跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/17 02:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊雅茵
研究生(外文):VIVIAN HSIEH JUANG
論文名稱:探討雙功能微脂體遞送微小RNA和irinotecan 以抑制結腸直腸癌之效應及機轉
論文名稱(外文):The effect and mechanism of microRNA- and irinotecan-loaded dual-functional liposomes for inhibition of colorectal cancer
指導教授:駱雨利駱雨利引用關係
指導教授(外文):Yu-Li Lo
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:77
中文關鍵詞:結直腸癌固體脂質奈米粒子微小RNA胜肽修飾微脂體pH敏感性
外文關鍵詞:colorectal canceririnotecansolid lipid nanoparticlesmiRNApeptide-modified liposomespH-responsive
相關次數:
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
結直腸癌(CRC)發生率在世界癌症排名中位居第三,而且近期不斷增加。Irinotecan是治療結腸直腸癌的主要化療藥物之一,另外,加強癌細胞對化學治療藥物的敏感性能夠增加結腸直腸癌治療的效果並且降低化學治療藥物的副作用,所以在本研究中,使用固體脂質奈米粒子(SLNs)包覆功能性的微小RNA (microRNA),希望能進一步增加Irinotecan的細胞毒性。然而,抗癌藥物在體內非選擇性分布常會損害正常細胞,因此利用微脂體遞送化療藥物能夠透過被動或主動標的將藥物確實地運送至腫瘤部位。於是我們建構了一個多功能微脂體載體運送Irinotecan,此載體同時具有pH敏感的特性,也在粒子表面修飾上具有各式功能的胜肽,以增加藥物積聚在腫瘤的效果,另一方面,將microRNA有效的包覆在SLN當中,與包覆irinotecan的微脂體合併給藥。胜肽修飾的微脂體和帶正電的固體脂質納米粒子皆為球形顆粒且粒子分布均勻,我們發現胜肽修飾的微脂體比沒有修飾的微脂體細胞攝取量更多,因此將修飾的微脂體包覆irinotecan給予細胞之後,能夠有效的降低結腸直腸癌細胞的存活率。當合併給予microRNA更能夠增加irinotecan處理的結腸直腸癌細胞之毒性。其抑制細胞生長的效果可能來自於irinotecan本身抑制細胞生長的能力以及功能性的microRNA兩者組合後的效應,我們推測誘導細胞凋亡是此合併給藥最主要造成細胞毒性的原因。此外,miR-b能夠調節EMT途徑並且阻止癌細胞遷移。總而言之,microRNA和irinotecan包覆雙功能脂質體的合併治療可以提供作為抑制結腸癌細胞生長的新方法。
The incidence of colorectal cancer (CRC) is the third in cancers around the world and keeps increasing recently. Irinotecan is one of the main chemotherapeutic agents for CRC. Sensitizing cancer cells to chemotherapeutic drugs enhanced the treatment toward colorectal cancer and decreased side effects along with chemotherapeutic drugs. Using microRNA entrapped in solid lipid nanoparticles (SLNs) would further increase the cytotoxicity of irinotecan. However, non-selective anticancer drugs usually damage normal cells. Thus, liposomes are able to deliver drugs to the tumor sites by passive or active targeting. In the present study, we constructed irinotecan-loaded multi-functional liposomes that respond to the extracellular low pH. miRNA entrapped in SLNs were combined with the liposomes to enhance the cytotoxic effects. The peptide-modified liposomes and positively charged solid lipid nanoparticles (SLNs) displayed sphere particles and narrow size distribution. Greater cellular uptake was found in peptide-conjugated liposomes than that of liposomes without modification. The cell viability of colorectal cancer cells treated with these liposomes was reduced. Delivery of microRNA by SLNs would be able to further increase the cytotoxicity of colorectal cancer cells treated with irinotecan peptide-modified liposomes. Cell growth inhibition attributes to the combined effect of irinotecan and miR-b. We found that apoptosis was accounted for the cytotoxic effect of the combined therapy. Furthermore, miRNA additionally modulated the EMT pathway and downregulated the cancer cell migration. Collectively, the combination therapy of microRNA and irinotecan-loaded dual-functional liposomes may provide a novel approach to inhibit colon cancer cell growth.
Contents
中文摘要 i
Abstract ii
Contents iii
Figure contents viii
Table contents ix
Chapter 1 Introduction 1
1. Colorectal cancer 1
2. Irinotecan 1
2.1. Irinotecan and its induction of apoptosis 1
2.2. Irinotecan and multidrug resistance 2
3. MicroRNA (miRNA or miR) 2
4. miR-b 3
4.1. miR-b regulates epithelial-mesenchymal transition (EMT) pathway 3
4.2. miR-b increases sensitivity of cancer cells to chemotherapeutic drug 3
4.3. miR-b correlates with WNT/β-catenin signaling pathway 4
5. Delivery of genes and chemical drugs 4
6. Solid lipid nanoparticle (SLN) 5
7. Liposomes (Lip) 5
7.1. The EPR effect and passive tumor targeting 6
7.2. PEGylation 7
7.3. Onyvide® (irinotecan liposome injection) 7
7.4. Active targeting 8
7.5. Cell penetrating peptides (CPPs) 8
7.6. RF peptides (RF) 9
7.7. K peptides 10
7.8. H peptides 10
8. Stimulus-responsive carriers 11
8.1. pH-sensitive drug release 11
Chapter 3 Experimental design 14
Chapter 4 Materials 15
1. Preparation of SLNs 15
2. Preparation of liposomes 15
3. microRNA 16
4. Drug 16
5. Peptides 16
6. HPLC-UV 16
7. Encapsulation efficiency 16
8. Transmission electron microscopy (TEM) 17
9. In vitro release 17
10. Cell culture 17
11. Cellular uptake and pathway 17
12. Intracellular accumulation 18
13. Transfection efficiency 18
14. Hemolysis test 18
15. Cytotoxicity 19
16. Apoptosis analysis 19
17. Western blot 19
18. Caspase activity assay 19
19. Realtime PCR 19
20. Migration assay 20
21. Primary antibody 20
22. Secondary antibody 21
23. Instruments 21
Chapter 5 Methods 22
1. Synthesis of DSPE-PEG-peptide 22
2. Synthesis of DSPE-imine-omPEG 22
3. Preparation of solid lipid nanoparticles (SLN) 22
4. Preparation and characterization of liposomes 23
5. Stability of liposome 24
6. pH-triggered release (In vitro release study). 24
7. Encapsulation efficiency (EE %) 24
8. pH-induced size and zeta potential change 25
9. Cell lines 25
10. Transfection efficiency 25
11. Cellular uptake 25
12. Identification of cellular uptake pathways 26
13. Intracellular localization in different pH condition 26
14. Hemolysis assay 26
15. Cell viability assays: SRB assay 27
16. Cell apoptosis 27
17. Detection of cell cycle by propidium iodide (PI) staining 27
18. Caspase activity assay 28
19. Real-time PCR quantification of mRNA 28
20. Migration assay 28
21. Western blot assay 29
22. Statistical analysis 29
Chapter 6 Results 30
1. Cytotoxicity of peptide-modified liposomes in CT26 cells. 30
2. Synthesis of DSPE-PEG-peptide and DSPE-omPEG 30
3. Characterization of solid lipid nanoparticles (SLNs) 31
4. Characterization of liposomes (Lip) 31
5. The stability of liposomes 32
6. In Vitro release of irinotecan pH-responsive liposomes 32
7. Characterization of pH-responsive liposomes (omLip-RFKH) 33
8. Cellular uptake of pH-responsive peptide-modified liposomes 33
9. Intracellular distribution of pH-responsive liposomes 34
10. Cellular uptake of peptide-modified liposomes 34
11. Cellular uptake mechanism of RF, K and H-conjugated liposomes 35
12. Transfection efficiency of miRNA (miR-b-FAM) 36
13. Hemolysis assay 37
14. Cytotoxic effect of blank formulations 37
15. Cytotoxic effect of different formulations 37
16. Apoptosis analysis 38
17. Cell cycle analysis 39
18. mRNA expression levels of apoptosis 39
19. Protein expression levels of apoptosis 40
20. Activity assay of apoptosis-related proteins 40
21. Protein expression levels of Wnt/β-catenin pathway 41
22. Protein expression levels of MDR pathway 41
23. Migration assay and the protein expression levels of EMT pathway 42
Chapter 7 Discussion 44
1. Conjugation of PEGylated lipids and peptides 44
2. Characterization of solid lipid nanoparticles and liposomes 44
3. pH-responsive liposomes as tumor site selective delivery systems 45
4. Endosomal escape of SLNs and omLip-RFKH 46
5. Cellular uptake mechanism of Lip-RFKH 47
6. SLNs as transfection reagents 48
7. Toxicological study 49
8. Irinotecan as an apoptosis inducer 50
9. miR-b as a migration inhibitor 51
10. miR-b as a chemotherapeutic sensitizer 52
Chapter 8 Conclusions 54
Chapter 9 References 55
Chapter 10 Figures 60

Figure contents
Figure 1. Cytotoxicity of peptide-modified liposomes on CT26 cells. 60
Figure 2. Characterization of peptide-modified PEG-lipids and pH-sensitive lipid. 62
Figure 3. Characterization of solid lipid nanoparticles (SLNs) and peptide-modified liposomes loaded with irinotecan. 64
Figure 4. Characterization of peptide-modified liposomes loaded with irinotecan. 65
Figure 5. Characterization of pH-sensitive liposomes. 68
Figure 6. Cellular uptake of DiI labeled peptide-modified liposomes 69
Figure 7. Transfection efficiency of miR-b-FAM in HCT116 cells. 70
Figure 8. The toxicity of liposomal formulation 71
Figure 9. Cytotoxic effects of peptide-modified liposomes. 73
Figure 10. Apoptosis analysis of the combination of miR-b and irinotecan-loaded peptide-modified liposomes in HCT116 cells. 74
Figure 11. Effects of the combination of miR-b and irinotecan-loaded liposomes on mRNA and protein expression levels of apoptosis pathway. 75
Figure 12. Effects of the combination of miR-b and irinotecan-loaded peptide-modified liposomes on protein expression levels of Wnt/β-catenin and MDR pathway. 76
Figure 13. Effects of the combination of miR-b and irinotecan-loaded peptide-modified liposomes on the migration width and the relative protein expression levels. 77

Table contents
Table 1. Characterization of solid lipid nanoparticles (SLNs) and peptide-modified liposomes loaded with irinotecan. 63
Table 2. Characterization of pH-responsive peptide-modified liposomes under pH 6.5. 66
1. Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S.W., Zarghami, N., et al. 2013. Liposome: classification, preparation, and applications. Nanoscale Res Lett 8, 102.
2. Allen, T., 2006. Pharmacokinetics and Biopharmaceutics of Lipid-Based Drug Formulations. Liposome Technology, Volume III, Informa Healthcare, pp. 49-64.
3. Alves, I.D., Carre, M., Montero, M.P., Castano, S., Lecomte, S., et al. 2014. A proapoptotic peptide conjugated to penetratin selectively inhibits tumor cell growth. Biochim Biophys Acta 1838, 2087-2098.
4. Amin, K., Dannenfelser, R.M. 2006. In vitro hemolysis: guidance for the pharmaceutical scientist. J Pharm Sci 95, 1173-1176.
5. Arumugam, T., Ramachandran, V., Fournier, K.F., Wang, H., Marquis, L., et al. 2009. Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res 69, 5820-5828.
6. Bondi, M.L., Azzolina, A., Craparo, E.F., Lampiasi, N., Capuano, G., et al. 2007. Novel cationic solid-lipid nanoparticles as non-viral vectors for gene delivery. J Drug Target 15, 295-301.
7. Bozzuto, G., Molinari, A. 2015. Liposomes as nanomedical devices. Int J Nanomedicine 10, 975-999.
8. Brand, C., Schliemann, C., Ring, J., Kessler, T., Baumer, S., et al. 2016. NG2 proteoglycan as a pericyte target for anticancer therapy by tumor vessel infarction with retargeted tissue factor. Oncotarget 7, 6774-6789.
9. Brodin, L., Low, P., Shupliakov, O. 2000. Sequential steps in clathrin-mediated synaptic vesicle endocytosis. Curr Opin Neurobiol 10, 312-320.
10. Burg, M.A., Pasqualini, R., Arap, W., Ruoslahti, E., Stallcup, W.B. 1999. NG2 proteoglycan-binding peptides target tumor neovasculature. Cancer Res 59, 2869-2874.
11. Burns, K.E., McCleerey, T.P., Thevenin, D. 2016. pH-Selective Cytotoxicity of pHLIP-Antimicrobial Peptide Conjugates. Sci Rep 6, 28465.
12. Ceppi, P., Mudduluru, G., Kumarswamy, R., Rapa, I., Scagliotti, G.V., et al. 2010. Loss of miR-200c expression induces an aggressive, invasive, and chemoresistant phenotype in non-small cell lung cancer. Mol Cancer Res 8, 1207-1216.
13. Chen, J., Wang, W., Zhang, Y., Hu, T., Chen, Y. 2014. The roles of miR-200c in colon cancer and associated molecular mechanisms. Tumour Biol 35, 6475-6483.
14. Chen, W., Li, H., Liu, Z., Yuan, W. 2016. Lipopolyplex for Therapeutic Gene Delivery and Its Application for the Treatment of Parkinson's Disease. Front Aging Neurosci 8, 68.
15. Chiang, Y.T., Lo, C.L. 2014. pH-responsive polymer-liposomes for intracellular drug delivery and tumor extracellular matrix switched-on targeted cancer therapy. Biomaterials 35, 5414-5424.
16. Chien, C.T., Yan, J.Y., Chiu, W.C., Wu, T.H., Liu, C.Y., et al. 2013. Caged Pt nanoclusters exhibiting corrodibility to exert tumor-inside activation for anticancer chemotherapeutics. Adv Mater 25, 5067-5073.
17. Conniot, J., Silva, J.M., Fernandes, J.G., Silva, L.C., Gaspar, R., et al. 2014. Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking. Front Chem 2, 105.
18. Dobrovolskaia, M.A., Clogston, J.D., Neun, B.W., Hall, J.B., Patri, A.K., et al. 2008. Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett 8, 2180-2187.
19. Du, J.Z., Du, X.J., Mao, C.Q., Wang, J. 2011. Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery. J Am Chem Soc 133, 17560-17563.
20. Du, Y., Zhang, W., He, R., Ismail, M., Ling, L., et al. 2017. Dual 7-ethyl-10-hydroxycamptothecin conjugated phospholipid prodrug assembled liposomes with in vitro anticancer effects. Bioorg Med Chem 25, 3247-3258.
21. Ezzati Nazhad Dolatabadi, J., Valizadeh, H., Hamishehkar, H. 2015. Solid Lipid Nanoparticles as Efficient Drug and Gene Delivery Systems: Recent Breakthroughs. Adv Pharm Bull 5, 151-159.
22. Ghahhari, N.M., Babashah, S. 2015. Interplay between microRNAs and WNT/beta-catenin signalling pathway regulates epithelial-mesenchymal transition in cancer. Eur J Cancer 51, 1638-1649.
23. Gottesman, M.M., Fojo, T., Bates, S.E. 2002. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2, 48-58.
24. Hur, K., Toiyama, Y., Takahashi, M., Balaguer, F., Nagasaka, T., et al. 2013. MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis. Gut 62, 1315-1326.
25. Iorio, M.V., Croce, C.M. 2012. microRNA involvement in human cancer. Carcinogenesis 33, 1126-1133.
26. Jiang, L., Li, L., He, X., Yi, Q., He, B., et al. 2015. Overcoming drug-resistant lung cancer by paclitaxel loaded dual-functional liposomes with mitochondria targeting and pH-response. Biomaterials 52, 126-139.
27. Jones, S.W., Christison, R., Bundell, K., Voyce, C.J., Brockbank, S.M., et al. 2005. Characterisation of cell-penetrating peptide-mediated peptide delivery. Br J Pharmacol 145, 1093-1102.
28. Kou, L., Sun, J., Zhai, Y., He, Z. 2013. The endocytosis and intracellular fate of nanomedicines: Implication for rational design. Asian Journal of Pharmaceutical Sciences 8, 1-10.
29. Lee, Y.K., Lin, T.H., Chang, C.F., Lo, Y.L. 2013. Galectin-3 silencing inhibits epirubicin-induced ATP binding cassette transporters and activates the mitochondrial apoptosis pathway via beta-catenin/GSK-3beta modulation in colorectal carcinoma. PLoS One 8, e82478.
30. Lerner, M., Haneklaus, M., Harada, M., Grander, D. 2012. MiR-200c regulates Noxa expression and sensitivity to proteasomal inhibitors. PLoS One 7, e36490.
31. Lin, K.H., Hong, S.T., Wang, H.T., Lo, Y.L., Lin, A.M., et al. 2016. Enhancing Anticancer Effect of Gefitinib across the Blood-Brain Barrier Model Using Liposomes Modified with One alpha-Helical Cell-Penetrating Peptide or Glutathione and Tween 80. Int J Mol Sci 17.
32. Liu, J., Meng, T., Yuan, M., Wen, L., Cheng, B., et al. 2016. MicroRNA-200c delivered by solid lipid nanoparticles enhances the effect of paclitaxel on breast cancer stem cell. Int J Nanomedicine 11, 6713-6725.
33. MacEwan, S.R., Callahan, D.J., Chilkoti, A. 2010. Stimulus-responsive macromolecules and nanoparticles for cancer drug delivery. Nanomedicine (Lond) 5, 793-806.
34. Macfarlane, L.A., Murphy, P.R. 2010. MicroRNA: Biogenesis, Function and Role in Cancer. Curr Genomics 11, 537-561.
35. Mishra, P., Nayak, B., Dey, R.K. 2016. PEGylation in anti-cancer therapy: An overview. Asian Journal of Pharmaceutical Sciences 11, 337-348.
36. Mukherjee, S., Ray, S., Thakur, R.S. 2009. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci 71, 349-358.
37. Mutlu, M., Raza, U., Saatci, O., Eyupoglu, E., Yurdusev, E., et al. 2016. miR-200c: a versatile watchdog in cancer progression, EMT, and drug resistance. J Mol Med (Berl) 94, 629-644.
38. Park, H., Tsutsumi, H., Mihara, H. 2014. Cell-selective intracellular drug delivery using doxorubicin and alpha-helical peptides conjugated to gold nanoparticles. Biomaterials 35, 3480-3487.
39. Petros, R.A., DeSimone, J.M. 2010. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9, 615-627.
40. Qifan, W., Fen, N., Ying, X., Xinwei, F., Jun, D., et al. 2016. iRGD-targeted delivery of a pro-apoptotic peptide activated by cathepsin B inhibits tumor growth and metastasis in mice. Tumour Biol 37, 10643-10652.
41. Ravi, R., Jain, A.J., Schulick, R.D., Pham, V., Prouser, T.S., et al. 2004. Elimination of hepatic metastases of colon cancer cells via p53-independent cross-talk between irinotecan and Apo2 ligand/TRAIL. Cancer Res 64, 9105-9114.
42. Reddy, T.L., Garikapati, K.R., Reddy, S.G., Reddy, B.V., Yadav, J.S., et al. 2016. Simultaneous delivery of Paclitaxel and Bcl-2 siRNA via pH-Sensitive liposomal nanocarrier for the synergistic treatment of melanoma. Sci Rep 6, 35223.
43. Sahay, G., Alakhova, D.Y., Kabanov, A.V. 2010. Endocytosis of nanomedicines. J Control Release 145, 182-195.
44. Siegel, R.L., Miller, K.D., Jemal, A. 2015. Cancer statistics, 2015. CA Cancer J Clin 65, 5-29.
45. Suhovskih, A.V., Aidagulova, S.V., Kashuba, V.I., Grigorieva, E.V. 2015. Proteoglycans as potential microenvironmental biomarkers for colon cancer. Cell Tissue Res 361, 833-844.
46. Sun, T., Zhang, Y.S., Pang, B., Hyun, D.C., Yang, M., et al. 2014. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl 53, 12320-12364.
47. Takeba, Y., Sekine, S., Kumai, T., Matsumoto, N., Nakaya, S., et al. 2007. Irinotecan-induced apoptosis is inhibited by increased P-glycoprotein expression and decreased p53 in human hepatocellular carcinoma cells. Biol Pharm Bull 30, 1400-1406.
48. Tanaka, S., Hosokawa, M., Yonezawa, T., Hayashi, W., Ueda, K., et al. 2015. Induction of epithelial-mesenchymal transition and down-regulation of miR-200c and miR-141 in oxaliplatin-resistant colorectal cancer cells. Biol Pharm Bull 38, 435-440.
49. Torchilin, V.P. 2008. Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv Drug Deliv Rev 60, 548-558.
50. Ueno, M., Nonaka, S., Yamazaki, R., Deguchi, N., Murai, M. 2002. SN-38 induces cell cycle arrest and apoptosis in human testicular cancer. Eur Urol 42, 390-397.
51. Usui, K., Kikuchi, T., Mie, M., Kobatake, E., Mihara, H. 2013. Systematic screening of the cellular uptake of designed alpha-helix peptides. Bioorg Med Chem 21, 2560-2567.
52. Wang, F., Wang, Y., Zhang, X., Zhang, W., Guo, S., et al. 2014. Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery. J Control Release 174, 126-136.
53. Wang, G., Yuan, N., Huang, S., Feng, L., Han, R., et al. 2017. The CNGRCLLII(KLAKLAK)2 peptide shows cytotoxicity against HUVECs by inducing apoptosis: An in vitro and in vivo study. Tumour Biol 39, 1010428317701649.
54. Whitacre, C.M., Zborowska, E., Willson, J.K., Berger, N.A. 1999. Detection of poly(ADP-ribose) polymerase cleavage in response to treatment with topoisomerase I inhibitors: a potential surrogate end point to assess treatment effectiveness. Clin Cancer Res 5, 665-672.
55. Win, K.Y., Feng, S.S. 2005. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 26, 2713-2722.
56. Xia, Y., Tian, J., Chen, X. 2016. Effect of surface properties on liposomal siRNA delivery. Biomaterials 79, 56-68.
57. Yuan, M., Qiu, Y., Zhang, L., Gao, H., He, Q. 2016. Targeted delivery of transferrin and TAT co-modified liposomes encapsulating both paclitaxel and doxorubicin for melanoma. Drug Deliv 23, 1171-1183.
58. Zhang, B., Wang, T., Yang, S., Xiao, Y., Song, Y., et al. 2016. Development and evaluation of oxaliplatin and irinotecan co-loaded liposomes for enhanced colorectal cancer therapy. J Control Release 238, 10-21.
59. Zhang, L., Tian, B., Li, Y., Lei, T., Meng, J., et al. 2015a. A Copper-Mediated Disulfiram-Loaded pH-Triggered PEG-Shedding TAT Peptide-Modified Lipid Nanocapsules for Use in Tumor Therapy. ACS Appl Mater Interfaces 7, 25147-25161.
60. Zhang, L., Wang, Y., Yang, Y., Liu, Y., Ruan, S., et al. 2015b. High Tumor Penetration of Paclitaxel Loaded pH-sensitive Cleavable Liposomes by Depletion of Tumor Collagen I in Breast Cancer. ACS Appl Mater Interfaces 7, 9691-9701.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊