跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/15 09:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡晴如
研究生(外文):Ching-Ju Tsai
論文名稱:登革病毒感染中自噬作用對於粒線體的影響
論文名稱(外文):The effects of autophagy on mitochondria during Dengue virus infection
指導教授:兵岳忻
指導教授(外文):Yueh-Hsin Ping
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:53
中文關鍵詞:登革病毒粒線體自噬作用
外文關鍵詞:Dengue VirusMitochondriaAutophagy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
登革病毒是由蚊子所傳播的病原體之一,目前全世界已有超過一百個國家流行登革病毒所引起的疾病。在臨床上,登革病毒感染人類所引起的疾病甚廣,但是目前對於宿主與病毒間的相互作用以及病毒的生命週期尚不清楚,因此並沒有抗病毒藥物可以治療。病毒需要仰賴宿主細胞的能量來幫助其增殖,粒線體(mitochondria)是細胞內產生能量的地方且扮演著氧化代謝的角色。此外,粒線體是高度動態平衡的胞器。最近的研究發現登革病毒在感染後期階段(24至72小時)會造成粒線體形態改變。雖然觀察時間點皆在病毒蛋白轉譯完成的階段,所觀察到粒線體形態的變化卻有衝突的結果。然而我們實驗室過去研究發現登革病毒感染後的一個小時即可引起細胞自噬反應(autophagy)。因此我們認為在病毒感染初期所引起的自噬反應會對粒線體造成影響。為了驗證這個假說,我利用活細胞影像技術來觀察病毒感染初期對於粒線體形態的影響,結果顯示在病毒感染後三個小時會使粒線體呈現片段的現象,利用粒線體形態分析軟體量化後,結果顯示在感染後三個小時會使形態中fragmentation的比例增加而elongation的比例減少。此外,加入自噬作用的抑制劑於病毒感染的細胞,顯示抑制自噬作用可以保護病毒所引起粒線體的片段化。我進一步測定病毒感染後對於粒線體膜電位與質量的變化,結果顯示病毒感染初期會降低粒線體膜電位且會使質量下降。然而,加入自噬作用的抑制劑於病毒感染的細胞內,其膜電位降低的發生時間會受到延遲且病毒所導致的質量減少則會恢復。這些結果顯示自噬作用參與在調節粒線體膜電位的改變以及粒線體的生合成之中。因此本篇研究證明在感染初期階段登革病毒可以透過自噬作用的訊號來調節粒線體的動態平衡。
Dengue virus (DENV) is a mosquito-borne pathogen which presents in over 100 countries. DENV infection causes a wide range of clinical symptoms but no approved antiviral drug is available currently due to little known about virus-host interaction and life cycle of DENV. Virus relies on host cell metabolism for its proliferation. Mitochondria are highly dynamic organelles that regulate cell metabolism. Recent studies found that DENV induces mitochondrial morphology alteration at the late stage of infection, probably at 24, 48 and 72 h post-infection. These studies showed conflict results even though the observation time were the same at late infectious stage. Our previous study showed that DENV induces host cellular autophagy at 60 min post-infection. It raises a question that autophagy may participate in the alteration of mitochondria at early infectious stage. To investigate the possibility, I used live-cell imaging technique to observe mitochondrial morphology in DENV-infected cells. The results showed that mitochondrial morphology became fragmented at 3 h post-infection. Quantitative analysis found that fragmented population increased in DENV-infected cells. Moreover, autophagy inhibitors prevent the DENV-induced mitochondrial fragmentation. Mitochondrial membrane potential and mass were decreased in DENV-infected cells at early infectious stage. Interestingly, when co-treated with DENV and autophagy inhibitor, mitochondrial membrane potential disruption was delayed, and the mass recovered as basal level. These results suggest that autophagy participates in the disruption of mitochondrial membrane potential and the synthesis of mitochondrial mass during DENV infection. This study demonstrated that DENV-affected mitochondria is an autophagy-dependent event at early infectious stage.
中文摘要 i
Abstract ii
Contents iii
Introduction 1
1. Dengue virus 1
2. Dengue virus life cycle 3
3. Mitochondria 4
4. Autophagy 7
Hypothesis and Specific Aims 10
Materials and Methods 11
1. Cell culture 11
2. DENV amplification 12
3. Plaque assay 12
4. Virus condensation 13
5. Transfection 14
6. Fluorescence confocal microscope image 14
7. Mitochondrial membrane potential detection 15
8. Mitochondrial mass detection 15
9. MicroP software 2011 version 1.1.3a- mitochondrial morphology quantification 16
Results 18
1. DENV induces mitochondria fragmentation at 3 h post-infection 18
2. Fragmented mitochondria increase at 3 h post-infection 18
3. Mitochondria become fragmented at early stage of infection and return to basal level at the late infectious stage 19
4. Inhibition of autophagy blocks DENV-induced mitochondrial fragmentation 20
5. Mitochondrial dynamics is autophagy-dependent at early infectious stage 21
6. Autophagy participates in disruption of mitochondrial membrane potential 21
7. Autophagy regulates mitochondrial mass 22
8. Mitochondria of Huh7.5 cells are fragmented at 3 h post-infection 22
9. Mitochondria of Huh7.5 cells become fragmented at early stage of infection and return to basal level at the late infectious stage 24
10. Autophagy alters mitochondria dynamics at early infectious stage 24
11. Autophagy regulates mitochondrial membrane potential 25
12. Autophagy mediates mitochondrial mass 25
Discussion 27
References 30
Figures and legends 37

Figure 1. DENV induces mitochondria fragmentation at 3 h post-infection 37
Figure 2. Mitochondrial skeleton becomes shorter at 3 h post-infection 38
Figure 3. Fragmented mitochondria increase at 3 h post-infection 39
Figure 4. Mitochondria become fragmented at early stage of infection and return to basal level at the late infectious stage 40
Figure 5. 3-MA inhibits mitochondrial fragmentation 41
Figure 6. CQ protects mitochondrial fragmentation 42
Figure 7. 3-MA affects mitochondrial dynamics at early infectious stage 43
Figure 8. CQ affects mitochondrial dynamics at early infectious stage 44
Figure 9. Autophagy regulates mitochondrial membrane potential 45
Figure 10. Autophagy regulates mitochondrial mass 46
Figure 11. Mitochondria of Huh7.5 cells show fragmented at 3 h post-infection 47
Figure 12. Mitochondrial skeleton become shorter at 3 h post-infection 48
Figure 13. Fragmented mitochondria increase in Huh7.5 cells 49
Figure 14. Mitochondria of Huh7.5 cells become fragmented at early stage of infection and return to basal level at the late infectious stage 50
Figure 15. Beclin 1 knockdown prevents mitochondrial fragmentation 51
Figure 16. Autophagy inhibition delays mitochondrial membrane potential disruption 52
Figure 17. Autophagy mediates mitochondrial mass 53
1. Acosta EG., Kumar A, Bartenschlager R. (2014) Revisiting dengue virus-host cell interaction: new insights into molecular and cellular virology. Adv. Virus Res. 88, 1–109.
2. Aguirre S, Luthra P, Sanchez-Aparicio MT, Maestre AM, Patel J, Lamothe F, Fredericks AC, Tripathi S, Zhu T, Pintado-Silva J, Webb LG, Bernal-Rubio D, Solovyov A, Greenbaum B, Simon V, Basler CF, Mulder LC, García-Sastre A, Fernandez-Sesma A. (2017) Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection. Nat Microbiol. 2, 17037
3. Barbier V, Lang D, Valois S, Rothman AL, Medin CL. (2017) Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission. Virology. 500, 149-160.
4. Benard G, Bellance N, James D, Parrone P, Fernandez H, Letellier T, Rossignol R. (2007) Mitochondrial bioenergetics and structural network organization. J Cell Sci. 120, 838-848.
5. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI. (2013) The global distribution and burden of dengue. Nature. 496, 504-507.
6. Brabant M, Baux L, Casimir R, Briand JP, Chaloin O, Porceddu M, Buron N, Chauvier D, Lassalle M, Lecoeur H, Langonné A, Dupont S, Déas O, Brenner C, Rebouillat D, Muller S, Borgne-Sanchez A, Jacotot E. (2009) A flavivirus protein M-derived peptide directly permeabilizes mitochondrial membranes, triggers cell death and reduces human tumor growth in nude mice. Apoptosis. 14, 190–203.
7. Castanier C, Garcin D, Vazquez A, Arnoult D. (2010) Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway. EMBO Rep. 11, 133-138.
8. Chambers TJ, Hahn CS, Galler R, Rice CM. (1990) Flavivirus genome organization, expression, and replication. Annu Rev Microbiol. 44, 649-688.
9. Chatel-Chaix L, and Bartenschlager R. (2014) Dengue virus- and hepatitis C virus-induced replication and assembly compartments: the enemy inside–caught in the web. J Virol. 88, 5907–5911.
10. Chatel-Chaix L, Cortese M, Romero-Brey I, Bender S, Neufeldt CJ, Fischl W,
Scaturro P, Schieber N, Schwab Y, Fischer B, Ruggieri A, Bartenschlager R.
(2016) Dengue virus perturbs mitochondrial morphodynamics to dampen innate immune responses. Cell Host Microbe. 20, 342-356.
11. Choksi KB, Nuss JE, DeFord JH, Papaconstantinou J. (2011) Mitochondrial electron transport chain functions in long-lived Ames dwarf mice. Aging (Albany NY) 3, 754-67.
12. Deretic V, Levine B. (2009) Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5, 527–549.
13. Elmore SP, Qian T, Grissom SF, Lemasters JJ. (2001) The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB J 15, 2286–2287.
14. Ewers H, Schelhaas M. (2012) Analysis of virus entry and cellular membrane dynamics by single particle tracking. Methods Enzymol. 506, 63-80.
15. Falgout B, Pethel M, Zhang YM, Lai CJ. (1991) Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. J Virol. 65, 2467–2475.
16. Gubler DJ, Clark GG. (1995) Dengue/dengue hemorrhagic fever: the emergence of a global health problem. Emerg Infect Dis. 1, 55–57.
17. Heaton NS, Randall G. (2011) Dengue virus and autophagy. Viruses 3, 1332–1341.
18. Heaton NS, Randall G. (2010) Dengue virus induced autophagy regulates lipid metabolism. Cell Host Microbe. 8, 422-432.
19. Heaton NS, Randall G. (2011) Multifaceted roles for lipids in viral infection. Trends Microbiol. 19, 368-375.
20. Heaton NS, Perera R, Berger KL, Khadka S, Lacount DJ, Kuhn RJ, Randall G. (2010) Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. Proc Natl Acad Sci U S A. 107, 17345-1750.
21. Horner SM, Liu HM, Park HS, Briley J, Gale M Jr. (2011) Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proc Natl Acad Sci USA. 108, 14590–14595.
22. Idrees S, Ashfaq UA. (2012) A brief review on dengue molecular virology, diagnosis, treatment and prevalence in Pakistan. Genet Vaccines Ther. 10, 6.
23. Ishihara N, Jofuku A, Eura Y, Mihara K. (2003) Regulation of mitochondrial morphology by membrane potential, and DRP1-dependent division and FZO1-dependent fusion reaction in mammalian cells. Biochem Biophys Res Commun. 301, 891–898.
24. Kayar SR, Hoppeler H, Mermod L, Weibel ER. (1988) Mitochondrial size and shape in equine skeletal muscle: a three-dimensional reconstruction study. Anat Rec. 222, 333-339.
25. Kell A, Stoddard M, Li H, Marcotrigiano J, Shaw GM, Gale M Jr4. (2015) Pathogen-associated molecular pattern recognition of hepatitis C virus transmitted/founder variants by RIG-I is dependent on U-core length. J Virol. 89, 11056–11068.
26. Khan M, Syed GH, Kim SJ, Siddiqui A. (2015) Mitochondrial dynamics and viral infections: A close nexus. Biochim Biophys Acta. 1853, 2822-2833.
27. Kühlbrandt W. (2015) Structure and function of mitochondrial membrane protein complexes. BMC Biol. 13, 89.
28. Legros F, Lombes A, Frachon P, Rojo M. (2002) Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol Biol Cell. 13, 4343–4354.
29. Liu WJ, Chen HB, Wang XJ, Huang H, Khromykh AA. (2004) Analysis of adaptive mutations in Kunjin virus replicon RNA reveals a novel role for the flavivirus nonstructural protein NS2A in inhibition of beta interferon promoter-driven transcription. J Virol. 78, 12225-12235.
30. Loo YM, Gale M Jr. (2011) Immune signaling by RIG-I-like receptors. Immunity 34, 680–692.
31. Mackenzie J. (2005) Wrapping things up about virus RNA replication. Traffic. 6, 967-977.
32. Malka F, Guillery O, Cifuentes-Diaz C, Guillou E, Belenguer P, Lombes A, Rojo M. (2005) Separate fusion of outer and inner mitochondrial membranes. EMBO Rep. 6, 853–859.
33. McBride HM, Neuspiel M, Wasiak S. (2006) Mitochondria:more than just a powerhouse. Curr Biol. 16, R551–R560.
34. Nunnari J, Suomalainen A. (2012) Mitochondria: in sickness and in health. Cell. 148, 1145-1159.
35. Peng JY, Lin CC, Chen YJ, Kao LS, Liu YC, Chou CC, Huang YH, Chang FR, Wu YC, Tsai YS, Hsu CN. (2011) Automatic morphological subtyping reveals new roles of caspases in mitochondrial dynamics. PLoS Comput Biol. 7, e1002212.
36. Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA. (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques. 50, 98-115.
37. Picard M, Shirihai OS, Gentil BJ, Burelle Y. (2013) Mitochondrial morphology transitions and functions: implications for retrograde signaling? Am J Physiol Regul Integr Comp Physiol.304, R393-R406.
38. Plecitá-Hlavatá L, Lessard M, Santorová J, Bewersdorf J, Jezek P. (2008) Mitochondrial oxidative phosphorylation and energetic status are reflected by morphology of mitochondrial network in INS-1E and HEP-G2 cells viewed by 4Pi microscopy. Biochim Biophys Acta. 1777, 834-846.
39. Priault M, Salin B, Schaeffer J, Vallette FM, di Rago JP, Martinou JC. (2005) Impairing the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast. Cell Death Differ. 12, 1613–1621.
40. Rigau-Perez JG, Clark GG, Gubler DJ, Reiter P, Sanders EJ, Vorndam AV. (1998) Dengue and dengue haemorrhagic fever. Lancet. 352, 971-977.
41. Kang R, Zeh HJ, Lotze MT, Tang D. (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 18, 571–580.
42. Rodenhuis-Zybert IA, Wilschut J, Smit JM. (2010) Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci. 67, 2773-2786.
43. Scott I, Richard J. (2010) Mitochondrial fission and fusion. Essays Biochem. 47, 85–98.
44. Seth RB, Sun L, Ea CK, Chen ZJ. (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF 3. Cell 122, 669–682.
45. Sumpter R Jr, Loo YM, Foy E, Li K, Yoneyama M, Fujita T, Lemon SM, Gale M Jr. (2005) Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. J Virol. 79, 2689–2699.
46. Tanner NK, Linder P. (2001) DExD/H box RNA helicases: from generic motors to specific dissociation functions. Mol Cell. 8, 251-262.
47. Taylor MP, Kirkegaard K. (2007) Modification of cellular autophagy protein LC3 by poliovirus. J Virol. 81, 12543–12553.
48. Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS. (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433-446.
49. van der Bliek AM, Shen Q, Kawajiri S. (2013) Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol. 5: a011072.
50. van der Schaar HM, Rust MJ, Chen C, van der Ende-Metselaar H, Wilschut J, Zhuang X, Smit JM. (2008) Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. PLoS Pathog. 4:e1000244.
51. Xie X, Gayen S, Kang C, Yuan Z, Shi PY. (2013) Membrane topology and function of dengue virus NS2A protein. J Virol. 87, 4609-4622.
52. Yoon, SY, Ha YE, Choi JE, Ahn J, Lee H, Kweon HS, Lee JY, Kim DH. (2008) Coxsackievirus B4 uses autophagy for replication after calpain activation in rat primary neurons. J Virol. 82, 11976–11978.
53. Yu CY, Liang JJ, Li JK, Lee YL, Chang BL, Su CI. (2015) Dengue virus impairs mitochondrial fusion by cleaving mitofusins. PLoS Pathog. 11, e1005350.
54. Zhang W, Chipman PR, Corver J, Johnson PR, Zhang Y, Mukhopadhyay S, Baker TS, Strauss JH, Rossmann MG, Kuhn RJ. (2003) Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat Struct Biol. 10, 907-912.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊