跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:7358:9a99:61b8:7c06) 您好!臺灣時間:2025/01/19 07:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:戴菀葶
研究生(外文):Wan-Ting Tai
論文名稱:比較下肢肌肉骨骼障礙的病患接受水中復健運動訓練以及陸地復健運動訓練後功能改善效果及預測因子
論文名稱(外文):Comparing outcomes and improvement predictors between aquatic and land-based physical therapy for patients with lower extremity musculoskeletal disorders
指導教授:陳文英陳文英引用關係李雪楨李雪楨引用關係
指導教授(外文):Wen-Yin ChenHsuei-Chen Lee
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:物理治療暨輔助科技學系
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:101
中文關鍵詞:水中復健運動訓練陸地復健運動訓練下肢肌肉骨骼障礙
外文關鍵詞:aquatic and land-based physical therapylower extremity musculoskeletal disorders
相關次數:
  • 被引用被引用:1
  • 點閱點閱:624
  • 評分評分:
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:0
研究背景:下肢肌肉骨骼障礙為常見之臨床問題,臨床上物理治療介入的方式包括水中運動或陸地復健治療;若能找到病患最適合的治療將可使其得到較佳的治療效果,包括增加身體功能的增進、疼痛的降低、進而提升生活水品質。研究目的:1) 比較下肢肌肉骨骼障礙病患接受水中運動和陸地復健治療後的疼痛與功能改善情形,2) 探討接受四週水中運動或陸地復健治療後疼痛與功能改善的相關因子。研究方法:此為前瞻性探索型研究,收取2016/ 3到2017/ 2的下肢肌肉骨骼病個案並在振興醫院接受水中運動或陸地復健治療者。共募集了300位下肢肌肉骨骼障礙的病患,收集病患基本資料以及疼痛(數字量表,numeric rating scale, NRS)、功能(下肢功能量表,lower extremity functional scale, LEFS);在接受治療四週後進行第一次複評(陸地復健組186位、水中運動組90位),並在研究結束前以電訪進行第二次的複評。再將接受四週水中運動或陸地復健治療後的進步情形區分為改善顯著與否兩組。改善顯著者需符合:1)自覺整體進步(global rating score of change, GROC) ≧4分,且2)疼痛下降 ≧2分或是下肢功能進步 (LEFS) ≧9分。統計分析:利用描述性統計呈現受測者的基本資料;單因子共變數分析 (Analysis of covariance, ANCOVA) 探討兩組在不同時間點之間在疼痛、功能、整體進步程度的異同; 並以逐步羅吉斯迴歸分析 (stepwise logistic regression) 探討兩種治療模式對於此族群治療成效顯著改善的相關因子。顯著水準定在0.05。結果:本研究發現不論接受水中運動訓練或陸地復健治療後,疼痛下降以及下肢功能改善都有明顯進步 (p<0.001)。在持續接受二個月的陸地復健治療後,以功能改善的幅度明顯優於水中運動組 (p=0.031);且在持續接受二至五個月的陸地復健治療後,疼痛的下降的幅度明顯優於水中運動組 (p=0.003)。本研究之下肢肌肉骨骼障礙患者,接受四週復健治療後有顯著改善之預測因子為 「年齡大於五十歲」(勝算比=2.51,95%信賴區間=1.114~5.664);「受傷狀態為慢性」(勝算比=1.87,95%信賴區間=0.971~3.619)以及「症狀在膝關節」(勝算比=4.66,95%信賴區間= 1.041~20.880)。結論:接受水中運動或陸地復健治療皆能有效地降低下肢肌肉骨骼障礙病患的疼痛以及改善下肢功能了解成效顯著改善的相關因子能強化對於下肢肌肉骨骼障礙病患接受水中運動訓練或陸地復健治療的臨床決策正確性。
Background: Identifying the factors associated with improvement is important for clinicians to decide whether to prescribe land-based or aquatic physical therapy for their patients. However, current literature contains insufficient information addressing the factors associated with outcome improvement in individules with lower extremity musculoskeletal disorders (LE-MSD). Purpose: 1) To compare pain and outcome improvement between the land-based or aquatic physical therapy 2) To explore factors associated with outcome improvement in patients with LE-MSD. Methods: This was a prospective andexploratory study. Patients with LE-MSD referred to physical therapy in Cheng-Hsin General Hospital were recruited from 2016/3 to 2017/3. There were 300 LE-MSD patients with participated. Demographic data of health and illness-related data, pain intensity and duration, and sore of lower extremity functional score (LEFS) 0-80 points, numeric pain rating scale (0-10 points), were obtained through questionnaires. All patients received 4 weeks physical therapy intervention (land-based program, n=186),(aquatic program, n=90).Participants completed the study all patients were re-assessing by telephone. Outcome improvement was determined by perceived improvement (global rating score) ≧4 and, either pain reduction ≧2 or functional improvement ≧9. Statistical analyses: Univariate analyses were used to compare differences between improvement and non-improvement of subjects participating in land-based and aquatic physical therapy. ANCOVAs were used to compare treatment effect between two physical therapy programs (p<0.05). Then, a multivariate stepwise logistic regression analysis was used to identify significant predictive factors for classifying the outcome improvement and non-improvement (p<0.05). Result: Pain and function were significantly improved 4 weeks after physical therapy (P<0.001). At discharged within 2 months, the land-based group resulted in significantly better functional improvement (p=0.031) as compared to the aquatic group. At discharged within 2~5 months, the land-based group resulted in significantly more pain reduction (p=0.003) as compared to the aquatic group. Patients being older than 50 (OR=2.51, 95% CI =1.114~5.664); with symptom duration more than 3 months (OR=1.87, 95% CI = 0.971~3.619); and with knee impairments (OR=4.66, 95% CI = 1.041~20.880) were more likely to improve 4 weeks of aquatic physical therapy. Conclusion: Both land-based program and aquatic program results in significantly better pain reduction & functional improvement. Using predictors to estimate treatment improvement in administering LE-MSD could significantly achieve of a successful treatment. Clinical relevance: These findings could enhance the efficacy of decision-making in clinical pathway of aquatic or land-based intervention for patients with LE MSD.
目錄
謝誌 i
目錄 iii
表目錄 vi
圖目錄 viii
中文摘要 ix
英文摘要 xi
第一章 簡介 1
第一節 研究背景與動機 1
第二節 研究目的 2
第三節 研究重要性 2
第二章 文獻回顧 3
第一節 下肢肌肉骨骼障礙 3
第二節 下肢肌肉骨骼臨床評估 5
第三節 下肢肌肉骨骼障礙常用的物理治療 8
第四節 總結 14
第五節 相關研究 15
第三章 研究方法 17
第一節 研究設計與研究架構 17
第二節 研究材料與研究方法 17
第三節 成效測量與工具 19
第四節 研究介入項目 20
第五節 資料處理與分析方法 21
第四章 研究結果 24
第一節 受試者基本資料 24
第二節 次族群基本資料分析 25
第三節 療效評估測量結果 29
第四節 兩組治療四週後呈現顯著療效之各變項分析 30
第五節 陸地復健治療四週後療效顯著之多元逐步羅吉斯回歸分析 31
第六節 陸地復健治療四週後療效顯著之多元逐步羅吉斯回歸分析 32
第七節 水中運動治療療效顯著者之多元逐步羅吉斯回歸分析 33
第五章 討論 35
第一節 受試者基本資料探討 35
第二節 自覺疼痛程度之改善 36
第三節 下肢功能之改善 37
第四節 四週治療呈現顯著療效之預測因子 39
第六章 研究限制以及未來方向 43
第七章 臨床應用 44
第八章 結論 45
參考文獻 46

附錄一、人體試驗審查通過證書 65
附錄二、受試者同書 68
附錄三、研究問卷 72

表目錄
表 一、受試者的基本資料 56
表 二、持續治療小於二個月受試者基本資料 60
表 三、持續治療二至五個月受試者基本資料 64
表 四、持續治療大於六個月受試者基本資料 68
表 五、受試者診斷分類 72
表 六、持續治療小於二個月受試者診斷分類 73
表 七、持續治療二至五個月受試者診斷分類 74
表 八、持續治療大於六個月受試者診斷分類 75
表 九、陸地復健和水中復健運動之受試者的疼痛程度與下肢功能改善程度於介入前、介入四週後、持續治療小於二個月之測量數值 76
表 十、陸地復健和水中運動之受試者的疼痛程度與下肢功能改善程度於介入前、介入四週後、持續治療二至五個月之測量數值 77
表 十一、陸地復健和水中運動之受試者的疼痛程度與下肢功能改善程度於介入前、介入四週後、持續治療大於六個月之測量數值 78
表 十二、接受四週治療療效改善者與未改善者之受試者比較 79
表 十三、接受四週陸地復健治療療效改善者與未改善者之受試者比較 80
表 十四、接受四週水中運動治療療效改善者與未改善者之受試者比較 81
表 十五、接受四週復健治療療效改善者之預測因子 82
表 十六、接受四週陸地復健治療療效改善者之預測因子 83
表 十七、接受四週水中運動治療療效改善者之預測因子 84
圖目錄
圖 一:研究流程 85
圖 二:陸地復健和水中運動之受試者的疼痛程度於介入前、介入四週後、持續治療小於二個月之測量數值 86
圖 三:陸地復健和水中運動之受試者的疼痛程度於介入前、介入四週後、持續治療二至五個月之測量數值 87
圖 四:陸地復健和水中運動之受試者的疼痛程度於介入前、介入四週後、持續治療大於六個月之測量數值 88
圖 五:陸地復健和水中運動之受試者的下肢功能改善程度於介入前、介入四週後、持續治療小於二個月之測量數值 89
圖 六:陸地復健和水中運動之受試者的下肢功能改善程度於介入前、介入四週後、持續治療二至五個月之測量數值 90
圖 七:陸地復健和水中運動之受試者的下肢功能改善程度於介入前、介入四週後、持續治療大於六個月之測量數值 91
1. Reid, Christopher Robert D. Occupational lower extremity risk assessment modeling. University of Central Florida, 2009.
2. Hou, WH; Yeh, TS; Liang, HW, Reliability and validity of the Taiwan Chinese version of the Lower Extremity Functional Scale. J Formos Med Assoc 2014,113 (5), 313-20.
3. Woolf, AD; Pfleger, B, Burden of major musculoskeletal conditions. Bulletin of the World Health Organization 2003, 81 (9), 646-656.
4. Nunes, I.L, FAST ERGO_X - a tool for ergonomic auditing and work-related musculoskeletal disorders prevention. Work 2009, 34 (2), 133-48.
5. Lubeck, DP, The costs of musculoskeletal disease: health needs assessment and health economics. Best Pract Res Clin Rheumatol 2003, 17 (3), 529-39.
6. Walker, JG; Littlejohn, GO, Measuring quality of life in rheumatic conditions. Clinical rheumatology 2007, 26 (5), 671-673.
7. Barker, AL; Talevski, J; Morello, RT; Brand, CA; Rahmann, AE; Urquhart, DM, Effectiveness of aquatic exercise for musculoskeletal conditions: a meta-analysis. Arch Phys Med Rehabil 2014, 95 (9), 1776-86.
8. Badley, EM; Rasooly, I; Webster, GK, Relative importance of musculoskeletal disorders as a cause of chronic health problems, disability, and health care utilization: findings from the 1990 Ontario Health Survey. The Journal of rheumatology 1994, 21 (3), 505-514.
9. Vos, T; Flaxman, AD; Naghavi, M; Lozano, R; Michaud, C; Ezzati, M; Shibuya, K.; Salomon, JA; Abdalla, S.; Aboyans, V., Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet 2013, 380 (9859), 2163-2196.
10. Balogh, ZJ; Reumann, MK; Gruen, RL; Mayer-Kuckuk, P.; Schuetz, MA; Harris, IA; Gabbe, BJ; Bhandari, M., Advances and future directions for management of trauma patients with musculoskeletal injuries. The Lancet 2012, 380 (9847), 1109-1119.
11. Gabbe, BJ; Biostat, GD; Simpson, PM; Sutherland, AM; Dip, G.; Wolfe, R.; Fitzgerald, MC; Judson, R.; Cameron, PA, Improved functional outcomes for major trauma patients in a regionalized, inclusive trauma system. Annals of surgery 2012, 255 (6), 1009-1015.
12. David, GC, Ergonomic methods for assessing exposure to risk factors for work-related musculoskeletal disorders. Occup Med (Lond) 2005, 55 (3), 190-9.
13. Lawrence, RC; Felson, DT; Helmick, CG; Arnold, LM; Choi, H; Deyo, RA; Gabriel, S; Hirsch, R; Hochberg, MC; Hunder, GG, Estimates of the prevalence of arthritis and other rheumatic conditions in the United States: Part II. Arthritis & Rheumatism 2008, 58 (1), 26-35.
14. Dawson, J; Linsell, L; Zondervan, K; Rose, P; Randall, T; Carr, A; Fitzpatrick, R, Epidemiology of hip and knee pain and its impact on overall health status in older adults. Rheumatology 2004, 43 (4), 497-504.
15. Andersen, JH; Haahr, JP; Frost, P, Risk factors for more severe regional musculoskeletal symptoms: A two‐year prospective study of a general working population. Arthritis & Rheumatology 2007, 56 (4), 1355-1364.
16. Manninen, P; Heliövaara, M; Riihimäki, H; Suomalainen, O, Physical workload and the risk of severe knee osteoarthritis. Scandinavian journal of work, environment & health 2002, 25-32.
17. Sandmark, H.; Hogstedt, C.; Vingård, E., Primary osteoarthrosis of the knee in men and women as a result of lifelong physical load from work. Scandinavian journal of work, environment & health 2000, 20-25.
18. David GC. Ergonomic methods for assessing exposure to risk factors for work-related musculoskeletal disorders. Occup Med (Lond) 55: 190-199, 2005.
19. Graf, A; Judge, JO; Õunpuu, S; Thelen, DG, The effect of walking speed on lower-extremity joint powers among elderly adults who exhibit low physical performance. Archives of physical medicine and rehabilitation 2005, 86 (11), 2177-2183.
20. Donoghue, OA; Savva, GM; Cronin, H.; Kenny, RA; Horgan, NF, Using timed up and go and usual gait speed to predict incident disability in daily activities among community-dwelling adults aged 65 and older. Archives of physical medicine and rehabilitation 2014, 95 (10), 1954-1961.
21. Gribble, PA; Hertel, J.; Plisky, P., Using the Star Excursion Balance Test to assess dynamic postural-control deficits and outcomes in lower extremity injury: a literature and systematic review. Journal of athletic training 2012, 47 (3), 339-357.
22. Negahban, H.; Hessam, M.; Tabatabaei, S.; Salehi, R.; Sohani, SM; Mehravar, M., Reliability and validity of the Persian lower extremity functional scale (LEFS) in a heterogeneous sample of outpatients with lower limb musculoskeletal disorders. Disability and rehabilitation 2014, 36 (1), 10-15.
23. Binkley, JM; Stratford, PW; Lott, SA; Riddle, DL, The Lower Extremity Functional Scale (LEFS): scale development, measurement properties, and clinical application. Physical therapy 1999, 79 (4), 371-383.
24. Gabel, CP; Melloh, M; Burkett, B; Michener, LA, Lower Limb Functional Index: development and clinimetric properties. Physical therapy 2012, 92 (1), 98-110.
25. Cacchio, A; De Blasis, E; Necozione, S; Rosa, F; Riddle, DL; di Orio, F; De Blasis, D; Santilli, V, The Italian version of the lower extremity functional scale was reliable, valid, and responsive. Journal of clinical epidemiology 2010, 63 (5), 550-557.
26. Stratford, PW; Kennedy, DM; Hanna, SE, Condition-specific Western Ontario McMaster Osteoarthritis Index was not superior to region-specific Lower Extremity Functional Scale at detecting change. Journal of clinical epidemiology 2004, 57 (10), 1025-1032.
27. Lin, CWC; Moseley, AM; Refshauge, KM; Bundy, AC, The lower extremity functional scale has good clinimetric properties in people with ankle fracture. Physical therapy 2009, 89 (6), 580.
28. Shultz, S; Olszewski, A; Ramsey, O; Schmitz, M; Wyatt, V; Cook, CA systematic review of outcome tools used to measure lower leg conditions. International journal of sports physical therapy 2013, 8 (6), 838.
29. Osiri, M; Welch, V; Brosseau, L; Shea, B; McGowan, JL; Tugwell, P; Wells, GA, Transcutaneous electrical nerve stimulation for knee osteoarthritis. The Cochrane Library 2000.
30. Brosseau, L; Yonge, K; Marchand, S; Robinson, V; Osiri, M; Wells, G; Tugwell, P, Efficacy of transcutaneous electrical nerve stimulation for osteoarthritis of the lower extremities: a meta-analysis. Physical therapy reviews 2004, 9 (4), 213-233.
31. Bjordal, JM; Johnson, MI; Lopes-Martins, RA; Bogen, B; Chow, R; Ljunggren, AE, Short-term efficacy of physical interventions in osteoarthritic knee pain. A systematic review and meta-analysis of randomised placebo-controlled trials. BMC musculoskeletal disorders 2007, 8 (1), 51.
32. Deyle, GD; Allison, SC; Matekel, RL; Ryder, MG; Stang, JM; Gohdes, DD; Hutton, JP; Henderson, NE; Garber, MB, Physical therapy treatment effectiveness for osteoarthritis of the knee: a randomized comparison of supervised clinical exercise and manual therapy procedures versus a home exercise program. Physical therapy 2005, 85 (12), 1301.
33. Deyle, GD; Henderson, NE; Matekel, RL; Ryder, MG; Garber, MB; Allison, S C, Effectiveness of manual physical therapy and exercise in osteoarthritis of the knee: a randomized, controlled trial. Annals of internal medicine 2000, 132 (3), 173-181.
34. Cleland, JA.; Abbott, JH; Kidd, MO; Stockwell, S; Cheney, S; Gerrard, DF; Flynn, TW, Manual physical therapy and exercise versus electrophysical agents and exercise in the management of plantar heel pain: a multicenter randomized clinical trial. journal of orthopaedic & sports physical therapy 2009, 39 (8), 573-585.
35. McAlindon, TE; Bannuru, RR; Sullivan, M; Arden, N; Berenbaum, F; Bierma-Zeinstra, S; Hawker, G; Henrotin, Y; Hunter, D; Kawaguchi, H, OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthritis and cartilage 2014, 22 (3), 363-388.
36. Zhang, W; Moskowitz, R; Nuki, G; Abramson, S; Altman, R; Arden, N; Bierma-Zeinstra, S; Brandt, K; Croft, P; Doherty, M, OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines. Osteoarthritis and cartilage 2008, 16 (2), 137-162.
37. Kisner, C; Colby, LA, Therapeutic exercise: foundations and techniques. Fa Davis: 2012.
38. NEN, TPY.; SIPILA, S; Keskinen, KL; Hautala, A; Savolainen, J; LKIA, EM, Effects of aquatic resistance training on neuromuscular performance in healthy women. 2002.
39. Becker, BE, Aquatic therapy: scientific foundations and clinical rehabilitation applications. PM&R 2009, 1 (9), 859-872.
40. Harmer, AR; Naylor, JM; Crosbie, J; Russell, T, Land‐based versus water‐based rehabilitation following total knee replacement: A randomized, single‐blind trial. Arthritis Care & Research 2009, 61 (2), 184-191.
41. Valtonen, A; Pöyhönen, T; Sipilä, S; Heinonen, A, Effects of aquatic resistance training on mobility limitation and lower-limb impairments after knee replacement. Archives of physical medicine and rehabilitation 2010, 91 (6), 833-839.
42. Hinman, RS; Heywood, SE; Day, AR, Aquatic physical therapy for hip and knee osteoarthritis: results of a single-blind randomized controlled trial. Physical therapy 2007, 87 (1), 32.
43. Bartels, EM; Lund, H; Hagen, KB; Dagfinrud, H; Christensen, R; Danneskiold‐Samsøe, B, Aquatic exercise for the treatment of knee and hip osteoarthritis. The Cochrane Library 2007.
44. Asimenia, G; Paraskevi, M; Polina, S; Anastasia, B; Kyriakos, T; Georgios, G, Aquatic training for ankle instability. Foot & ankle specialist 2013, 6 (5), 346-351.
45. Oh, S; Lim, JM; Kim, Y; Kim, M; Song, W; Yoon, B, Comparison of the effects of water-and land-based exercises on the physical function and quality of life in community-dwelling elderly people with history of falling: A single-blind, randomized controlled trial. Archives of gerontology and geriatrics 2015, 60 (2), 288-293.
46. Callahan, LF, Physical activity programs for chronic arthritis. Current opinion in rheumatology 2009, 21 (2), 177-182.
47. Nguyen, C; Lefèvre-Colau, MM; Poiraudeau, S; Rannou, F, Rehabilitation (exercise and strength training) and osteoarthritis: a critical narrative review. Annals of physical and rehabilitation medicine 2016, 59 (3), 190-195.
48. Jung, YS; Kim, YE; Hong, JH; Yu, JH; Kim, JS; Lee, DY, The Effect of Auditory and Vibration Stimulation on Proprioception of the Lower Extremity. Indian Journal of Science and Technology 2016, 9 (44).
49. Qaiser, T; Chisholm, AE; Lam, T, The relationship between lower limb proprioceptive sense and locomotor skill acquisition. Experimental brain research 2016, 234 (11), 3185-3192.
50. Chang, TF; Liou, TH; Chen, CH; Huang, YC; Chang, KH, Effects of elastic-band exercise on lower-extremity function among female patients with osteoarthritis of the knee. Disability and rehabilitation 2012, 34 (20), 1727-1735.
51. Penninx, BW; Messier, SP; Rejeski, WJ; Williamson, JD; DiBari, M; Cavazzini, C; Applegate, WB; Pahor, M, Physical exercise and the prevention of disability in activities of daily living in older persons with osteoarthritis. Archives of Internal Medicine 2001, 161 (19), 2309-2316.
52. Tanaka, R; Ozawa, J; Kito, N; Moriyama, H, Effect of the Frequency and Duration of Land-based Therapeutic Exercise on Pain Relief for People with Knee Osteoarthritis: A Systematic Review and Meta-analysis of Randomized Controlled Trials. J Phys Ther Sci 2014, 26 (7), 969-75.
53. Hall, J; Swinkels, A.; Briddon, J; McCabe, CS, Does aquatic exercise relieve pain in adults with neurologic or musculoskeletal disease? A systematic review and meta-analysis of randomized controlled trials. Archives of physical medicine and rehabilitation 2008, 89 (5), 873-883.
54. Silva, LE; Valim, V; Pessanha, AP; Oliveira, LM; Myamoto, S; Jones, A; Natour, J., Hydrotherapy versus conventional land-based exercise for the management of patients with osteoarthritis of the knee: a randomized clinical trial. Phys Ther 2008, 88 (1), 12-21.
55. Tsitsilonis, S.; Lindner, T.; Haas, NP; Hahn, FM; Marnitz, T; Wichlas, F, Diagnosing fractures: pain intensity and subjective functional impairment are unreliable markers for initial assessment of possible extremity fractures. European Journal of Emergency Medicine 2016, 23 (2), 155-158.
56. Bennell, KL; Ahamed, Y.; Jull, G; Bryant, C; Hunt, MA; Forbes, AB; Kasza, J.; Akram, M.; Metcalf, B.; Harris, A., Physical therapist–delivered pain coping skills training and exercise for knee osteoarthritis: randomized controlled trial. Arthritis care & research 2016, 68 (5), 590-602.
57. Hinman, R; McCrory, P; Pirotta, M; Relf, I.; Forbes, A; Crossley, K; Williamson, E.; Kyriakides, M.; Novy, K.; Metcalf, B., Acupuncture for chronic knee pain: a randomized clinical trial. Deutsche Zeitschrift für Akupunktur 2015, 58 (2), 27-29.
58. Kamper, SJ; Maher, CG; Mackay, G, Global rating of change scales: a review of strengths and weaknesses and considerations for design. Journal of Manual & Manipulative Therapy 2009, 17 (3), 163-170.
59. Binkley, JM; Stratford, PW; Lott, SA; Riddle, DL, The lower extrenity functional scale (LEFS): Scale development, measurement properties, and clinical application. Physical therapy 1999, 79 (4), 371.
60. Rahmann, AE, Exercise for people with hip or knee osteoarthritis: a comparison of land-based and aquatic interventions. Open Access J Sports Med 2010, 1, 123-135.
61. Stratford PW, Kennedy DM, and Hanna SE. Condition-specific Western Ontario McMaster Osteoarthritis Index was not superior to region-specific Lower Extremity Functional Scale at detecting change. Journal of clinical epidemiology 57: 1025-1032, 2004.
62. Lange, AK; Vanwanseele, B, Strength training for treatment of osteoarthritis of the knee: a systematic review. Arthritis Care & Research 2008, 59 (10), 1488-1494.
63. Juhl, C; Christensen, R; Roos, EM; Zhang, W; Lund, H, Impact of Exercise Type and Dose on Pain and Disability in Knee Osteoarthritis: A Systematic Review and Meta‐Regression Analysis of Randomized Controlled Trials. Arthritis & rheumatology 2014, 66 (3), 622-636.
64. Ku, PW; Fox, KR; McKenna, J.; Peng, TL, Prevalence of leisure-time physical activity in Taiwanese adults: results of four national surveys, 2000–2004. Preventive medicine 2006, 43 (6), 454-457.
65. Howe, TE, Exercise for Osteoarthritis of the Hip and Knee. Annual Review of Gerontology and Geriatrics 2016, 36 (1), 155-168.
66. Neumann, DA, Kinesiology of the musculoskeletal system: foundations for rehabilitation. Elsevier Health Sciences: 2013.
67. Woolf AD, and Pfleger B. Burden of major musculoskeletal conditions.
Bulletin of the World Health Organization 81: 646-656, 2003.
68. Zhang W, Moskowitz R, Nuki G, Abramson S, Altman R, Arden N,
Bierma-Zeinstra S, Brandt K, Croft P, and Doherty M. OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines. Osteoarthritis and cartilage 16: 137-162, 2008.
69. Zheng H, and Chen C. Body mass index and risk of knee osteoarthritis:
systematic review and meta-analysis of prospective studies. BMJ open 5: e007568, 2015.
70. 王子娟、徐雅媛,勞工直又肌肉骨骼傷病預防失能模式之先趨研究。行政院勞委會勞工安全衛生研究所,2011
71. Corso, P., Finkelstein, E., Miller, T., Fiebelkorn, I., & Zaloshnja, E. Incidence and lifetime costs of injuries in the United States. Injury Prevention, 12(4), 212–218, 2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top