跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/01/21 12:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳汶儒
研究生(外文):Wen-Ju Wu
論文名稱:利用人類誘導多功能幹細胞的技術來研究視網膜神經節細胞損傷模式的機制
論文名稱(外文):Using iPSC-based technology to investigate the mechanism of retinal-ganglion cell-damaged models
指導教授:邱士華邱士華引用關係
指導教授(外文):Shih-Hwa Chiou
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:54
中文關鍵詞:青光眼高滲透壓視網膜神經節細胞TRPV1
外文關鍵詞:GlaucomaHigh osmotic pressureRetinaRetinal ganglion cellTRPV1
相關次數:
  • 被引用被引用:0
  • 點閱點閱:370
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
青光眼 (Glaucoma) 病徵是視網膜神經節細胞 (retinal ganglion cells, RGC)受到損傷後的漸進性喪失,阻礙視神經傳導,造成視力喪失與失明的疾病。青光眼的成因有許多來源,與基因、眼房液堆積或者外力擠壓拉扯等因素均有相關性,確切發病機制還不完全清楚,多數證據顯示以上因素導致眼內壓力升高是引發視神經損傷的主要危險因素。過去的研究多以眼內高滲透壓之動物模式探討青光眼的發病過程,缺乏高滲透壓對於視網膜神經節細胞生理功能與分機轉的研究及探討。因此,本研究擬以高滲透壓處理分化自人類胚胎幹細胞的視網膜神經節細胞,探討並完成以下三大目標 : (1) 高滲透壓對於細胞的生理功能之影響,包含電生理表現與細胞分泌之生長相關因子之改變; (2) 壓力相關之分子機轉,尤其著重於神經系統於滲透壓改變時相對應的離子通道TRPV1,探討TRPV1活化後造成的離子通道的改變、支持細胞生長之重要因子生成與分泌的改變; (3) 由機轉中發展出胞內滲透壓相關孔道或受體的阻斷劑、或者其下游之抑制劑、活化劑,釐清眼內壓升高導致的高滲透壓模式下RGC存活率、生理功能是否均回復之現象。本研究發現高滲透壓導致TRPV1的過度表達可能會損害RGC細胞,並利用高劑量的NaCl來模擬高滲透壓建立hiPSC-RGC細胞的損傷模式,並發現TRPV1通道的活化。活化後的TRPV1下游通過立即促進BDNF的產生來保護RGC細胞免受受傷。 同時,TRPV1還增強了鈣離子的流入,隨後激活了一系列自噬分子。 一旦平衡被破壞,TRPV1過度表達會導致細胞死亡。此外實驗結果顯示通過I-RTX和H89,證明TRPV1從ER轉移到細胞膜是細胞存活所必需的,但過表達的TRPV1最終會導致細胞死亡。本研究結果期望可以提供未來開發青光眼治療藥物新選擇。
Glaucoma is one kind of retinal diseases. The main symptoms are severe atrophic optic nerves and irreversible progressive loss of retinal ganglion cells (RGCs). Many factors may induce the occurrence of Glaucoma, including genes, ocular fluid accumulation or external squeeze pull and other factors, while elevated intraocular pressure (IOP) is the major risk factor for glaucoma. So far, most of studies were focused on the influence of IOP on trabecular meshwork but not RGCs, whereas accompanied dystrophy of RGCs would lead to progressive visual loss very quickly. Hence, it is needed to develop combinative therapeutics for retarding the deleterious of RGCs. In the past, many studied showed that pathogenesis of glaucoma was accompanied with high osmotic pressure, which disturbed the cellular adhesion and calcium balance by increasing the expression of glaucoma relative genes, such as CYP1B1. However, fewer studies mentioned the effects of the alteration of osmolarity on RGCs. Therefore, this study intends to through administrating the hiPSCs derived retinal ganglion cells with high osmotic pressure to explore and accomplish the following three goals: (1) To validate the effect of osmotic pressure influences on the genetic expression, i.e. glaucoma related genes and the physiological function of RGCs, including electrophysiological manifestations and neural growth factors secretion. (2) To detect the responses of pressure-related molecules, i.e. ion channel TRPV1 or TRPV4 and their downstream protein expression which is corresponding to the function and morphological regulation of RGCs. (3) To reduce the activation of pressure-stimulated molecules by applying RGCs with the channel or receptor blockers, or its downstream inhibitors, activators for further validating the essential role of our targeted pressure-relative molecules in mediating cellular fluid/transmission and the secretion of neural growth factors, i.e. BDNF. Meanwhile, via the inhibition of the targeted pressure-related molecules, it will be benefit to recover the functions and morphology of RGCs under osmolarity stimulation. Furthermore, our study reveals that TRPV1 expression is the key player in maintaining the early survival of high osmolality-induced damaged hiPSC-derived RGCs and a downstream member of activated TRPV1 functions to protect RGC cells from injuries by promoting the immediate generation of BDNF. Meanwhile, TRPV1 also enhanced the influx of calcium followed by the activation of a cascade of autophagy molecules. I-RTX and H89 demonstrated that the translocation of TRPV1 from ER to cell membrane is essential for cell survival, and the overexpression of TRPV1 would lead to ultimate cell death. This study is expected to provide new options for future development of glaucoma treatment.
摘要 i
ABSTRACT iii
CONTENT V
LIST OF FIGURES Viii
LIST OF ABBREVIATIONS iX
Chapter 1. Introduction 1
1.1 Introduction of RGC 2
1.2 Introduction of Glaucoma 3
1.3 Eye hyperosmolarity 4
1.4 Transient receptor potential cation channel subfamily V member 1 (TRPV1) 5
1.5 iPSC derived RGCs as a platform 7
1.6. The rationale of this study 8
Chapter 2. Materials and Methods 9
2.1 Cell culture 10
2.1.1 Culture of RGC-5 10
2.1.2 Culture of hiPSCs 10
2.1.3 Differentiation of hiPS cells to RGCs 10
2.1.4 High osmolality treatment 11
2.2 Western blot 12
2.3 Immunofluorescence 12
2.4 Cell viability (MTT Assay) 13
2.5 Cell culture medium osmolality test 13
2.6 Electrophysiological Analysis 13
2.7 ELISA 14
2.8 In vivo eye pressure measurement 14
2.9 Statistical analysis 15
Chapter 3. Results 16
3.1 Induction of hiPSC-derived RGCs 17
3.2 Hyperosmotic stress response of RGC cells 18
3.3 Autophagy reaction in response to hyperosmotic stress in hiPSC-derived RGCs 19
3.5 BDNF secretion from H89 treated RGCs 23
3.6 H89 attenuated NaCl induced high osmolarity in vivo. 23
3.7 The summary of high osmolarity caused damages through activating TRPV1 on RGC 24
Chapter 4. Discussion 25
Chapter 6. Conclusion 30
Reference 33
Table and figures 38


LIST OF FIGURES
Figure 1. Induction of iPSC-derived RGCs 39
Figure 2. Hyperosmotic stress response of RGC cells 42
Figure 3. Hyperosmotic stress response of RGC cells fuction 45
Figure 4. Autophagy reaction in response to hyperosmotic stress in hiPSC-derived RGCs 49
Figure 5. BDNF secretion from H89 treated RGCs 52
Figure 6. H89 attenuated NaCl induced high osmolarity in vivo 53
Figure 7. The summary of high osmolarity caused damages through activating TRPV1 on RGC 54
Almasieh, M., Wilson, A.M., Morquette, B., Cueva Vargas, J.L., and Di Polo, A. (2012). The molecular basis of retinal ganglion cell death in glaucoma. Progress in retinal and eye research 31, 152-181.
Amantini, C., Mosca, M., Nabissi, M., Lucciarini, R., Caprodossi, S., Arcella, A., Giangaspero, F., and Santoni, G. (2007). Capsaicin-induced apoptosis of glioma cells is mediated by TRPV1 vanilloid receptor and requires p38 MAPK activation. Journal of neurochemistry 102, 977-990.
Asami, T., Kachi, S., Mohamed, U.A., Ito, Y., and Terasaki, H. (2015). High osmolarity effect of intravitreal plasmin enzyme on rabbit retina. Nagoya journal of medical science 77, 245-252.
Birder, L.A., Nakamura, Y., Kiss, S., Nealen, M.L., Barrick, S., Kanai, A.J., Wang, E., Ruiz, G., De Groat, W.C., Apodaca, G., et al. (2002). Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nature neuroscience 5, 856-860.
Bonet-Ponce, L., Saez-Atienzar, S., da Casa, C., Flores-Bellver, M., Barcia, J.M., Sancho-Pelluz, J., Romero, F.J., Jordan, J., and Galindo, M.F. (2015). On the mechanism underlying ethanol-induced mitochondrial dynamic disruption and autophagy response. Biochim Biophys Acta 1852, 1400-1409.
Boya, P., Esteban-Martinez, L., Serrano-Puebla, A., Gomez-Sintes, R., and Villarejo-Zori, B. (2016). Autophagy in the eye: Development, degeneration, and aging. Progress in retinal and eye research 55, 206-245.
Clarke, P.G. (1990). Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl) 181, 195-213.
Corey, D.P., Garcia-Anoveros, J., Holt, J.R., Kwan, K.Y., Lin, S.Y., Vollrath, M.A., Amalfitano, A., Cheung, E.L., Derfler, B.H., Duggan, A., et al. (2004). TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432, 723-730.
Feng, L., Chen, H., Yi, J., Troy, J.B., Zhang, H.F., and Liu, X. (2016). Long-Term Protection of Retinal Ganglion Cells and Visual Function by Brain-Derived Neurotrophic Factor in Mice With Ocular Hypertension. Investigative ophthalmology & visual science 57, 3793-3802.
Fulda, S., and Kogel, D. (2015). Cell death by autophagy: emerging molecular mechanisms and implications for cancer therapy. Oncogene 34, 5105-5113.
Gill, K.P., Hewitt, A.W., Davidson, K.C., Pebay, A., and Wong, R.C. (2014). Methods of Retinal Ganglion Cell Differentiation From Pluripotent Stem Cells. Translational vision science & technology 3, 7.
Gill, K.P., Hung, S.S., Sharov, A., Lo, C.Y., Needham, K., Lidgerwood, G.E., Jackson, S., Crombie, D.E., Nayagam, B.A., Cook, A.L., et al. (2016). Enriched retinal ganglion cells derived from human embryonic stem cells. Scientific reports 6, 30552.
Ho, K.W., Ward, N.J., and Calkins, D.J. (2012). TRPV1: a stress response protein in the central nervous system. American journal of neurodegenerative disease 1, 1-14.
Kim, S.H., Munemasa, Y., Kwong, J.M., Ahn, J.H., Mareninov, S., Gordon, L.K., Caprioli, J., and Piri, N. (2008). Activation of autophagy in retinal ganglion cells. J Neurosci Res 86, 2943-2951.
Knoferle, J., Koch, J.C., Ostendorf, T., Michel, U., Planchamp, V., Vutova, P., Tonges, L., Stadelmann, C., Bruck, W., Bahr, M., et al. (2010). Mechanisms of acute axonal degeneration in the optic nerve in vivo. Proc Natl Acad Sci U S A 107, 6064-6069.
Koch, J.C., Tonges, L., Barski, E., Michel, U., Bahr, M., and Lingor, P. (2014). ROCK2 is a major regulator of axonal degeneration, neuronal death and axonal regeneration in the CNS. Cell Death Dis 5, e1225.
Koike, M., Shibata, M., Tadakoshi, M., Gotoh, K., Komatsu, M., Waguri, S., Kawahara, N., Kuida, K., Nagata, S., Kominami, E., et al. (2008). Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol 172, 454-469.
Labbe, A., Terry, O., Brasnu, E., Van Went, C., and Baudouin, C. (2012). Tear film osmolarity in patients treated for glaucoma or ocular hypertension. Cornea 31, 994-999.
Li, D.Q., Luo, L., Chen, Z., Kim, H.S., Song, X.J., and Pflugfelder, S.C. (2006). JNK and ERK MAP kinases mediate induction of IL-1beta, TNF-alpha and IL-8 following hyperosmolar stress in human limbal epithelial cells. Experimental eye research 82, 588-596.
Lin, W.J., and Kuang, H.Y. (2014). Oxidative stress induces autophagy in response to multiple noxious stimuli in retinal ganglion cells. Autophagy 10, 1692-1701.
Liton, P.B. (2016). The autophagic lysosomal system in outflow pathway physiology and pathophysiology. Exp Eye Res 144, 29-37.
Mohapatra, D.P., and Nau, C. (2005). Regulation of Ca2+-dependent desensitization in the vanilloid receptor TRPV1 by calcineurin and cAMP-dependent protein kinase. The Journal of biological chemistry 280, 13424-13432.
Morrison, J.C., Moore, C.G., Deppmeier, L.M., Gold, B.G., Meshul, C.K., and Johnson, E.C. (1997). A rat model of chronic pressure-induced optic nerve damage. Experimental eye research 64, 85-96.
Munemasa, Y., and Kitaoka, Y. (2015). Autophagy in axonal degeneration in glaucomatous optic neuropathy. Progress in retinal and eye research 47, 1-18.
Newton, K. (2015). RIPK1 and RIPK3: critical regulators of inflammation and cell death. Trends Cell Biol 25, 347-353.
Porter, K., Hirt, J., Stamer, W.D., and Liton, P.B. (2015). Autophagic dysregulation in glaucomatous trabecular meshwork cells. Biochim Biophys Acta 1852, 379-385.
Randhawa, P.K., and Jaggi, A.S. (2017). TRPV1 channels in cardiovascular system: A double edged sword? International journal of cardiology 228, 103-113.
Riazifar, H., Jia, Y., Chen, J., Lynch, G., and Huang, T. (2014). Chemically induced specification of retinal ganglion cells from human embryonic and induced pluripotent stem cells. Stem cells translational medicine 3, 424-432.
Rodriguez-Muela, N., and Boya, P. (2012). Axonal damage, autophagy and neuronal survival. Autophagy 8, 286-288.
Rodriguez-Muela, N., Germain, F., Marino, G., Fitze, P.S., and Boya, P. (2012). Autophagy promotes survival of retinal ganglion cells after optic nerve axotomy in mice. Cell death and differentiation 19, 162-169.
Salazar, M., Carracedo, A., Salanueva, I.J., Hernandez-Tiedra, S., Lorente, M., Egia, A., Vazquez, P., Blazquez, C., Torres, S., Garcia, S., et al. (2009). Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J Clin Invest 119, 1359-1372.
Sanes, J.R., and Masland, R.H. (2015). The types of retinal ganglion cells: current status and implications for neuronal classification. Annual review of neuroscience 38, 221-246.
Sappington, R.M., and Calkins, D.J. (2008). Contribution of TRPV1 to microglia-derived IL-6 and NFkappaB translocation with elevated hydrostatic pressure. Investigative ophthalmology & visual science 49, 3004-3017.
Sappington, R.M., Sidorova, T., Long, D.J., and Calkins, D.J. (2009). TRPV1: contribution to retinal ganglion cell apoptosis and increased intracellular Ca2+ with exposure to hydrostatic pressure. Investigative ophthalmology & visual science 50, 717-728.
Schaub, J.A., Kimball, E.C., Steinhart, M.R., Nguyen, C., Pease, M.E., Oglesby, E.N., Jefferys, J.L., and Quigley, H.A. (2017). Regional Retinal Ganglion Cell Axon Loss in a Murine Glaucoma Model. Investigative ophthalmology & visual science 58, 2765-2773.
Schweichel, J.U., and Merker, H.J. (1973). The morphology of various types of cell death in prenatal tissues. Teratology 7, 253-266.
Sluch, V.M., Davis, C.H., Ranganathan, V., Kerr, J.M., Krick, K., Martin, R., Berlinicke, C.A., Marsh-Armstrong, N., Diamond, J.S., Mao, H.Q., et al. (2015). Differentiation of human ESCs to retinal ganglion cells using a CRISPR engineered reporter cell line. Scientific reports 5, 16595.
Tanaka, T., Yokoi, T., Tamalu, F., Watanabe, S., Nishina, S., and Azuma, N. (2016). Generation of Retinal Ganglion Cells With Functional Axons From Mouse Embryonic Stem Cells and Induced Pluripotent Stem Cells. Investigative ophthalmology & visual science 57, 3348-3359.
Ward, N.J., Ho, K.W., Lambert, W.S., Weitlauf, C., and Calkins, D.J. (2014). Absence of transient receptor potential vanilloid-1 accelerates stress-induced axonopathy in the optic projection. The Journal of neuroscience : the official journal of the Society for Neuroscience 34, 3161-3170.
Wu, B.X., Darden, A.G., Laser, M., Li, Y., Crosson, C.E., Hazard, E.S., 3rd, and Ma, J.X. (2006). The rat Apg3p/Aut1p homolog is upregulated by ischemic preconditioning in the retina. Molecular vision 12, 1292-1302.
Yazulla, S., and Studholme, K.M. (2004). Vanilloid receptor like 1 (VRL1) immunoreactivity in mammalian retina: colocalization with somatostatin and purinergic P2X1 receptors. The Journal of comparative neurology 474, 407-418.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊