|
1. J.S., Dexter, The analysis of a case of continuous variation in Drosophila. Am. Nat., 1914, 48(576): p. 712-58. 2. T.H., Morgan, The theory of the gene. Am. Nat., 1917. 51(609): p. 513-544. 3. S. Artavanis-Tsakonas and M.A. Muskavitch, Notch: the past, the present, and the future. Curr. Top. Dev. Biol., 2010. 92: p. 1-29. 4. T. Okajima and K.D. Irvine, Regulation of Notch signaling by o-linked fucose. Cell, 2002. 111(6): p. 893-904. 5. S. Le Bras, N. Loyer, and R. Le Borgne, The multiple facets of ubiquitination in the regulation of Notch signaling pathway. Traffic, 2011. 12(2): p. 149-61. 6. R. Sanalkumar, S.B. Dhanesh, and J. James, Non-canonical activation of Notch signaling/target genes in vertebrates. Cell. Mol. Life Sci., 2010. 67(17): p. 2957-68. 7. W.R. Liao, R.H. Hsieh, K.W. Hsu, M.Z. Wu, M.J. Tseng, R.T. Mai, Y.H. Wu Lee, and T.S. Yeh, The CBF1-independent Notch1 signal pathway activates human c-myc expression partially via transcription factor YY1. Carcinogenesis, 2007. 28(9): p. 1867-76. 8. Z. Liu, L. Teng, S.K. Bailey, A.R. Frost, K.I. Bland, A.F. LoBuglio, J.M. Ruppert, and S.M. Lobo-Ruppert, Epithelial transformation by KLF4 requires Notch1 but not canonical Notch1 signaling. Cancer Biol. Ther., 2009. 8(19): p. 1840-51. 9. F. MacKenzie, P. Duriez, F. Wong, M. Noseda, and A. Karsan, Notch4 inhibits endothelial apoptosis via RBP-J-dependent and -independent pathways. J. Biol. Chem., 2004. 279(12): p. 11657-63. 10. C. Lobry, P. Oh, M.R. Mansour, A.T. Look, and I. Aifantis, Notch signaling: switching an oncogene to a tumor suppressor. Blood, 2014. 123(16): p. 2451-9. 11. A. Klinakis, C. Lobry, O. Abdel-Wahab, P. Oh, H. Haeno, S. Buonamici, I. van De Walle, S. Cathelin, T. Trimarchi, E. Araldi, C. Liu, S. Ibrahim, M. Beran, J. Zavadil, A. Efstratiadis, T. Taghon, F. Michor, R.L. Levine, and I. Aifantis, A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia. Nature, 2011. 473(7346): p. 230-3. 12. A.A. Ferrando, The role of NOTCH1 signaling in T-ALL. Hematology Am. Soc. Hematol. Educ. Program, 2009: p. 353-61. 13. S.M. Meadows, C.T. Myers, and P.A. Krieg, Regulation of endothelial cell development by ETS transcription factors. Semin. Cell Dev. Biol., 2011. 22(9): p. 976-84. 14. J. Dittmer, The role of the transcription factor Ets1 in carcinoma. Semin. Cancer Biol., 2015. 35: p. 20-38. 15. L.A. Garrett-Sinha, Review of Ets1 structure, function, and roles in immunity. Cell. Mol. Life Sci., 2013. 70(18): p. 3375-90. 16. D.J. Cosens and A. Manning, Abnormal electroretinogram from a Drosophila mutant. Nature, 1969. 224(5216): p. 285-7. 17. T. Smani, G. Shapovalov, R. Skryma, N. Prevarskaya, and J.A. Rosado, Functional and physiopathological implications of TRP channels. Biochim. Biophys. Acta, 2015. 1853(8): p. 1772-82. 18. D. Jaquemar, T. Schenker, and B. Trueb, An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. J. Biol. Chem., 1999. 274(11): p. 7325-33. 19. J. Garcia-Anoveros and K. Nagata, TRPA1. Handb. Exp. Pharmacol., 2007. 179: p. 347-62. 20. G.M. Story, A.M. Peier, A.J. Reeve, S.R. Eid, J. Mosbacher, T.R. Hricik, T.J. Earley, A.C. Hergarden, D.A. Andersson, S.W. Hwang, P. McIntyre, T. Jegla, S. Bevan, and A. Patapoutian, ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell, 2003. 112(6): p. 819-29. 21. D.M. Bautista, M. Pellegrino, and M. Tsunozaki, TRPA1: A gatekeeper for inflammation. Annu. Rev. Physiol., 2013. 75: p. 181-200. 22. E.L. Andrade, F.C. Meotti, and J.B. Calixto, TRPA1 antagonists as potential analgesic drugs. Pharmacol. Ther., 2012. 133(2): p. 189-204. 23. L. Marwaha, Y. Bansal, R. Singh, P. Saroj, R. Bhandari, and A. Kuhad, TRP channels: potential drug target for neuropathic pain. Inflammopharmacology, 2016. 24(6): p. 305-317. 24. M.A. Rieger and T. Schroeder, Hematopoiesis. Cold Spring Harb. Perspect. Biol., 2012. 4(12): a008250. 25. M.D. Delgado and J. Leon, Myc roles in hematopoiesis and leukemia. Genes Cancer, 2010. 1(6): p. 605-16. 26. N.G. Abraham, R.D. Levere, and J.D. Lutton, Eclectic mechanisms of heme regulation of hematopoiesis. Int. J. Cell Cloning, 1991. 9(3): p. 185-210. 27. C.D. Kang, B.K. Lee, K.W. Kim, C.M. Kim, S.H. Kim, and B.S. Chung, Signaling mechanism of PMA-induced differentiation of K562 cells. Biochem. Biophys. Res. Commun., 1996. 221(1): p. 95-100. 28. Y.X. Zeng and W.S. el-Deiry, Regulation of p21WAF1/CIP1 expression by p53-independent pathways. Oncogene, 1996. 12(7): p. 1557-64. 29. A.L. MacLean, C. Lo Celso, and M.P. Stumpf, Concise review: stem cell population biology: insights from hematopoiesis. Stem Cells, 2017. 35(1): p. 80-88. 30. Y. Gu, M. Masiero, and A.H. Banham, Notch signaling: its roles and therapeutic potential in hematological malignancies. Oncotarget, 2016. 7(20): p. 29804-23. 31. K.V. Pajcini, N.A. Speck, and W.S. Pear, Notch signaling in mammalian hematopoietic stem cells. Leukemia, 2011. 25(10): p. 1525-32. 32. K. Kumano, S. Chiba, K. Shimizu, T. Yamagata, N. Hosoya, T. Saito, T. Takahashi, Y. Hamada, and H. Hirai, Notch1 inhibits differentiation of hematopoietic cells by sustaining GATA-2 expression. Blood, 2001. 98(12): p. 3283-9. 33. L.T. Lam, C. Ronchini, J. Norton, A.J. Capobianco, and E.H. Bresnick, Suppression of erythroid but not megakaryocytic differentiation of human K562 erythroleukemic cells by Notch-1. J. Biol. Chem., 2000. 275(26): p. 19676-84. 34. T. Mercher, M.G. Cornejo, C. Sears, T. Kindler, S.A. Moore, I. Maillard, W.S. Pear, J.C. Aster, and D.G. Gilliland, Notch signaling specifies megakaryocyte development from hematopoietic stem cells. Cell Stem Cell, 2008. 3(3): p. 314-26. 35. A. Roy, S. Haldar, N.P. Basak, and S. Banerjee, Molecular cross talk between Notch1, Shh and Akt pathways during erythroid differentiation of K562 and HEL cell lines. Exp. Cell Res., 2014. 320(1): p. 69-78. 36. E. Mouly, K. Chemin, H.V. Nguyen, M. Chopin, L. Mesnard, M. Leite-de-Moraes, O. Burlen-defranoux, A. Bandeira, and J.C. Bories, The Ets-1 transcription factor controls the development and function of natural regulatory T cells. J. Exp. Med., 2010. 207(10): p. 2113-25. 37. A. Ciau-Uitz, L. Wang, R. Patient, and F. Liu, ETS transcription factors in hematopoietic stem cell development. Blood Cells Mol. Dis., 2013. 51(4): p. 248-55. 38. V. Lulli, P. Romania, O. Morsilli, M. Gabbianelli, A. Pagliuca, S. Mazzeo, U. Testa, C. Peschle, and G. Marziali, Overexpression of Ets-1 in human hematopoietic progenitor cells blocks erythroid and promotes megakaryocytic differentiation. Cell Death Differ., 2006. 13(7): p. 1064-74. 39. M. Pimkin, A.V. Kossenkov, T. Mishra, C.S. Morrissey, W. Wu, C.A. Keller, G.A. Blobel, D. Lee, M.A. Beer, R.C. Hardison, and M.J. Weiss, Divergent functions of hematopoietic transcription factors in lineage priming and differentiation during erythro-megakaryopoiesis. Genome Res., 2014. 24(12): p. 1932-44. 40. P. Jackers, G. Szalai, O. Moussa, and D.K. Watson, Ets-dependent regulation of target gene expression during megakaryopoiesis. J. Biol. Chem., 2004. 279(50): p. 52183-90. 41. V. Lulli, P. Romania, R. Riccioni, A. Boe, F. Lo-Coco, U. Testa, and G. Marziali, Transcriptional silencing of the ETS1 oncogene contributes to human granulocytic differentiation. Haematologica, 2010. 95(10): p. 1633-41. 42. J.H. Hu, P. Navas, H. Cao, G. Stamatoyannopoulos, and C.Z. Song, Systematic RNAi studies on the role of Sp/KLF factors in globin gene expression and erythroid differentiation. J. Mol. Biol., 2007. 366(4): p. 1064-73. 43. F. Morceau, M. Dicato, and M. Diederich, Pro-inflammatory cytokine-mediated anemia: regarding molecular mechanisms of erythropoiesis. Mediators Inflamm., 2009. 2009: p. 405016. 44. P. Malsch, M. Andratsch, C. Vogl, A.S. Link, C. Alzheimer, S.M. Brierley, P.A. Hughes, and M. Kress, Deletion of interleukin-6 signal transducer gp130 in small sensory neurons attenuates mechanonociception and down-regulates TRPA1 expression. J. Neurosci., 2014. 34(30): p. 9845-56. 45. N. Hatano, Y. Itoh, H. Suzuki, Y. Muraki, H. Hayashi, K. Onozaki, I.C. Wood, D.J. Beech, and K. Muraki, Hypoxia-inducible factor-1 (HIF1) switches on transient receptor potential ankyrin repeat 1 (TRPA1) gene expression via a hypoxia response element-like motif to modulate cytokine release. J. Biol. Chem., 2012. 287(38): p. 31962-72. 46. M.V. Gustafsson, X. Zheng, T. Pereira, K. Gradin, S. Jin, J. Lundkvist, J.L. Ruas, L. Poellinger, U. Lendahl, and M. Bondesson, Hypoxia requires Notch signaling to maintain the undifferentiated cell state. Dev. Cell, 2005. 9(5): p. 617-28. 47. J.C. Villa, D. Chiu, A.H. Brandes, F.E. Escorcia, C.H. Villa, W.F. Maguire, C.J. Hu, E. de Stanchina, M.C. Simon, S.S. Sisodia, D.A. Scheinberg, and Y.M. Li, Nontranscriptional role of HIF-1 in activation of -secretase and Notch signaling in breast cancer. Cell Rep, 2014. 8(4): p. 1077-92. 48. T.S. Yeh, Y.M. Lin, R.H. Hsieh, and M.J. Tseng, Association of transcription factor YY1 with the high molecular weight Notch complex suppresses the transactivation activity of Notch. J. Biol. Chem., 2003. 278(43): p. 41963-9. 49. B.F. Bessac, M. Sivula, C.A. von Hehn, J. Escalera, L. Cohn, and S.E. Jordt, TRPA1 is a major oxidant sensor in murine airway sensory neurons. J. Clin. Invest., 2008. 118(5): p. 1899-910. 50. Y. Zhan, C. Brown, E. Maynard, A. Anshelevich, W. Ni, I.C. Ho, and P. Oettgen, Ets-1 is a critical regulator of Ang II-mediated vascular inflammation and remodeling. J. Clin. Invest., 2005. 115(9): p. 2508-16. 51. K.W. Hsu, R.H. Hsieh, K.H. Huang, A. Fen-Yau Li, C.W. Chi, T.Y. Wang, M.J. Tseng, K.J. Wu, and T.S. Yeh, Activation of the Notch1/STAT3/Twist signaling axis promotes gastric cancer progression. Carcinogenesis, 2012. 33(8): p. 1459-67. 52. S. Zhou and S.D. Hayward, Nuclear localization of CBF1 is regulated by interactions with the SMRT corepressor complex. Mol. Cell. Biol., 2001. 21(18): p. 6222-32. 53. L. Waltzer, P.Y. Bourillot, A. Sergeant, and E. Manet, RBP-J repression activity is mediated by a co-repressor and antagonized by the Epstein-Barr virus transcription factor EBNA2. Nucleic Acids Res., 1995. 23(24): p. 4939-45. 54. J.J. Hsieh, T. Henkel, P. Salmon, E. Robey, M.G. Peterson, and S.D. Hayward, Truncated mammalian Notch1 activates CBF1/RBPJ-repressed genes by a mechanism resembling that of Epstein-Barr virus EBNA2. Mol. Cell. Biol., 1996. 16(3): p. 952-9. 55. M. Shih Ie and T.L. Wang, Notch signaling, -secretase inhibitors, and cancer therapy. Cancer Res., 2007. 67(5): p. 1879-82. 56. H. Wang, J. Zou, B. Zhao, E. Johannsen, T. Ashworth, H. Wong, W.S. Pear, J. Schug, S.C. Blacklow, K.L. Arnett, B.E. Bernstein, E. Kieff, and J.C. Aster, Genome-wide analysis reveals conserved and divergent features of Notch1/RBPJ binding in human and murine T-lymphoblastic leukemia cells. Proc. Natl. Acad. Sci. U. S. A., 2011. 108(36): p. 14908-13. 57. X. Messeguer, R. Escudero, D. Farre, O. Nunez, J. Martinez, and M.M. Alba, PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics, 2002. 18(2): p. 333-4. 58. A. Mathelier, O. Fornes, D.J. Arenillas, C.Y. Chen, G. Denay, J. Lee, W. Shi, C. Shyr, G. Tan, R. Worsley-Hunt, A.W. Zhang, F. Parcy, B. Lenhard, A. Sandelin, and W.W. Wasserman, JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res., 2016. 44(D1): p. D110-5. 59. N. Sukenaga, Y. Ikeda-Miyagawa, D. Tanada, T. Tunetoh, S. Nakano, T. Inui, K. Satoh, H. Okutani, K. Noguchi, and M. Hirose, Correlation between DNA methylation of TRPA1 and chronic pain states in human whole blood cells. Pain Med., 2016. 17(10): p. 1906-1910. 60. J.T. Bell, A.K. Loomis, L.M. Butcher, F. Gao, B. Zhang, C.L. Hyde, J. Sun, H. Wu, K. Ward, J. Harris, S. Scollen, M.N. Davies, L.C. Schalkwyk, J. Mill, T.C. Mu, F.M. Williams, N. Li, P. Deloukas, S. Beck, S.B. McMahon, J. Wang, S.L. John, and T.D. Spector, Differential methylation of the TRPA1 promoter in pain sensitivity. Nat. Commun., 2014. 5: p. 2978. 61. M. Namihira, J. Kohyama, K. Semi, T. Sanosaka, B. Deneen, T. Taga, and K. Nakashima, Committed neuronal precursors confer astrocytic potential on residual neural precursor cells. Dev. Cell, 2009. 16(2): p. 245-55. 62. D.M. Yao, J.D. Zhou, Y.Y. Zhang, L. Yang, X.M. Wen, J. Yang, H. Guo, Q. Chen, J. Lin, and J. Qian, GPX3 promoter is methylated in chronic myeloid leukemia. Int. J. Clin. Exp. Pathol., 2015. 8(6): p. 6450-7. 63. M. Jarvinen, L.C. Andersson, and I. Virtanen, K562 erythroleukemia cells express cytokeratins 8, 18, and 19 and epithelial membrane antigen that disappear after induced differentiation. J. Cell. Physiol., 1990. 143(2): p. 310-20. 64. S.R. Eid, E.D. Crown, E.L. Moore, H.A. Liang, K.C. Choong, S. Dima, D.A. Henze, S.A. Kane, and M.O. Urban, HC-030031, a TRPA1 selective antagonist, attenuates inflammatory- and neuropathy-induced mechanical hypersensitivity. Mol. Pain, 2008. 4: p. 48. 65. Y. Iwasaki, M. Tanabe, K. Kobata, and T. Watanabe, TRPA1 agonists─allyl isothiocyanate and cinnamaldehyde─induce adrenaline secretion. Biosci. Biotechnol. Biochem., 2008. 72(10): p. 2608-14. 66. C.R. McNamara, J. Mandel-Brehm, D.M. Bautista, J. Siemens, K.L. Deranian, M. Zhao, N.J. Hayward, J.A. Chong, D. Julius, M.M. Moran, and C.M. Fanger, TRPA1 mediates formalin-induced pain. Proc. Natl. Acad. Sci. U. S. A., 2007. 104(33): p. 13525-30. 67. O. Witt, K. Sand, and A. Pekrun, Butyrate-induced erythroid differentiation of human K562 leukemia cells involves inhibition of ERK and activation of p38 MAP kinase pathways. Blood, 2000. 95(7): p. 2391-6. 68. E.A. Schaefer, S. Stohr, M. Meister, A. Aigner, T. Gudermann, and T.R. Buech, Stimulation of the chemosensory TRPA1 cation channel by volatile toxic substances promotes cell survival of small cell lung cancer cells. Biochem. Pharmacol., 2013. 85(3): p. 426-38. 69. M.R. Tijssen and C. Ghevaert, Transcription factors in late megakaryopoiesis and related platelet disorders. J. Thromb. Haemost., 2013. 11(4): p. 593-604. 70. A. Roy, N.P. Basak, and S. Banerjee, Notch1 intracellular domain increases cytoplasmic EZH2 levels during early megakaryopoiesis. Cell Death Dis., 2012. 3: p. e380. 71. L. Pan, S.T. Glenn, C.A. Jones, and K.W. Gross, Activation of the rat renin promoter by HOXD10·PBX1b·PREP1, Ets-1, and the intracellular domain of Notch. J. Biol. Chem., 2005. 280(21): p. 20860-6. 72. J.K. Polansky, L. Schreiber, C. Thelemann, L. Ludwig, M. Kruger, R. Baumgrass, S. Cording, S. Floess, A. Hamann, and J. Huehn, Methylation matters: binding of Ets-1 to the demethylated Foxp3 gene contributes to the stabilization of Foxp3 expression in regulatory T cells. J. Mol. Med. (Berl.), 2010. 88(10): p. 1029-40. 73. W. Woessmann, D. Zwanzger, and A. Borkhardt, ERK signaling pathway is differentially involved in erythroid differentiation of K562 cells depending on time and the inducing agent. Cell Biol. Int., 2004. 28(5): p. 403-10. 74. O. Melien, L.S. Nilssen, O.F. Dajani, K.L. Sand, J.G. Iversen, D.L. Sandnes, and T. Christoffersen, Ca2+-mediated activation of ERK in hepatocytes by norepinephrine and prostaglandin F2: role of calmodulin and Src kinases. BMC Cell Biol., 2002. 3: p. 5. 75. K.R. Machlus and J.E. Italiano, Jr., The incredible journey: from megakaryocyte development to platelet formation. J. Cell Biol., 2013. 201(6): p. 785-96. 76. Y. Dai, S. Wang, M. Tominaga, S. Yamamoto, T. Fukuoka, T. Higashi, K. Kobayashi, K. Obata, H. Yamanaka, and K. Noguchi, Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J. Clin. Invest., 2007. 117(7): p. 1979-87. 77. J.J. O'Brien, S.L. Spinelli, J. Tober, N. Blumberg, C.W. Francis, M.B. Taubman, J. Palis, K.E. Seweryniak, J.M. Gertz, and R.P. Phipps, 15-deoxy-Δ12,14-PGJ2 enhances platelet production from megakaryocytes. Blood, 2008. 112(10): p. 4051-60. 78. L. Cruz-Orengo, A. Dhaka, R.J. Heuermann, T.J. Young, M.C. Montana, E.J. Cavanaugh, D. Kim, and G.M. Story, Cutaneous nociception evoked by 15-delta PGJ2 via activation of ion channel TRPA1. Mol. Pain, 2008. 4: p. 30. 79. C.A. Di Buduo, F. Moccia, M. Battiston, L. De Marco, M. Mazzucato, R. Moratti, F. Tanzi, and A. Balduini, The importance of calcium in the regulation of megakaryocyte function. Haematologica, 2014. 99(4): p. 769-78. 80. L. Albarran, J.J. Lopez, N. Dionisio, T. Smani, G.M. Salido, and J.A. Rosado, Transient receptor potential ankyrin-1 (TRPA1) modulates store-operated Ca2+ entry by regulation of STIM1-Orai1 association. Biochim. Biophys. Acta, 2013. 1833(12): p. 3025-34. 81. D.A. Arber, A. Orazi, R. Hasserjian, J. Thiele, M.J. Borowitz, M.M. Le Beau, C.D. Bloomfield, M. Cazzola, and J.W. Vardiman, The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood, 2016. 127(20): p. 2391-405. 82. S.H. Swerdlow, E. Campo, S.A. Pileri, N.L. Harris, H. Stein, R. Siebert, R. Advani, M. Ghielmini, G.A. Salles, A.D. Zelenetz, and E.S. Jaffe, The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood, 2016. 127(20): p. 2375-90. 83. A.P. Weng, A.A. Ferrando, W. Lee, J.P.t. Morris, L.B. Silverman, C. Sanchez-Irizarry, S.C. Blacklow, A.T. Look, and J.C. Aster, Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science, 2004. 306(5694): p. 269-71. 84. L.W. Ellisen, J. Bird, D.C. West, A.L. Soreng, T.C. Reynolds, S.D. Smith, and J. Sklar, TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell, 1991. 66(4): p. 649-61. 85. B.J. Thompson, S. Buonamici, M.L. Sulis, T. Palomero, T. Vilimas, G. Basso, A. Ferrando, and I. Aifantis, The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J. Exp. Med., 2007. 204(8): p. 1825-35. 86. K. Willander, R.K. Dutta, J. Ungerback, R. Gunnarsson, G. Juliusson, M. Fredrikson, M. Linderholm, and P. Soderkvist, NOTCH1 mutations influence survival in chronic lymphocytic leukemia patients. BMC Cancer, 2013. 13: p. 274. 87. M.S. Jang, H. Miao, N. Carlesso, L. Shelly, A. Zlobin, N. Darack, J.Z. Qin, B.J. Nickoloff, and L. Miele, Notch-1 regulates cell death independently of differentiation in murine erythroleukemia cells through multiple apoptosis and cell cycle pathways. J. Cell. Physiol., 2004. 199(3): p. 418-33. 88. S. Poirault-Chassac, E. Six, C. Catelain, M. Lavergne, J.L. Villeval, W. Vainchenker, and E. Lauret, Notch/Delta4 signaling inhibits human megakaryocytic terminal differentiation. Blood, 2010. 116(25): p. 5670-8. 89. J.R. Sevinsky, A.M. Whalen, and N.G. Ahn, Extracellular signal-regulated kinase induces the megakaryocyte GPIIb/CD41 gene through MafB/Kreisler. Mol. Cell. Biol., 2004. 24(10): p. 4534-45. 90. D. Subramaniam, R. Thombre, A. Dhar, and S. Anant, DNA methyltransferases: a novel target for prevention and therapy. Front. Oncol., 2014. 4: p. 80. 91. D. Hu and A. Shilatifard, Epigenetics of hematopoiesis and hematological malignancies. Genes Dev., 2016. 30(18): p. 2021-2041. 92. B. Jin and K.D. Robertson, DNA methyltransferases, DNA damage repair, and cancer. Adv. Exp. Med. Biol., 2013. 754: p. 3-29. 93. G.A. Challen, D. Sun, M. Jeong, M. Luo, J. Jelinek, J.S. Berg, C. Bock, A. Vasanthakumar, H. Gu, Y. Xi, S. Liang, Y. Lu, G.J. Darlington, A. Meissner, J.P. Issa, L.A. Godley, W. Li, and M.A. Goodell, Dnmt3a is essential for hematopoietic stem cell differentiation. Nat. Genet., 2011. 44(1): p. 23-31. 94. Y.I. Chang, X. You, G. Kong, E.A. Ranheim, J. Wang, J. Du, Y. Liu, Y. Zhou, M.J. Ryu, and J. Zhang, Loss of Dnmt3a and endogenous KrasG12D/+ cooperate to regulate hematopoietic stem and progenitor cell functions in leukemogenesis. Leukemia, 2015. 29(9): p. 1847-56. 95. G.A. Challen, D. Sun, A. Mayle, M. Jeong, M. Luo, B. Rodriguez, C. Mallaney, H. Celik, L. Yang, Z. Xia, S. Cullen, J. Berg, Y. Zheng, G.J. Darlington, W. Li, and M.A. Goodell, Dnmt3a and Dnmt3b have overlapping and distinct functions in hematopoietic stem cells. Cell Stem Cell, 2014. 15(3): p. 350-64. 96. M. Okano, D.W. Bell, D.A. Haber, and E. Li, DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 1999. 99(3): p. 247-57. 97. B.J. Wouters and R. Delwel, Epigenetics and approaches to targeted epigenetic therapy in acute myeloid leukemia. Blood, 2016. 127(1): p. 42-52. 98. C.N. Roy, Anemia of inflammation. Hematology Am. Soc. Hematol. Educ. Program, 2010. 2010: p. 276-80. 99. V.G. Sankaran and M.J. Weiss, Anemia: progress in molecular mechanisms and therapies. Nat. Med., 2015. 21(3): p. 221-30. 100. K.J. Smock and S.L. Perkins, Thrombocytopenia: an update. Int. J. Lab. Hematol., 2014. 36(3): p. 269-78. 101. B. Kenney and G. Stack, Drug-induced thrombocytopenia. Arch. Pathol. Lab. Med., 2009. 133(2): p. 309-14. 102. M. Leszczyniecka, T. Roberts, P. Dent, S. Grant, and P.B. Fisher, Differentiation therapy of human cancer: basic science and clinical applications. Pharmacol. Ther., 2001. 90(2-3): p. 105-56. 103. E. Sachlos, R.M. Risueno, S. Laronde, Z. Shapovalova, J.H. Lee, J. Russell, M. Malig, J.D. McNicol, A. Fiebig-Comyn, M. Graham, M. Levadoux-Martin, J.B. Lee, A.O. Giacomelli, J.A. Hassell, D. Fischer-Russell, M.R. Trus, R. Foley, B. Leber, A. Xenocostas, E.D. Brown, T.J. Collins, and M. Bhatia, Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell, 2012. 149(6): p. 1284-97. 104. G.J. Du, J.H. Li, W.J. Liu, Y.H. Liu, B. Zhao, H.R. Li, X.D. Hou, H. Li, X.X. Qi, and Y.J. Duan, The combination of TRPM8 and TRPA1 expression causes an invasive phenotype in lung cancer. Tumour Biol., 2014. 35(2): p. 1251-61. 105. S. Mergler, Y. Cheng, S. Skosyrski, F. Garreis, P. Pietrzak, N. Kociok, A. Dwarakanath, P.S. Reinach, and V. Kakkassery, Altered calcium regulation by thermosensitive transient receptor potential channels in etoposide-resistant WERI-Rb1 retinoblastoma cells. Exp. Eye Res., 2012. 94(1): p. 157-73. 106. S. Materazzi, C. Fusi, S. Benemei, P. Pedretti, R. Patacchini, B. Nilius, J. Prenen, C. Creminon, P. Geppetti, and R. Nassini, TRPA1 and TRPV4 mediate paclitaxel-induced peripheral neuropathy in mice via a glutathione-sensitive mechanism. Pflugers Arch., 2012. 463(4): p. 561-9. 107. G. Trevisan, S. Materazzi, C. Fusi, A. Altomare, G. Aldini, M. Lodovici, R. Patacchini, P. Geppetti, and R. Nassini, Novel therapeutic strategy to prevent chemotherapy-induced persistent sensory neuropathy by TRPA1 blockade. Cancer Res., 2013. 73(10): p. 3120-31. 108. Y. Kaneko and A. Szallasi, Transient receptor potential (TRP) channels: a clinical perspective. Br. J. Pharmacol., 2014. 171(10): p. 2474-507. 109. Y. Zhang, L. Tang, and V. Gonzalez, Selected isothiocyanates rapidly induce growth inhibition of cancer cells. Mol. Cancer Ther., 2003. 2(10): p. 1045-52. 110. Y. Zhang, Allyl isothiocyanate as a cancer chemopreventive phytochemical. Mol. Nutr. Food Res., 2010. 54(1): p. 127-35. 111. C.S. Nowell and F. Radtke, Notch as a tumour suppressor. Nat. Rev. Cancer, 2017. 17(3): p. 145-159. 112. T. Schroeder, S. Geyh, U. Germing, and R. Haas, Mesenchymal stromal cells in myeloid malignancies. Blood Res., 2016. 51(4): p. 225-232.
|