. Nature immunology. 2011;12:204-12.
2. Hadi HA, Carr CS and Al Suwaidi J. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vascular health and risk management. 2005;1:183-98.
3. Sprague AH and Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochemical pharmacology. 2009;78:539-52.
4. Libby P, Ridker PM and Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473:317-25.
5. Badimon L, Padro T and Vilahur G. Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease. European heart journal Acute cardiovascular care. 2012;1:60-74.
6. Galkina E and Ley K. Immune and inflammatory mechanisms of atherosclerosis (*). Annual review of immunology. 2009;27:165-97.
7. Seneviratne A, Hulsmans M, Holvoet P and Monaco C. Biomechanical factors and macrophages in plaque stability. Cardiovascular research. 2013;99:284-93.
8. Macchi C, Giannelli F, Catini C, Gulisano M, Pacini P and Brizzi E. The original calibre of the lower limbs arteries as a possible risk factor for complications of atherosclerosis: a statistical investigation in 90 subjects by echocolor-doppler. Italian journal of anatomy and embryology = Archivio italiano di anatomia ed embriologia. 1994;99:219-28.
9. Stang PE, Carson AP, Rose KM, Mo J, Ephross SA, Shahar E and Szklo M. Headache, cerebrovascular symptoms, and stroke: the Atherosclerosis Risk in Communities Study. Neurology. 2005;64:1573-7.
10. Falk E and Fernandez-Ortiz A. Role of thrombosis in atherosclerosis and its complications. The American journal of cardiology. 1995;75:3b-11b.
11. Drueke TB and Massy ZA. Atherosclerosis in CKD: differences from the general population. Nature reviews Nephrology. 2010;6:723-35.
12. Knopman D, Boland LL, Mosley T, Howard G, Liao D, Szklo M, McGovern P and Folsom AR. Cardiovascular risk factors and cognitive decline in middle-aged adults. Neurology. 2001;56:42-8.
13. Braunersreuther V, Mach F and Steffens S. The specific role of chemokines in atherosclerosis. Thrombosis and haemostasis. 2007;97:714-21.
14. Laing KJ and Secombes CJ. Chemokines. Developmental and comparative immunology. 2004;28:443-60.
15. Nelken NA, Coughlin SR, Gordon D and Wilcox JN. Monocyte chemoattractant protein-1 in human atheromatous plaques. The Journal of clinical investigation. 1991;88:1121-7.
16. Yla-Herttuala S, Lipton BA, Rosenfeld ME, Sarkioja T, Yoshimura T, Leonard EJ, Witztum JL and Steinberg D. Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions. Proceedings of the National Academy of Sciences of the United States of America. 1991;88:5252-6.
17. Schecter AD, Calderon TM, Berman AB, McManus CM, Fallon JT, Rossikhina M, Zhao W, Christ G, Berman JW and Taubman MB. Human vascular smooth muscle cells possess functional CCR5. The Journal of biological chemistry. 2000;275:5466-71.
18. Murphy PM. International Union of Pharmacology. XXX. Update on chemokine receptor nomenclature. Pharmacological reviews. 2002;54:227-9.
19. Murphy PM, Baggiolini M, Charo IF, Hebert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ and Power CA. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacological reviews. 2000;52:145-76.
20. Bystry RS, Aluvihare V, Welch KA, Kallikourdis M and Betz AG. B cells and professional APCs recruit regulatory T cells via CCL4. Nature immunology. 2001;2:1126-32.
21. Duchene J and von Hundelshausen P. Platelet-derived chemokines in atherosclerosis. Hamostaseologie. 2015;35:137-41.
22. Mallat Z, Taleb S, Ait-Oufella H and Tedgui A. The role of adaptive T cell immunity in atherosclerosis. Journal of lipid research. 2009;50 Suppl:S364-9.
23. Tatara Y, Ohishi M, Yamamoto K, Shiota A, Hayashi N, Iwamoto Y, Takeda M, Takagi T, Katsuya T, Ogihara T and Rakugi H. Macrophage inflammatory protein-1beta induced cell adhesion with increased intracellular reactive oxygen species. Journal of molecular and cellular cardiology. 2009;47:104-11.
24. Dobaczewski M, Xia Y, Bujak M, Gonzalez-Quesada C and Frangogiannis NG. CCR5 signaling suppresses inflammation and reduces adverse remodeling of the infarcted heart, mediating recruitment of regulatory T cells. The American journal of pathology. 2010;176:2177-87.
25. Reape TJ and Groot PH. Chemokines and atherosclerosis. Atherosclerosis. 1999;147:213-25.
26. Montecucco F, Lenglet S, Gayet-Ageron A, Bertolotto M, Pelli G, Palombo D, Pane B, Spinella G, Steffens S, Raffaghello L, Pistoia V, Ottonello L, Pende A, Dallegri F and Mach F. Systemic and intraplaque mediators of inflammation are increased in patients symptomatic for ischemic stroke. Stroke. 2010;41:1394-404.
27. Cagnin S, Biscuola M, Patuzzo C, Trabetti E, Pasquali A, Laveder P, Faggian G, Iafrancesco M, Mazzucco A, Pignatti PF and Lanfranchi G. Reconstruction and functional analysis of altered molecular pathways in human atherosclerotic arteries. BMC genomics. 2009;10:13.
28. Jones KL, Maguire JJ and Davenport AP. Chemokine receptor CCR5: from AIDS to atherosclerosis. British journal of pharmacology. 2011;162:1453-69.
29. Bosco MC, Reffo G, Puppo M and Varesio L. Hypoxia inhibits the expression of the CCR5 chemokine receptor in macrophages. Cell Immunol. 2004;228:1-7.
30. Yuan GH, Masuko-Hongo K, Sakata M, Tsuruha J, Onuma H, Nakamura H, Aoki H, Kato T and Nishioka K. The role of C-C chemokines and their receptors in osteoarthritis. Arthritis and rheumatism. 2001;44:1056-70.
31. Kuziel WA, Dawson TC, Quinones M, Garavito E, Chenaux G, Ahuja SS, Reddick RL and Maeda N. CCR5 deficiency is not protective in the early stages of atherogenesis in apoE knockout mice. Atherosclerosis. 2003;167:25-32.
32. Suffee N, Hlawaty H, Meddahi-Pelle A, Maillard L, Louedec L, Haddad O, Martin L, Laguillier C, Richard B, Oudar O, Letourneur D, Charnaux N and Sutton A. RANTES/CCL5-induced pro-angiogenic effects depend on CCR1, CCR5 and glycosaminoglycans. Angiogenesis. 2012;15:727-44.
33. Quinones MP, Martinez HG, Jimenez F, Estrada CA, Dudley M, Willmon O, Kulkarni H, Reddick RL, Fernandes G, Kuziel WA, Ahuja SK and Ahuja SS. CC chemokine receptor 5 influences late-stage atherosclerosis. Atherosclerosis. 2007;195:e92-103.
34. Bruunsgaard H, Skinhoj P, Pedersen AN, Schroll M and Pedersen BK. Ageing, tumour necrosis factor-alpha (TNF-alpha) and atherosclerosis. Clinical and experimental immunology. 2000;121:255-60.
35. Hatsukami TS, Ross R, Polissar NL and Yuan C. Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in vivo with high-resolution magnetic resonance imaging. Circulation. 2000;102:959-64.
36. Newby AC, George SJ, Ismail Y, Johnson JL, Sala-Newby GB and Thomas AC. Vulnerable atherosclerotic plaque metalloproteinases and foam cell phenotypes. Thrombosis and haemostasis. 2009;101:1006-11.
37. Lafont A. Basic aspects of plaque vulnerability. Heart (British Cardiac Society). 2003;89:1262-7.
38. Kucukguven A and Khalil RA. Matrix metalloproteinases as potential targets in the venous dilation associated with varicose veins. Current drug targets. 2013;14:287-324.
39. Libby P. Molecular and cellular mechanisms of the thrombotic complications of atherosclerosis. Journal of lipid research. 2009;50 Suppl:S352-7.
40. Bentzon JF, Otsuka F, Virmani R and Falk E. Mechanisms of plaque formation and rupture. Circulation research. 2014;114:1852-66.
41. R&D MAB451 product detail
42. Ren M, Guo Q, Guo L, Lenz M, Qian F, Koenen RR, Xu H, Schilling AB, Weber C, Ye RD, Dinner AR and Tang WJ. Polymerization of MIP-1 chemokine (CCL3 and CCL4) and clearance of MIP-1 by insulin-degrading enzyme. The EMBO journal. 2010;29:3952-66.
43. Dorner BG, Scheffold A, Rolph MS, Huser MB, Kaufmann SH, Radbruch A, Flesch IE and Kroczek RA. MIP-1alpha, MIP-1beta, RANTES, and ATAC/lymphotactin function together with IFN-gamma as type 1 cytokines. Proceedings of the National Academy of Sciences of the United States of America. 2002;99:6181-6.
44. Kossakowska AE, Edwards DR, Prusinkiewicz C, Zhang MC, Guo D, Urbanski SJ, Grogan T, Marquez LA and Janowska-Wieczorek A. Interleukin-6 regulation of matrix metalloproteinase (MMP-2 and MMP-9) and tissue inhibitor of metalloproteinase (TIMP-1) expression in malignant non-Hodgkin's lymphomas. Blood. 1999;94:2080-9.
45. Tsai CL, Chen WC, Hsieh HL, Chi PL, Hsiao LD and Yang CM. TNF-alpha induces matrix metalloproteinase-9-dependent soluble intercellular adhesion molecule-1 release via TRAF2-mediated MAPKs and NF-kappaB activation in osteoblast-like MC3T3-E1 cells. Journal of biomedical science. 2014;21:12.
46. Chen L, Chen R, Wang H and Liang F. Mechanisms Linking Inflammation to Insulin Resistance. International journal of endocrinology. 2015;2015:508409.
47. Kang YH, Cho MH, Kim JY, Kwon MS, Peak JJ, Kang SW, Yoon SY and Song Y. Impaired macrophage autophagy induces systemic insulin resistance in obesity. Oncotarget. 2016;7:35577-35591.
48. Kern PA, Ranganathan S, Li C, Wood L and Ranganathan G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. American journal of physiology Endocrinology and metabolism. 2001;280:E745-51.
49. Nieto-Vazquez I, Fernandez-Veledo S, de Alvaro C and Lorenzo M. Dual role of interleukin-6 in regulating insulin sensitivity in murine skeletal muscle. Diabetes. 2008;57:3211-21.
50. Ross R and Harker L. Hyperlipidemia and atherosclerosis. Science (New York, NY). 1976;193:1094-100.
51. Jung UJ and Choi MS. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. International journal of molecular sciences. 2014;15:6184-223.
52. Popa C, Netea MG, van Riel PL, van der Meer JW and Stalenhoef AF. The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. Journal of lipid research. 2007;48:751-62.
53. Bogiatzi C and Spence JD. Ezetimibe and regression of carotid atherosclerosis: importance of measuring plaque burden. Stroke. 2012;43:1153-5.
54. Taub DD, Conlon K, Lloyd AR, Oppenheim JJ and Kelvin DJ. Preferential migration of activated CD4+ and CD8+ T cells in response to MIP-1 alpha and MIP-1 beta. Science (New York, NY). 1993;260:355-8.
55. Potteaux S, Combadiere C, Esposito B, Lecureuil C, Ait-Oufella H, Merval R, Ardouin P, Tedgui A and Mallat Z. Role of bone marrow-derived CC-chemokine receptor 5 in the development of atherosclerosis of low-density lipoprotein receptor knockout mice. Arteriosclerosis, thrombosis, and vascular biology. 2006;26:1858-63.
56. Braunersreuther V, Zernecke A, Arnaud C, Liehn EA, Steffens S, Shagdarsuren E, Bidzhekov K, Burger F, Pelli G, Luckow B, Mach F and Weber C. Ccr5 but not Ccr1 deficiency reduces development of diet-induced atherosclerosis in mice. Arteriosclerosis, thrombosis, and vascular biology. 2007;27:373-9.
57. Potteaux S, Combadiere C, Esposito B, Casanova S, Merval R, Ardouin P, Gao JL, Murphy PM, Tedgui A and Mallat Z. Chemokine receptor CCR1 disruption in bone marrow cells enhances atherosclerotic lesion development and inflammation in mice. Molecular medicine (Cambridge, Mass). 2005;11:16-20.
58. Boring L, Gosling J, Cleary M and Charo IF. Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature. 1998;394:894-7.
59. Aiello RJ, Perry BD, Bourassa PA, Robertson A, Weng W, Knight DR, Smith AH, Frederick KS, Kalgutkar A and Gladue RP. CCR2 receptor blockade alters blood monocyte subpopulations but does not affect atherosclerotic lesions in apoE(-/-) mice. Atherosclerosis. 2010;208:370-5.
60. Shukaliak JA and Dorovini-Zis K. Expression of the beta-chemokines RANTES and MIP-1 beta by human brain microvessel endothelial cells in primary culture. Journal of neuropathology and experimental neurology. 2000;59:339-52.
61. Lukacs NW, Kunkel SL, Allen R, Evanoff HL, Shaklee CL, Sherman JS, Burdick MD and Strieter RM. Stimulus and cell-specific expression of C-X-C and C-C chemokines by pulmonary stromal cell populations. The American journal of physiology. 1995;268:L856-61.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊