|
1. Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S.W., Zarghami, N., et al. 2013. Liposome: classification, preparation, and applications. Nanoscale Res Lett 8, 102. 2. Allen, T., 2006. Pharmacokinetics and Biopharmaceutics of Lipid-Based Drug Formulations. Liposome Technology, Volume III, Informa Healthcare, pp. 49-64. 3. Alves, I.D., Carre, M., Montero, M.P., Castano, S., Lecomte, S., et al. 2014. A proapoptotic peptide conjugated to penetratin selectively inhibits tumor cell growth. Biochim Biophys Acta 1838, 2087-2098. 4. Amin, K., Dannenfelser, R.M. 2006. In vitro hemolysis: guidance for the pharmaceutical scientist. J Pharm Sci 95, 1173-1176. 5. Arumugam, T., Ramachandran, V., Fournier, K.F., Wang, H., Marquis, L., et al. 2009. Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res 69, 5820-5828. 6. Bondi, M.L., Azzolina, A., Craparo, E.F., Lampiasi, N., Capuano, G., et al. 2007. Novel cationic solid-lipid nanoparticles as non-viral vectors for gene delivery. J Drug Target 15, 295-301. 7. Bozzuto, G., Molinari, A. 2015. Liposomes as nanomedical devices. Int J Nanomedicine 10, 975-999. 8. Brand, C., Schliemann, C., Ring, J., Kessler, T., Baumer, S., et al. 2016. NG2 proteoglycan as a pericyte target for anticancer therapy by tumor vessel infarction with retargeted tissue factor. Oncotarget 7, 6774-6789. 9. Brodin, L., Low, P., Shupliakov, O. 2000. Sequential steps in clathrin-mediated synaptic vesicle endocytosis. Curr Opin Neurobiol 10, 312-320. 10. Burg, M.A., Pasqualini, R., Arap, W., Ruoslahti, E., Stallcup, W.B. 1999. NG2 proteoglycan-binding peptides target tumor neovasculature. Cancer Res 59, 2869-2874. 11. Burns, K.E., McCleerey, T.P., Thevenin, D. 2016. pH-Selective Cytotoxicity of pHLIP-Antimicrobial Peptide Conjugates. Sci Rep 6, 28465. 12. Ceppi, P., Mudduluru, G., Kumarswamy, R., Rapa, I., Scagliotti, G.V., et al. 2010. Loss of miR-200c expression induces an aggressive, invasive, and chemoresistant phenotype in non-small cell lung cancer. Mol Cancer Res 8, 1207-1216. 13. Chen, J., Wang, W., Zhang, Y., Hu, T., Chen, Y. 2014. The roles of miR-200c in colon cancer and associated molecular mechanisms. Tumour Biol 35, 6475-6483. 14. Chen, W., Li, H., Liu, Z., Yuan, W. 2016. Lipopolyplex for Therapeutic Gene Delivery and Its Application for the Treatment of Parkinson's Disease. Front Aging Neurosci 8, 68. 15. Chiang, Y.T., Lo, C.L. 2014. pH-responsive polymer-liposomes for intracellular drug delivery and tumor extracellular matrix switched-on targeted cancer therapy. Biomaterials 35, 5414-5424. 16. Chien, C.T., Yan, J.Y., Chiu, W.C., Wu, T.H., Liu, C.Y., et al. 2013. Caged Pt nanoclusters exhibiting corrodibility to exert tumor-inside activation for anticancer chemotherapeutics. Adv Mater 25, 5067-5073. 17. Conniot, J., Silva, J.M., Fernandes, J.G., Silva, L.C., Gaspar, R., et al. 2014. Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking. Front Chem 2, 105. 18. Dobrovolskaia, M.A., Clogston, J.D., Neun, B.W., Hall, J.B., Patri, A.K., et al. 2008. Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett 8, 2180-2187. 19. Du, J.Z., Du, X.J., Mao, C.Q., Wang, J. 2011. Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery. J Am Chem Soc 133, 17560-17563. 20. Du, Y., Zhang, W., He, R., Ismail, M., Ling, L., et al. 2017. Dual 7-ethyl-10-hydroxycamptothecin conjugated phospholipid prodrug assembled liposomes with in vitro anticancer effects. Bioorg Med Chem 25, 3247-3258. 21. Ezzati Nazhad Dolatabadi, J., Valizadeh, H., Hamishehkar, H. 2015. Solid Lipid Nanoparticles as Efficient Drug and Gene Delivery Systems: Recent Breakthroughs. Adv Pharm Bull 5, 151-159. 22. Ghahhari, N.M., Babashah, S. 2015. Interplay between microRNAs and WNT/beta-catenin signalling pathway regulates epithelial-mesenchymal transition in cancer. Eur J Cancer 51, 1638-1649. 23. Gottesman, M.M., Fojo, T., Bates, S.E. 2002. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2, 48-58. 24. Hur, K., Toiyama, Y., Takahashi, M., Balaguer, F., Nagasaka, T., et al. 2013. MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis. Gut 62, 1315-1326. 25. Iorio, M.V., Croce, C.M. 2012. microRNA involvement in human cancer. Carcinogenesis 33, 1126-1133. 26. Jiang, L., Li, L., He, X., Yi, Q., He, B., et al. 2015. Overcoming drug-resistant lung cancer by paclitaxel loaded dual-functional liposomes with mitochondria targeting and pH-response. Biomaterials 52, 126-139. 27. Jones, S.W., Christison, R., Bundell, K., Voyce, C.J., Brockbank, S.M., et al. 2005. Characterisation of cell-penetrating peptide-mediated peptide delivery. Br J Pharmacol 145, 1093-1102. 28. Kou, L., Sun, J., Zhai, Y., He, Z. 2013. The endocytosis and intracellular fate of nanomedicines: Implication for rational design. Asian Journal of Pharmaceutical Sciences 8, 1-10. 29. Lee, Y.K., Lin, T.H., Chang, C.F., Lo, Y.L. 2013. Galectin-3 silencing inhibits epirubicin-induced ATP binding cassette transporters and activates the mitochondrial apoptosis pathway via beta-catenin/GSK-3beta modulation in colorectal carcinoma. PLoS One 8, e82478. 30. Lerner, M., Haneklaus, M., Harada, M., Grander, D. 2012. MiR-200c regulates Noxa expression and sensitivity to proteasomal inhibitors. PLoS One 7, e36490. 31. Lin, K.H., Hong, S.T., Wang, H.T., Lo, Y.L., Lin, A.M., et al. 2016. Enhancing Anticancer Effect of Gefitinib across the Blood-Brain Barrier Model Using Liposomes Modified with One alpha-Helical Cell-Penetrating Peptide or Glutathione and Tween 80. Int J Mol Sci 17. 32. Liu, J., Meng, T., Yuan, M., Wen, L., Cheng, B., et al. 2016. MicroRNA-200c delivered by solid lipid nanoparticles enhances the effect of paclitaxel on breast cancer stem cell. Int J Nanomedicine 11, 6713-6725. 33. MacEwan, S.R., Callahan, D.J., Chilkoti, A. 2010. Stimulus-responsive macromolecules and nanoparticles for cancer drug delivery. Nanomedicine (Lond) 5, 793-806. 34. Macfarlane, L.A., Murphy, P.R. 2010. MicroRNA: Biogenesis, Function and Role in Cancer. Curr Genomics 11, 537-561. 35. Mishra, P., Nayak, B., Dey, R.K. 2016. PEGylation in anti-cancer therapy: An overview. Asian Journal of Pharmaceutical Sciences 11, 337-348. 36. Mukherjee, S., Ray, S., Thakur, R.S. 2009. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci 71, 349-358. 37. Mutlu, M., Raza, U., Saatci, O., Eyupoglu, E., Yurdusev, E., et al. 2016. miR-200c: a versatile watchdog in cancer progression, EMT, and drug resistance. J Mol Med (Berl) 94, 629-644. 38. Park, H., Tsutsumi, H., Mihara, H. 2014. Cell-selective intracellular drug delivery using doxorubicin and alpha-helical peptides conjugated to gold nanoparticles. Biomaterials 35, 3480-3487. 39. Petros, R.A., DeSimone, J.M. 2010. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9, 615-627. 40. Qifan, W., Fen, N., Ying, X., Xinwei, F., Jun, D., et al. 2016. iRGD-targeted delivery of a pro-apoptotic peptide activated by cathepsin B inhibits tumor growth and metastasis in mice. Tumour Biol 37, 10643-10652. 41. Ravi, R., Jain, A.J., Schulick, R.D., Pham, V., Prouser, T.S., et al. 2004. Elimination of hepatic metastases of colon cancer cells via p53-independent cross-talk between irinotecan and Apo2 ligand/TRAIL. Cancer Res 64, 9105-9114. 42. Reddy, T.L., Garikapati, K.R., Reddy, S.G., Reddy, B.V., Yadav, J.S., et al. 2016. Simultaneous delivery of Paclitaxel and Bcl-2 siRNA via pH-Sensitive liposomal nanocarrier for the synergistic treatment of melanoma. Sci Rep 6, 35223. 43. Sahay, G., Alakhova, D.Y., Kabanov, A.V. 2010. Endocytosis of nanomedicines. J Control Release 145, 182-195. 44. Siegel, R.L., Miller, K.D., Jemal, A. 2015. Cancer statistics, 2015. CA Cancer J Clin 65, 5-29. 45. Suhovskih, A.V., Aidagulova, S.V., Kashuba, V.I., Grigorieva, E.V. 2015. Proteoglycans as potential microenvironmental biomarkers for colon cancer. Cell Tissue Res 361, 833-844. 46. Sun, T., Zhang, Y.S., Pang, B., Hyun, D.C., Yang, M., et al. 2014. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl 53, 12320-12364. 47. Takeba, Y., Sekine, S., Kumai, T., Matsumoto, N., Nakaya, S., et al. 2007. Irinotecan-induced apoptosis is inhibited by increased P-glycoprotein expression and decreased p53 in human hepatocellular carcinoma cells. Biol Pharm Bull 30, 1400-1406. 48. Tanaka, S., Hosokawa, M., Yonezawa, T., Hayashi, W., Ueda, K., et al. 2015. Induction of epithelial-mesenchymal transition and down-regulation of miR-200c and miR-141 in oxaliplatin-resistant colorectal cancer cells. Biol Pharm Bull 38, 435-440. 49. Torchilin, V.P. 2008. Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv Drug Deliv Rev 60, 548-558. 50. Ueno, M., Nonaka, S., Yamazaki, R., Deguchi, N., Murai, M. 2002. SN-38 induces cell cycle arrest and apoptosis in human testicular cancer. Eur Urol 42, 390-397. 51. Usui, K., Kikuchi, T., Mie, M., Kobatake, E., Mihara, H. 2013. Systematic screening of the cellular uptake of designed alpha-helix peptides. Bioorg Med Chem 21, 2560-2567. 52. Wang, F., Wang, Y., Zhang, X., Zhang, W., Guo, S., et al. 2014. Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery. J Control Release 174, 126-136. 53. Wang, G., Yuan, N., Huang, S., Feng, L., Han, R., et al. 2017. The CNGRCLLII(KLAKLAK)2 peptide shows cytotoxicity against HUVECs by inducing apoptosis: An in vitro and in vivo study. Tumour Biol 39, 1010428317701649. 54. Whitacre, C.M., Zborowska, E., Willson, J.K., Berger, N.A. 1999. Detection of poly(ADP-ribose) polymerase cleavage in response to treatment with topoisomerase I inhibitors: a potential surrogate end point to assess treatment effectiveness. Clin Cancer Res 5, 665-672. 55. Win, K.Y., Feng, S.S. 2005. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 26, 2713-2722. 56. Xia, Y., Tian, J., Chen, X. 2016. Effect of surface properties on liposomal siRNA delivery. Biomaterials 79, 56-68. 57. Yuan, M., Qiu, Y., Zhang, L., Gao, H., He, Q. 2016. Targeted delivery of transferrin and TAT co-modified liposomes encapsulating both paclitaxel and doxorubicin for melanoma. Drug Deliv 23, 1171-1183. 58. Zhang, B., Wang, T., Yang, S., Xiao, Y., Song, Y., et al. 2016. Development and evaluation of oxaliplatin and irinotecan co-loaded liposomes for enhanced colorectal cancer therapy. J Control Release 238, 10-21. 59. Zhang, L., Tian, B., Li, Y., Lei, T., Meng, J., et al. 2015a. A Copper-Mediated Disulfiram-Loaded pH-Triggered PEG-Shedding TAT Peptide-Modified Lipid Nanocapsules for Use in Tumor Therapy. ACS Appl Mater Interfaces 7, 25147-25161. 60. Zhang, L., Wang, Y., Yang, Y., Liu, Y., Ruan, S., et al. 2015b. High Tumor Penetration of Paclitaxel Loaded pH-sensitive Cleavable Liposomes by Depletion of Tumor Collagen I in Breast Cancer. ACS Appl Mater Interfaces 7, 9691-9701.
|