跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/16 06:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳紀琳
研究生(外文):Ji-Lin Chen
論文名稱:Notch1誘發之基因TRPA1在血癌細胞中的角色
論文名稱(外文):The Roles of Notch1-upregulated Gene TRPA1 in Human Erythroleukemia Cells
指導教授:兵岳忻葉添順
指導教授(外文):Yueh-Hsin PingTien-Shun Yeh
學位類別:博士
校院名稱:國立陽明大學
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:97
中文關鍵詞:刻痕受體
外文關鍵詞:Notch receptor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Notch1訊息傳遞路徑參與許多生理及病理的調控,包括細胞增生、凋亡、維持幹細胞特性以及參與調控紅血球和巨核細胞的分化。本論文發現Transient receptor potential ankyrin 1 (TRPA1)是Notch1活化態受體(Notch1 intracellular domain, N1IC)活化的基因之一。TRPA1是一個非選擇性鈣離子通道蛋白,當TRPA1活化後會促使神經傳導物質的釋放,且發炎相關的細胞激素會促使其表現。發炎會抑制紅血球分化及導致貧血,而TRPA1是否和血球分化有關目前尚未明瞭。實驗結果顯示,N1IC透過CBF1非依賴性路徑調控TRPA1啟動子,且N1IC會透過Ets-1調控TRPA1啟動子上並促進其表現。N1IC活化TRPA1亦透過啟動子甲基化的調控,且N1IC和Ets-1協同抑制DNA methyltransferase 3B (DNMT3B)表現。以hemin誘導K562及HEL細胞往紅血球分化的情況會受到TRPA1的抑制。TRPA1活化劑AITC可抑制K652及HEL細胞往紅血球分化,且ERK磷酸化程度亦增加,此現象在前處理TRPA1拮抗劑或是EGTA則被回復。N1IC和Ets-1亦透過TRPA1抑制細胞往紅血球分化。由PMA誘導細胞往巨核細胞分化的現象會被TRPA1所促進,且巨核細胞標誌表現量皆隨之上升。而抑制Notch1或Ets-1表現後會降低巨核細胞分化,此現象在大量表現TRPA1後有所回復。抑制DNMT3B後TRPA1之表現量上升,且減少K562細胞往紅血球分化,並促進往巨核細胞分化。此外,抑制TRPA1後會促進K562細胞之移行、侵襲及細胞聚落形成能力。綜合以上結果顯示,N1IC誘導TRPA1表現,並且是調控紅血球及巨核細胞分化的重要基因。
Notch1 signaling involves in several physiological and pathological cellular processes, including proliferation, apoptosis, stem cell maintenance and regulation of erythroid and megakaryocyte differentiation. Notch1 intracellular domain (N1IC), the activated form of Notch1, induced TRPA1 expression. TRPA1 is a non-selective calcium channel. Inflammatory cytokines enhance TRPA1 expression, and TRPA1 activation induces neurotransmitter release. Inflammatory cytokines suppress erythroid differentiation and result in anemia. The roles of TRPA1 in erythroid/megakaryocyte differentiation are poorly understood. Herein, the data indicated that N1IC activated TRPA1 promoter in a CBF1-independent manner. N1IC enhanced TRPA1 promoter activity via Ets-1, and both of them bound to TRPA1 promoter. N1IC modulated TRPA1 promoter depend on promoter methylation, and N1IC and Ets-1 inhibited DNA methyltransferase 3B (DNMT3B) expression synergistically. TRPA1 decreased hemin-induced erythroid differentiation of K562 and HEL cells. TRPA1 agonist AITC suppressed erythroid differentiation and increased phosphorylation of ERK in K562 and HEL cells, which were reversed by TRPA1 antagonist or EGTA pretreatment. TRPA1 mediated N1IC- or Ets-1- restrained erythroid differentiation. TRPA1 improved PMA-induced megakaryocyte differentiation, and the levels of megakaryocytic markers were increased. Notch1 receptor or Ets-1 knockdown reduced me megakaryocyte differentiation, which could be restored by TRPA1 expression. Knockdown of DNMT3B increased TRPA1 level, inhibited erythroid differentiation as well as promoted megakaryocyte differentiation. Moreover, TRPA1 inhibition enhanced migration, invasion and colony forming abilities of K562 cells. These results demonstrate that N1IC-induced TRPA1 play a critical role in the regulation of erythroid and megakaryocyte differentiation.
中文摘要 i
Abstract ii
縮寫表 iii
目次 iv
圖表目次 vi
緒論 1
Notch受體 (Notch receptor) 1
ETS proto-oncogene 1 (Ets-1) 3
Transient receptor potential cation channel subfamily A member 1 (TRPA1) 3
造血作用 5
研究動機 6
研究材料與實驗方法 8
研究材料 8
細胞株 8
質體 8
RNAi及引子序列 10
抗體 11
實驗材料 12
實驗方法 17
製備勝任細胞及轉型作用 17
萃取質體DNA 17
試管內甲基化 (in vitro methylation) 18
細胞培養 18
細胞轉染 19
冷光報導分析 20
核糖核酸萃取 20
即時聚合酶鏈反應 21
西方點墨法 21
染色質免疫沉澱分析法 23
紅血球分化及benzidine染色 25
巨核细胞分化及Giemsa染色 25
流式細胞儀分析 26
細胞生長分析 26
細胞移行及侵襲能力試驗 27
細胞聚落培養分析 27
統計分析 28
結果 29
N1IC透過非CBF1路徑調控TRPA1表現 29
N1IC透過Ets-1調控TRPA1表現 30
N1IC可藉由DNMT3B調控TRPA1 31
TRPA1抑制K562及HEL細胞往紅血球分化 32
N1IC及Ets-1透過TRPA1抑制K562及HEL細胞往紅血球分化 34
TRPA1促進K562及HEL細胞往巨核細胞分化 34
Notch1及Ets-1透過TRPA1促進K562及HEL細胞往巨核細胞分化 36
抑制DNMT3B減少K562細胞往紅血球分化並促使往巨核細胞分化 36
抑制TRPA1促進K562細胞移行、侵襲及聚落形成之能力 37
討論 38
參考文獻 43
圖表 57

圖表目次
圖一、Notch1受體調控TRPA1之表現。 57
圖二、N1IC透過CBF1非依賴性路徑活化TRPA1啟動子。 59
圖三、Ets-1促進N1IC活化TRPA1啟動子 60
圖四、N1IC透過Ets-1活化TRPA1啟動子。 62
圖五、Ets-1可增加N1IC所促進的TRPA1之mRNA及蛋白質表現量。 63
圖六、N1IC及Ets-1可結合於TRPA1啟動子。 64
圖七、N1IC活化TRPA1啟動子受甲基化抑制且N1IC和Ets-1協同抑制DNMT3B蛋白質表現。。 65
圖八、Notch1透過DNMT3B促進TRPA1之mRNA表現。 67
圖九、TRPA1抑制K562及HEL細胞往紅血球分化。 68
圖十、抑制TRPA1促進K562及HEL細胞往紅血球分化。 69
圖十一、TRPA1透過影響鈣離子流入細胞抑制K562及HEL細胞往紅血球分化。 70
圖十二、N1IC透過TRPA1抑制K562及HEL細胞往紅血球分化。 72
圖十三、Ets-1透過TRPA1抑制K562及HEL細胞往紅血球分化。 74
圖十四、Notch1、Ets-1、TRPA1及DNMT3B巨核細胞分化有關。 76
圖十五、TRPA1促進K562細胞往巨核細胞分化。 77
圖十六、TRPA1增加K562細胞之巨核細胞分化的標誌。 79
圖十七、TRPA1抑制K562細胞生長。 80
圖十八、抑制TRPA1抑制K562細胞往巨核細胞分化。 81
圖十九、TRPA1可回復抑制Notch1所減少巨核細胞分化的情形。 84
圖二十、N1IC透過TRPA1抑制K562及HEL細胞往巨核細胞分化。 85
圖二十一、TRPA1可回復抑制Ets-1所減少巨核細胞分化的情形。 87
圖二十二、Ets-1透過TRPA1抑制K562及HEL細胞往巨核細胞分化。 88
圖二十三、抑制DNMT3B抑制紅血球分化而促進巨核細胞分化 89
圖二十四、抑制TRPA1促進K562細胞移行、侵襲及聚落形成之能力 91
圖二十五、N1IC、Ets-1及DNMT3B調控TRPA1影響細胞分化示意圖 92
表一、RNAi列表 93
表二、PCR引子 94
表三、Real-time PCR引子 95
附圖一、Notch受體結構及訊息傳遞路徑 96
附圖二、造血作用 97
1. J.S., Dexter, The analysis of a case of continuous variation in Drosophila. Am. Nat., 1914, 48(576): p. 712-58.
2. T.H., Morgan, The theory of the gene. Am. Nat., 1917. 51(609): p. 513-544.
3. S. Artavanis-Tsakonas and M.A. Muskavitch, Notch: the past, the present, and the future. Curr. Top. Dev. Biol., 2010. 92: p. 1-29.
4. T. Okajima and K.D. Irvine, Regulation of Notch signaling by o-linked fucose. Cell, 2002. 111(6): p. 893-904.
5. S. Le Bras, N. Loyer, and R. Le Borgne, The multiple facets of ubiquitination in the regulation of Notch signaling pathway. Traffic, 2011. 12(2): p. 149-61.
6. R. Sanalkumar, S.B. Dhanesh, and J. James, Non-canonical activation of Notch signaling/target genes in vertebrates. Cell. Mol. Life Sci., 2010. 67(17): p. 2957-68.
7. W.R. Liao, R.H. Hsieh, K.W. Hsu, M.Z. Wu, M.J. Tseng, R.T. Mai, Y.H. Wu Lee, and T.S. Yeh, The CBF1-independent Notch1 signal pathway activates human c-myc expression partially via transcription factor YY1. Carcinogenesis, 2007. 28(9): p. 1867-76.
8. Z. Liu, L. Teng, S.K. Bailey, A.R. Frost, K.I. Bland, A.F. LoBuglio, J.M. Ruppert, and S.M. Lobo-Ruppert, Epithelial transformation by KLF4 requires Notch1 but not canonical Notch1 signaling. Cancer Biol. Ther., 2009. 8(19): p. 1840-51.
9. F. MacKenzie, P. Duriez, F. Wong, M. Noseda, and A. Karsan, Notch4 inhibits endothelial apoptosis via RBP-J-dependent and -independent pathways. J. Biol. Chem., 2004. 279(12): p. 11657-63.
10. C. Lobry, P. Oh, M.R. Mansour, A.T. Look, and I. Aifantis, Notch signaling: switching an oncogene to a tumor suppressor. Blood, 2014. 123(16): p. 2451-9.
11. A. Klinakis, C. Lobry, O. Abdel-Wahab, P. Oh, H. Haeno, S. Buonamici, I. van De Walle, S. Cathelin, T. Trimarchi, E. Araldi, C. Liu, S. Ibrahim, M. Beran, J. Zavadil, A. Efstratiadis, T. Taghon, F. Michor, R.L. Levine, and I. Aifantis, A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia. Nature, 2011. 473(7346): p. 230-3.
12. A.A. Ferrando, The role of NOTCH1 signaling in T-ALL. Hematology Am. Soc. Hematol. Educ. Program, 2009: p. 353-61.
13. S.M. Meadows, C.T. Myers, and P.A. Krieg, Regulation of endothelial cell development by ETS transcription factors. Semin. Cell Dev. Biol., 2011. 22(9): p. 976-84.
14. J. Dittmer, The role of the transcription factor Ets1 in carcinoma. Semin. Cancer Biol., 2015. 35: p. 20-38.
15. L.A. Garrett-Sinha, Review of Ets1 structure, function, and roles in immunity. Cell. Mol. Life Sci., 2013. 70(18): p. 3375-90.
16. D.J. Cosens and A. Manning, Abnormal electroretinogram from a Drosophila mutant. Nature, 1969. 224(5216): p. 285-7.
17. T. Smani, G. Shapovalov, R. Skryma, N. Prevarskaya, and J.A. Rosado, Functional and physiopathological implications of TRP channels. Biochim. Biophys. Acta, 2015. 1853(8): p. 1772-82.
18. D. Jaquemar, T. Schenker, and B. Trueb, An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. J. Biol. Chem., 1999. 274(11): p. 7325-33.
19. J. Garcia-Anoveros and K. Nagata, TRPA1. Handb. Exp. Pharmacol., 2007. 179: p. 347-62.
20. G.M. Story, A.M. Peier, A.J. Reeve, S.R. Eid, J. Mosbacher, T.R. Hricik, T.J. Earley, A.C. Hergarden, D.A. Andersson, S.W. Hwang, P. McIntyre, T. Jegla, S. Bevan, and A. Patapoutian, ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell, 2003. 112(6): p. 819-29.
21. D.M. Bautista, M. Pellegrino, and M. Tsunozaki, TRPA1: A gatekeeper for inflammation. Annu. Rev. Physiol., 2013. 75: p. 181-200.
22. E.L. Andrade, F.C. Meotti, and J.B. Calixto, TRPA1 antagonists as potential analgesic drugs. Pharmacol. Ther., 2012. 133(2): p. 189-204.
23. L. Marwaha, Y. Bansal, R. Singh, P. Saroj, R. Bhandari, and A. Kuhad, TRP channels: potential drug target for neuropathic pain. Inflammopharmacology, 2016. 24(6): p. 305-317.
24. M.A. Rieger and T. Schroeder, Hematopoiesis. Cold Spring Harb. Perspect. Biol., 2012. 4(12): a008250.
25. M.D. Delgado and J. Leon, Myc roles in hematopoiesis and leukemia. Genes Cancer, 2010. 1(6): p. 605-16.
26. N.G. Abraham, R.D. Levere, and J.D. Lutton, Eclectic mechanisms of heme regulation of hematopoiesis. Int. J. Cell Cloning, 1991. 9(3): p. 185-210.
27. C.D. Kang, B.K. Lee, K.W. Kim, C.M. Kim, S.H. Kim, and B.S. Chung, Signaling mechanism of PMA-induced differentiation of K562 cells. Biochem. Biophys. Res. Commun., 1996. 221(1): p. 95-100.
28. Y.X. Zeng and W.S. el-Deiry, Regulation of p21WAF1/CIP1 expression by p53-independent pathways. Oncogene, 1996. 12(7): p. 1557-64.
29. A.L. MacLean, C. Lo Celso, and M.P. Stumpf, Concise review: stem cell population biology: insights from hematopoiesis. Stem Cells, 2017. 35(1): p. 80-88.
30. Y. Gu, M. Masiero, and A.H. Banham, Notch signaling: its roles and therapeutic potential in hematological malignancies. Oncotarget, 2016. 7(20): p. 29804-23.
31. K.V. Pajcini, N.A. Speck, and W.S. Pear, Notch signaling in mammalian hematopoietic stem cells. Leukemia, 2011. 25(10): p. 1525-32.
32. K. Kumano, S. Chiba, K. Shimizu, T. Yamagata, N. Hosoya, T. Saito, T. Takahashi, Y. Hamada, and H. Hirai, Notch1 inhibits differentiation of hematopoietic cells by sustaining GATA-2 expression. Blood, 2001. 98(12): p. 3283-9.
33. L.T. Lam, C. Ronchini, J. Norton, A.J. Capobianco, and E.H. Bresnick, Suppression of erythroid but not megakaryocytic differentiation of human K562 erythroleukemic cells by Notch-1. J. Biol. Chem., 2000. 275(26): p. 19676-84.
34. T. Mercher, M.G. Cornejo, C. Sears, T. Kindler, S.A. Moore, I. Maillard, W.S. Pear, J.C. Aster, and D.G. Gilliland, Notch signaling specifies megakaryocyte development from hematopoietic stem cells. Cell Stem Cell, 2008. 3(3): p. 314-26.
35. A. Roy, S. Haldar, N.P. Basak, and S. Banerjee, Molecular cross talk between Notch1, Shh and Akt pathways during erythroid differentiation of K562 and HEL cell lines. Exp. Cell Res., 2014. 320(1): p. 69-78.
36. E. Mouly, K. Chemin, H.V. Nguyen, M. Chopin, L. Mesnard, M. Leite-de-Moraes, O. Burlen-defranoux, A. Bandeira, and J.C. Bories, The Ets-1 transcription factor controls the development and function of natural regulatory T cells. J. Exp. Med., 2010. 207(10): p. 2113-25.
37. A. Ciau-Uitz, L. Wang, R. Patient, and F. Liu, ETS transcription factors in hematopoietic stem cell development. Blood Cells Mol. Dis., 2013. 51(4): p. 248-55.
38. V. Lulli, P. Romania, O. Morsilli, M. Gabbianelli, A. Pagliuca, S. Mazzeo, U. Testa, C. Peschle, and G. Marziali, Overexpression of Ets-1 in human hematopoietic progenitor cells blocks erythroid and promotes megakaryocytic differentiation. Cell Death Differ., 2006. 13(7): p. 1064-74.
39. M. Pimkin, A.V. Kossenkov, T. Mishra, C.S. Morrissey, W. Wu, C.A. Keller, G.A. Blobel, D. Lee, M.A. Beer, R.C. Hardison, and M.J. Weiss, Divergent functions of hematopoietic transcription factors in lineage priming and differentiation during erythro-megakaryopoiesis. Genome Res., 2014. 24(12): p. 1932-44.
40. P. Jackers, G. Szalai, O. Moussa, and D.K. Watson, Ets-dependent regulation of target gene expression during megakaryopoiesis. J. Biol. Chem., 2004. 279(50): p. 52183-90.
41. V. Lulli, P. Romania, R. Riccioni, A. Boe, F. Lo-Coco, U. Testa, and G. Marziali, Transcriptional silencing of the ETS1 oncogene contributes to human granulocytic differentiation. Haematologica, 2010. 95(10): p. 1633-41.
42. J.H. Hu, P. Navas, H. Cao, G. Stamatoyannopoulos, and C.Z. Song, Systematic RNAi studies on the role of Sp/KLF factors in globin gene expression and erythroid differentiation. J. Mol. Biol., 2007. 366(4): p. 1064-73.
43. F. Morceau, M. Dicato, and M. Diederich, Pro-inflammatory cytokine-mediated anemia: regarding molecular mechanisms of erythropoiesis. Mediators Inflamm., 2009. 2009: p. 405016.
44. P. Malsch, M. Andratsch, C. Vogl, A.S. Link, C. Alzheimer, S.M. Brierley, P.A. Hughes, and M. Kress, Deletion of interleukin-6 signal transducer gp130 in small sensory neurons attenuates mechanonociception and down-regulates TRPA1 expression. J. Neurosci., 2014. 34(30): p. 9845-56.
45. N. Hatano, Y. Itoh, H. Suzuki, Y. Muraki, H. Hayashi, K. Onozaki, I.C. Wood, D.J. Beech, and K. Muraki, Hypoxia-inducible factor-1 (HIF1) switches on transient receptor potential ankyrin repeat 1 (TRPA1) gene expression via a hypoxia response element-like motif to modulate cytokine release. J. Biol. Chem., 2012. 287(38): p. 31962-72.
46. M.V. Gustafsson, X. Zheng, T. Pereira, K. Gradin, S. Jin, J. Lundkvist, J.L. Ruas, L. Poellinger, U. Lendahl, and M. Bondesson, Hypoxia requires Notch signaling to maintain the undifferentiated cell state. Dev. Cell, 2005. 9(5): p. 617-28.
47. J.C. Villa, D. Chiu, A.H. Brandes, F.E. Escorcia, C.H. Villa, W.F. Maguire, C.J. Hu, E. de Stanchina, M.C. Simon, S.S. Sisodia, D.A. Scheinberg, and Y.M. Li, Nontranscriptional role of HIF-1 in activation of -secretase and Notch signaling in breast cancer. Cell Rep, 2014. 8(4): p. 1077-92.
48. T.S. Yeh, Y.M. Lin, R.H. Hsieh, and M.J. Tseng, Association of transcription factor YY1 with the high molecular weight Notch complex suppresses the transactivation activity of Notch. J. Biol. Chem., 2003. 278(43): p. 41963-9.
49. B.F. Bessac, M. Sivula, C.A. von Hehn, J. Escalera, L. Cohn, and S.E. Jordt, TRPA1 is a major oxidant sensor in murine airway sensory neurons. J. Clin. Invest., 2008. 118(5): p. 1899-910.
50. Y. Zhan, C. Brown, E. Maynard, A. Anshelevich, W. Ni, I.C. Ho, and P. Oettgen, Ets-1 is a critical regulator of Ang II-mediated vascular inflammation and remodeling. J. Clin. Invest., 2005. 115(9): p. 2508-16.
51. K.W. Hsu, R.H. Hsieh, K.H. Huang, A. Fen-Yau Li, C.W. Chi, T.Y. Wang, M.J. Tseng, K.J. Wu, and T.S. Yeh, Activation of the Notch1/STAT3/Twist signaling axis promotes gastric cancer progression. Carcinogenesis, 2012. 33(8): p. 1459-67.
52. S. Zhou and S.D. Hayward, Nuclear localization of CBF1 is regulated by interactions with the SMRT corepressor complex. Mol. Cell. Biol., 2001. 21(18): p. 6222-32.
53. L. Waltzer, P.Y. Bourillot, A. Sergeant, and E. Manet, RBP-J repression activity is mediated by a co-repressor and antagonized by the Epstein-Barr virus transcription factor EBNA2. Nucleic Acids Res., 1995. 23(24): p. 4939-45.
54. J.J. Hsieh, T. Henkel, P. Salmon, E. Robey, M.G. Peterson, and S.D. Hayward, Truncated mammalian Notch1 activates CBF1/RBPJ-repressed genes by a mechanism resembling that of Epstein-Barr virus EBNA2. Mol. Cell. Biol., 1996. 16(3): p. 952-9.
55. M. Shih Ie and T.L. Wang, Notch signaling, -secretase inhibitors, and cancer therapy. Cancer Res., 2007. 67(5): p. 1879-82.
56. H. Wang, J. Zou, B. Zhao, E. Johannsen, T. Ashworth, H. Wong, W.S. Pear, J. Schug, S.C. Blacklow, K.L. Arnett, B.E. Bernstein, E. Kieff, and J.C. Aster, Genome-wide analysis reveals conserved and divergent features of Notch1/RBPJ binding in human and murine T-lymphoblastic leukemia cells. Proc. Natl. Acad. Sci. U. S. A., 2011. 108(36): p. 14908-13.
57. X. Messeguer, R. Escudero, D. Farre, O. Nunez, J. Martinez, and M.M. Alba, PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics, 2002. 18(2): p. 333-4.
58. A. Mathelier, O. Fornes, D.J. Arenillas, C.Y. Chen, G. Denay, J. Lee, W. Shi, C. Shyr, G. Tan, R. Worsley-Hunt, A.W. Zhang, F. Parcy, B. Lenhard, A. Sandelin, and W.W. Wasserman, JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res., 2016. 44(D1): p. D110-5.
59. N. Sukenaga, Y. Ikeda-Miyagawa, D. Tanada, T. Tunetoh, S. Nakano, T. Inui, K. Satoh, H. Okutani, K. Noguchi, and M. Hirose, Correlation between DNA methylation of TRPA1 and chronic pain states in human whole blood cells. Pain Med., 2016. 17(10): p. 1906-1910.
60. J.T. Bell, A.K. Loomis, L.M. Butcher, F. Gao, B. Zhang, C.L. Hyde, J. Sun, H. Wu, K. Ward, J. Harris, S. Scollen, M.N. Davies, L.C. Schalkwyk, J. Mill, T.C. Mu, F.M. Williams, N. Li, P. Deloukas, S. Beck, S.B. McMahon, J. Wang, S.L. John, and T.D. Spector, Differential methylation of the TRPA1 promoter in pain sensitivity. Nat. Commun., 2014. 5: p. 2978.
61. M. Namihira, J. Kohyama, K. Semi, T. Sanosaka, B. Deneen, T. Taga, and K. Nakashima, Committed neuronal precursors confer astrocytic potential on residual neural precursor cells. Dev. Cell, 2009. 16(2): p. 245-55.
62. D.M. Yao, J.D. Zhou, Y.Y. Zhang, L. Yang, X.M. Wen, J. Yang, H. Guo, Q. Chen, J. Lin, and J. Qian, GPX3 promoter is methylated in chronic myeloid leukemia. Int. J. Clin. Exp. Pathol., 2015. 8(6): p. 6450-7.
63. M. Jarvinen, L.C. Andersson, and I. Virtanen, K562 erythroleukemia cells express cytokeratins 8, 18, and 19 and epithelial membrane antigen that disappear after induced differentiation. J. Cell. Physiol., 1990. 143(2): p. 310-20.
64. S.R. Eid, E.D. Crown, E.L. Moore, H.A. Liang, K.C. Choong, S. Dima, D.A. Henze, S.A. Kane, and M.O. Urban, HC-030031, a TRPA1 selective antagonist, attenuates inflammatory- and neuropathy-induced mechanical hypersensitivity. Mol. Pain, 2008. 4: p. 48.
65. Y. Iwasaki, M. Tanabe, K. Kobata, and T. Watanabe, TRPA1 agonists─allyl isothiocyanate and cinnamaldehyde─induce adrenaline secretion. Biosci. Biotechnol. Biochem., 2008. 72(10): p. 2608-14.
66. C.R. McNamara, J. Mandel-Brehm, D.M. Bautista, J. Siemens, K.L. Deranian, M. Zhao, N.J. Hayward, J.A. Chong, D. Julius, M.M. Moran, and C.M. Fanger, TRPA1 mediates formalin-induced pain. Proc. Natl. Acad. Sci. U. S. A., 2007. 104(33): p. 13525-30.
67. O. Witt, K. Sand, and A. Pekrun, Butyrate-induced erythroid differentiation of human K562 leukemia cells involves inhibition of ERK and activation of p38 MAP kinase pathways. Blood, 2000. 95(7): p. 2391-6.
68. E.A. Schaefer, S. Stohr, M. Meister, A. Aigner, T. Gudermann, and T.R. Buech, Stimulation of the chemosensory TRPA1 cation channel by volatile toxic substances promotes cell survival of small cell lung cancer cells. Biochem. Pharmacol., 2013. 85(3): p. 426-38.
69. M.R. Tijssen and C. Ghevaert, Transcription factors in late megakaryopoiesis and related platelet disorders. J. Thromb. Haemost., 2013. 11(4): p. 593-604.
70. A. Roy, N.P. Basak, and S. Banerjee, Notch1 intracellular domain increases cytoplasmic EZH2 levels during early megakaryopoiesis. Cell Death Dis., 2012. 3: p. e380.
71. L. Pan, S.T. Glenn, C.A. Jones, and K.W. Gross, Activation of the rat renin promoter by HOXD10·PBX1b·PREP1, Ets-1, and the intracellular domain of Notch. J. Biol. Chem., 2005. 280(21): p. 20860-6.
72. J.K. Polansky, L. Schreiber, C. Thelemann, L. Ludwig, M. Kruger, R. Baumgrass, S. Cording, S. Floess, A. Hamann, and J. Huehn, Methylation matters: binding of Ets-1 to the demethylated Foxp3 gene contributes to the stabilization of Foxp3 expression in regulatory T cells. J. Mol. Med. (Berl.), 2010. 88(10): p. 1029-40.
73. W. Woessmann, D. Zwanzger, and A. Borkhardt, ERK signaling pathway is differentially involved in erythroid differentiation of K562 cells depending on time and the inducing agent. Cell Biol. Int., 2004. 28(5): p. 403-10.
74. O. Melien, L.S. Nilssen, O.F. Dajani, K.L. Sand, J.G. Iversen, D.L. Sandnes, and T. Christoffersen, Ca2+-mediated activation of ERK in hepatocytes by norepinephrine and prostaglandin F2: role of calmodulin and Src kinases. BMC Cell Biol., 2002. 3: p. 5.
75. K.R. Machlus and J.E. Italiano, Jr., The incredible journey: from megakaryocyte development to platelet formation. J. Cell Biol., 2013. 201(6): p. 785-96.
76. Y. Dai, S. Wang, M. Tominaga, S. Yamamoto, T. Fukuoka, T. Higashi, K. Kobayashi, K. Obata, H. Yamanaka, and K. Noguchi, Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J. Clin. Invest., 2007. 117(7): p. 1979-87.
77. J.J. O'Brien, S.L. Spinelli, J. Tober, N. Blumberg, C.W. Francis, M.B. Taubman, J. Palis, K.E. Seweryniak, J.M. Gertz, and R.P. Phipps, 15-deoxy-Δ12,14-PGJ2 enhances platelet production from megakaryocytes. Blood, 2008. 112(10): p. 4051-60.
78. L. Cruz-Orengo, A. Dhaka, R.J. Heuermann, T.J. Young, M.C. Montana, E.J. Cavanaugh, D. Kim, and G.M. Story, Cutaneous nociception evoked by 15-delta PGJ2 via activation of ion channel TRPA1. Mol. Pain, 2008. 4: p. 30.
79. C.A. Di Buduo, F. Moccia, M. Battiston, L. De Marco, M. Mazzucato, R. Moratti, F. Tanzi, and A. Balduini, The importance of calcium in the regulation of megakaryocyte function. Haematologica, 2014. 99(4): p. 769-78.
80. L. Albarran, J.J. Lopez, N. Dionisio, T. Smani, G.M. Salido, and J.A. Rosado, Transient receptor potential ankyrin-1 (TRPA1) modulates store-operated Ca2+ entry by regulation of STIM1-Orai1 association. Biochim. Biophys. Acta, 2013. 1833(12): p. 3025-34.
81. D.A. Arber, A. Orazi, R. Hasserjian, J. Thiele, M.J. Borowitz, M.M. Le Beau, C.D. Bloomfield, M. Cazzola, and J.W. Vardiman, The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood, 2016. 127(20): p. 2391-405.
82. S.H. Swerdlow, E. Campo, S.A. Pileri, N.L. Harris, H. Stein, R. Siebert, R. Advani, M. Ghielmini, G.A. Salles, A.D. Zelenetz, and E.S. Jaffe, The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood, 2016. 127(20): p. 2375-90.
83. A.P. Weng, A.A. Ferrando, W. Lee, J.P.t. Morris, L.B. Silverman, C. Sanchez-Irizarry, S.C. Blacklow, A.T. Look, and J.C. Aster, Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science, 2004. 306(5694): p. 269-71.
84. L.W. Ellisen, J. Bird, D.C. West, A.L. Soreng, T.C. Reynolds, S.D. Smith, and J. Sklar, TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell, 1991. 66(4): p. 649-61.
85. B.J. Thompson, S. Buonamici, M.L. Sulis, T. Palomero, T. Vilimas, G. Basso, A. Ferrando, and I. Aifantis, The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J. Exp. Med., 2007. 204(8): p. 1825-35.
86. K. Willander, R.K. Dutta, J. Ungerback, R. Gunnarsson, G. Juliusson, M. Fredrikson, M. Linderholm, and P. Soderkvist, NOTCH1 mutations influence survival in chronic lymphocytic leukemia patients. BMC Cancer, 2013. 13: p. 274.
87. M.S. Jang, H. Miao, N. Carlesso, L. Shelly, A. Zlobin, N. Darack, J.Z. Qin, B.J. Nickoloff, and L. Miele, Notch-1 regulates cell death independently of differentiation in murine erythroleukemia cells through multiple apoptosis and cell cycle pathways. J. Cell. Physiol., 2004. 199(3): p. 418-33.
88. S. Poirault-Chassac, E. Six, C. Catelain, M. Lavergne, J.L. Villeval, W. Vainchenker, and E. Lauret, Notch/Delta4 signaling inhibits human megakaryocytic terminal differentiation. Blood, 2010. 116(25): p. 5670-8.
89. J.R. Sevinsky, A.M. Whalen, and N.G. Ahn, Extracellular signal-regulated kinase induces the megakaryocyte GPIIb/CD41 gene through MafB/Kreisler. Mol. Cell. Biol., 2004. 24(10): p. 4534-45.
90. D. Subramaniam, R. Thombre, A. Dhar, and S. Anant, DNA methyltransferases: a novel target for prevention and therapy. Front. Oncol., 2014. 4: p. 80.
91. D. Hu and A. Shilatifard, Epigenetics of hematopoiesis and hematological malignancies. Genes Dev., 2016. 30(18): p. 2021-2041.
92. B. Jin and K.D. Robertson, DNA methyltransferases, DNA damage repair, and cancer. Adv. Exp. Med. Biol., 2013. 754: p. 3-29.
93. G.A. Challen, D. Sun, M. Jeong, M. Luo, J. Jelinek, J.S. Berg, C. Bock, A. Vasanthakumar, H. Gu, Y. Xi, S. Liang, Y. Lu, G.J. Darlington, A. Meissner, J.P. Issa, L.A. Godley, W. Li, and M.A. Goodell, Dnmt3a is essential for hematopoietic stem cell differentiation. Nat. Genet., 2011. 44(1): p. 23-31.
94. Y.I. Chang, X. You, G. Kong, E.A. Ranheim, J. Wang, J. Du, Y. Liu, Y. Zhou, M.J. Ryu, and J. Zhang, Loss of Dnmt3a and endogenous KrasG12D/+ cooperate to regulate hematopoietic stem and progenitor cell functions in leukemogenesis. Leukemia, 2015. 29(9): p. 1847-56.
95. G.A. Challen, D. Sun, A. Mayle, M. Jeong, M. Luo, B. Rodriguez, C. Mallaney, H. Celik, L. Yang, Z. Xia, S. Cullen, J. Berg, Y. Zheng, G.J. Darlington, W. Li, and M.A. Goodell, Dnmt3a and Dnmt3b have overlapping and distinct functions in hematopoietic stem cells. Cell Stem Cell, 2014. 15(3): p. 350-64.
96. M. Okano, D.W. Bell, D.A. Haber, and E. Li, DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 1999. 99(3): p. 247-57.
97. B.J. Wouters and R. Delwel, Epigenetics and approaches to targeted epigenetic therapy in acute myeloid leukemia. Blood, 2016. 127(1): p. 42-52.
98. C.N. Roy, Anemia of inflammation. Hematology Am. Soc. Hematol. Educ. Program, 2010. 2010: p. 276-80.
99. V.G. Sankaran and M.J. Weiss, Anemia: progress in molecular mechanisms and therapies. Nat. Med., 2015. 21(3): p. 221-30.
100. K.J. Smock and S.L. Perkins, Thrombocytopenia: an update. Int. J. Lab. Hematol., 2014. 36(3): p. 269-78.
101. B. Kenney and G. Stack, Drug-induced thrombocytopenia. Arch. Pathol. Lab. Med., 2009. 133(2): p. 309-14.
102. M. Leszczyniecka, T. Roberts, P. Dent, S. Grant, and P.B. Fisher, Differentiation therapy of human cancer: basic science and clinical applications. Pharmacol. Ther., 2001. 90(2-3): p. 105-56.
103. E. Sachlos, R.M. Risueno, S. Laronde, Z. Shapovalova, J.H. Lee, J. Russell, M. Malig, J.D. McNicol, A. Fiebig-Comyn, M. Graham, M. Levadoux-Martin, J.B. Lee, A.O. Giacomelli, J.A. Hassell, D. Fischer-Russell, M.R. Trus, R. Foley, B. Leber, A. Xenocostas, E.D. Brown, T.J. Collins, and M. Bhatia, Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell, 2012. 149(6): p. 1284-97.
104. G.J. Du, J.H. Li, W.J. Liu, Y.H. Liu, B. Zhao, H.R. Li, X.D. Hou, H. Li, X.X. Qi, and Y.J. Duan, The combination of TRPM8 and TRPA1 expression causes an invasive phenotype in lung cancer. Tumour Biol., 2014. 35(2): p. 1251-61.
105. S. Mergler, Y. Cheng, S. Skosyrski, F. Garreis, P. Pietrzak, N. Kociok, A. Dwarakanath, P.S. Reinach, and V. Kakkassery, Altered calcium regulation by thermosensitive transient receptor potential channels in etoposide-resistant WERI-Rb1 retinoblastoma cells. Exp. Eye Res., 2012. 94(1): p. 157-73.
106. S. Materazzi, C. Fusi, S. Benemei, P. Pedretti, R. Patacchini, B. Nilius, J. Prenen, C. Creminon, P. Geppetti, and R. Nassini, TRPA1 and TRPV4 mediate paclitaxel-induced peripheral neuropathy in mice via a glutathione-sensitive mechanism. Pflugers Arch., 2012. 463(4): p. 561-9.
107. G. Trevisan, S. Materazzi, C. Fusi, A. Altomare, G. Aldini, M. Lodovici, R. Patacchini, P. Geppetti, and R. Nassini, Novel therapeutic strategy to prevent chemotherapy-induced persistent sensory neuropathy by TRPA1 blockade. Cancer Res., 2013. 73(10): p. 3120-31.
108. Y. Kaneko and A. Szallasi, Transient receptor potential (TRP) channels: a clinical perspective. Br. J. Pharmacol., 2014. 171(10): p. 2474-507.
109. Y. Zhang, L. Tang, and V. Gonzalez, Selected isothiocyanates rapidly induce growth inhibition of cancer cells. Mol. Cancer Ther., 2003. 2(10): p. 1045-52.
110. Y. Zhang, Allyl isothiocyanate as a cancer chemopreventive phytochemical. Mol. Nutr. Food Res., 2010. 54(1): p. 127-35.
111. C.S. Nowell and F. Radtke, Notch as a tumour suppressor. Nat. Rev. Cancer, 2017. 17(3): p. 145-159.
112. T. Schroeder, S. Geyh, U. Germing, and R. Haas, Mesenchymal stromal cells in myeloid malignancies. Blood Res., 2016. 51(4): p. 225-232.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top