跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 12:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:魏筠晏
研究生(外文):Yun-Yan Wei
論文名稱:探討口腔癌中miR-125調控FAM213A 之腫瘤抑制角色
論文名稱(外文):To investigate the suppressor roles of miR-125 in oral carcinoma by targeting FAM213A
指導教授:林姝君林姝君引用關係
指導教授(外文):Shu-Chun Lin
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:口腔生物研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:80
中文關鍵詞:微型核糖核酸125細胞氧化壓力微型核糖核酸口腔癌頭頸癌
外文關鍵詞:miR-125FAM213AmicroRNAOral CancerHNSCC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要

口腔癌是全球盛行之癌症,研究其病程、訊息調控機轉為重要課題。微型RNA為小型之非轉譯RNA,參與各種生理及病理的調控,亦對口腔癌進程扮演重要角色。miR-125家族已被報導參與許多癌症的進程,在大腸癌及乳癌,miR-125為腫瘤抑制者;然而在非小細胞肺癌及血癌中,miR-125為腫瘤促進者,故其致病角色仍有爭議。雖然研究顯示在口腔癌患者中,miR-125的表現似較低,但miR-125在口腔癌中的功能角色及其訊息影響仍未明朗。經由軟體預測,miR-125的下游標的物可能為FAM213A (Family with sequence similarity 213, member A)。FAM213A屬於抗氧化蛋白,當細胞處於氧化壓力時,FAM213A具有保護細胞的作用。本實驗室先前研究發現,口腔癌腫瘤中具有較高的FAM213A表現。本研究顯示,不論在口腔癌細胞株中,或者病患癌組織中,均具有較低的miR-125表現,miR-125b低表現在I及II期口腔癌病患中有較差之預後有關。更證明miR-125b於口腔癌中直接標的FAM213A 3’ UTR抑制FAM213A表現,並增加細胞氧化壓力。在口腔癌細胞中過度表現miR-125b降低口腔癌細胞致癌表型,此外也確認FAM213A與miR-125b有相反之表型。本研究已建立過度表現完整FAM213A轉錄物(transcript)之細胞株,將進行FAM213A救援miR-125b及動物試驗,進一步證明miR-125b-FAM213A調控軸在口腔癌化之角色。
Abstract

Oral carcinoma (OC) is a globally prevalent cancer. To understand its disease processes and the mechanisms of signaling regulation are critical issues. MicroRNAs (miRNAs) are small non-coding RNAs, involved in the modulation of physical or pathological properties. miRNAs are also important regulators in OC pathogenesis. miR-125 family genes are involved in the disease process of a wide variety of cancers. In colorectal cancer and breast cancer, it acts as tumor suppressor. However, in non-small cell lung cancer and leukemia, miR-125 is oncogenic. Thus, there are controversies regarding the functions of miR-125 in different types of cancers. It appears that miR-125 is down-regulated in OC, but the carcinogenic mechanisms and the signaling impacts of miR-125 in OC are still obscure. In silico modules predict that FAM213A (Family with sequence similarity 213, member A) is a potential target of miR-125. FAM213A is a known anti-oxidant protein that protects cell from oxidative stress. Our previous study revealed that FAM213A was up-regulated in OC tumors. This study further specifies that miR-125 expression is down-regulated in OC tumors and cell lines. Besides, lower miR-125b expression in OC tissues is associated with the worse prognosis in stage I and II patients. We also identified that miR-125b targeted the 3’UTR of FAM213A to repress its gene activity. This targeting is accompanied with the increase of oxidative stress. Exogenous miR-125b expression decreased the oncogenicity of OC cell. miR-125b and FAM213A drive opposite oncogenic phenotypes. OC cell clones stably express complete FAM213A transcript have been established in our work. We are about to carry out rescue experiments and tumorigenic studies using these clones to further specify the roles of miR-125b-FAM213A regulatory axis in OC induction.
目錄 i
Abstract iv
中文摘要 v
壹、緒論 1
一、口腔癌 (oral squamous cell carcinoma, OSCC) 1
二、微型核糖核苷酸(micro RNA, miRNA) 1
三、微型RNA-125 (miR-125) 2
四、FAM213A (Family with sequence similarity 213,member A) 4
五、細胞活性氧化物質 (Reactive oxygen species, ROS) 5
貳、研究動機與目標 7
一、研究動機 7
二、研究目標 7
參、材料與方法 8
一、細胞培養 (Cell culture) 8
二、轉染 (Transfection) 9
三、RNA萃取 (RNA extraction) 10
四、反轉錄反應(Reverse Transcription, RT) 11
五、即時聚合酶鏈鎖反應 (Real-time PCR) 12
六、質體DNA選殖 (Gene cloning) 13
七、質體轉型 (Plasmid transformation) 16
八、少量質體DNA製備 (Mini-prep) 16
九、大量質體DNA製備 (Midi-prep) 17
十、病毒製備與感染 (Virus-prep and infection) 17
十一、報導者分析試驗 (Reporter assay) 18
十二、西方點墨法 (Western blot) 19
十三、細胞存活率分析 (MTT assay) 22
十四、細胞移行試驗 (Cell migration assay) 22
十五、細胞入侵試驗 (Cell invasion assay) 23
十六、細胞非貼附性生長試驗 (Anchorage-independent colony formation assay) 23
十七、檢測細胞活性氧化物質 (ROS detection) 24
十八、檢測蛋白氧化壓力 (Oxidized protein detection) 25
十九、口腔病理組織 (Oral tissues) 26
二十、組織晶片 (Tissue array) 26
二十一、原位雜合法 (In situ hybridization, ISH) 26
二十二、統計方法 (Statistical analysis) 28
肆、結果 29
一、口腔癌細胞株中miR-125b的表現量較正常細胞株低 29
二、口腔癌組織中有較低的miR-125b表現 29
三、過度表現miR-125b降低口腔癌細胞表現型能力 29
四、miR-125b低表現與口腔癌病患較差之預後有關 30
五、口腔癌細胞中FAM213A的表現受miR-125b所調控 31
六、miR-125b直接標的FAM213A 3’ UTR抑制FAM213A表現 33
七、FAM213A表現與口腔癌細胞表現型相關 34
八、建立FAM213A過度表現細胞株 35
九、miR-125b抑制FAM213A的表現而增加細胞氧化壓力 36
伍、討論 37
陸、圖列 43
圖一、口腔癌細胞株中miR-125a與miR-125b的mRNA表現 43
圖二、口腔癌組織中miR-125a與miR-125b的表現 44
圖三、過度表現miR-125b對SAS細胞表現型能力之影響 46
圖四、分析口腔癌miR-125b表現與病患腫瘤進程之關係 47
圖五、分析口腔癌miR-125b表現及頸部淋巴結轉移與病患存活率之關係 49
圖六、口腔癌細胞株中FAM213A的mRNA表現 50
圖七、口腔癌細胞中miR-125b與FAM213A的表現呈現負相關 51
圖八、口腔癌細胞中miR-125b過度表現抑制FAM213A表現 52
圖九、口腔癌細胞中miR-125b受到抑制時FAM213A表現量上升 53
圖十、miR-125b直接標的3’ UTR抑制FAM213A 54
圖十一、SAS細胞FAM213A基因剔除對細胞表現型能力之影響 55
圖十二、SAS細胞過度表現FAM213A對細胞表現型能力之影響 57
圖十三、建立FAM213A過度表現SAS及FaDu細胞子株 59
圖十四、miR-125b對SAS細胞內活性氧化物質之調控 60
圖十五、miR-125b及FAM213A對SAS細胞內蛋白氧化壓力之調控 61
柒、表列 62
附表一、腫瘤分期 62
附表二、Stage grouping(綜合TMN分期) 64
附表三、各項溶液配方 64
1. 10X PBS 64
2. PMSF 64
3. Lysis buffer 65
4. 4X Lower buffer 65
5. 10% Lower gel 65
6. 4X Upper buffer 65
7. 4% Upper gel 66
8. SDS sample dye 66
9. 10X Running buffer (pH 8.3) 66
10. Transfer buffer 66
11. PBST 67
12. Blocking buffer 67
13. LB培養液 67
附表四、初級抗體 67
附表五、次級抗體 67
附表六、引子序列 68
附表七、TaqMan® MicroRNA Assays所使用之探針 69
附表八、購入之FAM213A質體 69
附表九、ISH所使用之探針 69
附表十、MiRWalk預測FAM213A為miR-125b標的基因 70
捌、附圖列 71
附圖一、pBABE-puro質體 71
附圖二、pMIR-REPORTTM Luciferase質體 71
附圖三、TargetScan預測FAM213A為miR-125標的基因 72
附圖四、確認FAM213A基因剔除細胞株於口腔癌細胞株SAS中建立 72
玖、參考文獻 73
參考文獻

1. Liu CJ, Liu TY, Kuo LT, Cheng HW, Chu TH, Chang KW, et al. Differential gene expression signature between primary and metastatic head and neck squamous cell carcinoma. The Journal of pathology 2008;214(4):489-97.
2. Kao SY, Lim E. An overview of detection and screening of oral cancer in Taiwan. The Chinese journal of dental research : the official journal of the Scientific Section of the Chinese Stomatological Association (CSA) 2015;18(1):7-12.
3. Biolchini F, Pollastri G, Figurelli S, Chiarini L. Carcinogen metabolism, DNA damage repair and oral head and neck squamocellular carcinoma (HNSCC). A review. Minerva stomatologica 2004;54(7-8):405-14.
4. Nagaraj NS, Beckers S, Mensah JK, Waigel S, Vigneswaran N, Zacharias W. Cigarette smoke condensate induces cytochromes P450 and aldo-keto reductases in oral cancer cells. Toxicology letters 2006;165(2):182-94.
5. Sinha P, Logan HL, Mendenhall WM. Human papillomavirus, smoking, and head and neck cancer. American journal of otolaryngology 2012;33(1):130-6.
6. Stich HF, Anders F. The involvement of reactive oxygen species in oral cancers of betel quid/tobacco chewers. Mutation research 1989;214(1):47-61.
7. Lin S-C, Chen Y-J, Kao S-Y, Hsu M-T, Lin C-H, Yang S-C, et al. Chromosomal changes in betel-associated oral squamous cell carcinomas and their relationship to clinical parameters. Oral Oncology 2002;38(3):266-73.
8. Lai K-C, Lee T-C. Genetic damage in cultured human keratinocytes stressed by long-term exposure to areca nut extracts. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2006;599(1):66-75.
9. Katakwar P, Metgud R, Naik S, Mittal R. Oxidative stress marker in oral cancer: A review. Journal of Cancer Research and Therapeutics 2016;12(2):438-46.
10. Wang Y, Huang X, Cang H, Gao F, Yamamoto T, Osaki T, et al. The endogenous reactive oxygen species promote NF-kappaB activation by targeting on activation of NF-kappaB-inducing kinase in oral squamous carcinoma cells. Free Radic Res 2007;41(9):963-71.
11. Lo WL, Kao SY, Chi LY, Wong YK, Chang RC. Outcomes of oral squamous cell carcinoma in Taiwan after surgical therapy: factors affecting survival. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons 2003;61(7):751-8.
12. Bettendorf O, Piffko J, Bankfalvi A. Prognostic and predictive factors in oral squamous cell cancer: important tools for planning individual therapy? Oral Oncol 2004;40(2):110-9.
13. Duray A, #235, lle, Demoulin S, #233, phanie, et al. Immune Suppression in Head and Neck Cancers: A Review. Clinical and Developmental Immunology 2010;2010.
14. Hunter KD, Parkinson EK, Harrison PR. Profiling early head and neck cancer. Nat Rev Cancer 2005;5(2):127-35.
15. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116(2):281-97.
16. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes are transcribed by RNA polymerase II. The EMBO journal 2004;23(20):4051-60.
17. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003;425(6956):415-9.
18. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes & development 2004;18(24):3016-27.
19. Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes & development 2003;17(24):3011-6.
20. Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001;409(6818):363-6.
21. Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 2005;436(7051):740-4.
22. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136(2):215-33.
23. Liu J. Control of protein synthesis and mRNA degradation by microRNAs. Current opinion in cell biology 2008;20(2):214-21.
24. Tu HF, Lin SC, Chang KW. MicroRNA aberrances in head and neck cancer: pathogenetic and clinical significance. Current opinion in otolaryngology & head and neck surgery 2013;21(2):104-11.
25. Chang KW, Liu CJ, Chu TH, Cheng HW, Hung PS, Hu WY, et al. Association between high miR-211 microRNA expression and the poor prognosis of oral carcinoma. Journal of dental research 2008;87(11):1063-8.
26. Hung PS, Tu HF, Kao SY, Yang CC, Liu CJ, Huang TY, et al. miR-31 is upregulated in oral premalignant epithelium and contributes to the immortalization of normal oral keratinocytes. Carcinogenesis 2014;35(5):1162-71.
27. Rottiers V, Naar AM. MicroRNAs in metabolism and metabolic disorders. Nature reviews Molecular cell biology 2012;13(4):239-50.
28. Chen B, Li H, Zeng X, Yang P, Liu X, Zhao X, et al. Roles of microRNA on cancer cell metabolism. Journal of Translational Medicine 2012;10:228-28.
29. Martinez NJ, Gregory RI. MicroRNA gene regulatory pathways in the establishment and maintenance of ESC identity. Cell Stem Cell 2010;7(1):31-5.
30. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science (New York, NY) 2007;318(5858):1931-4.
31. Su Z, Yang Z, Xu Y, Chen Y, Yu Q. MicroRNAs in apoptosis, autophagy and necroptosis. Oncotarget 2015;6(11):8474.
32. Yang CJ, Shen WG, Liu CJ, Chen YW, Lu HH, Tsai MM, et al. miR‐221 and miR‐222 expression increased the growth and tumorigenesis of oral carcinoma cells. Journal of Oral Pathology & Medicine 2011;40(7):560-66.
33. Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006;6(4):259-69.
34. McManus MT. MicroRNAs and cancer. Seminars in cancer biology 2003;13(4):253-8.
35. Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, Rorsman P, et al. miR-375 maintains normal pancreatic α-and β-cell mass. Proceedings of the National Academy of Sciences 2009;106(14):5813-18.
36. Nohata N, Hanazawa T, Kikkawa N, Sakurai D, Sasaki K, Chiyomaru T, et al. Identification of novel molecular targets regulated by tumor suppressive miR-1/miR-133a in maxillary sinus squamous cell carcinoma. Int J Oncol 2011;39(5):1099-107.
37. Nohata N, Sone Y, Hanazawa T, Fuse M, Kikkawa N, Yoshino H, et al. miR-1 as a tumor suppressive microRNA targeting TAGLN2 in head and neck squamous cell carcinoma. Oncotarget 2011;2(1-2):29-42.
38. Hung P-S, Liu C-J, Chou C-S, Kao S-Y, Yang C-C, Chang K-W, et al. miR-146a enhances the oncogenicity of oral carcinoma by concomitant targeting of the IRAK1, TRAF6 and NUMB genes. PloS one 2013;8(11):e79926.
39. Chu T-H, Yang C-C, Liu C-J, Lui M-T, Lin S-C, Chang K-W. miR-211 promotes the progression of head and neck carcinomas by targeting TGFβRII. Cancer letters 2013;337(1):115-24.
40. Liang H, Jiang Z, Xie G, Lu Y. Serum microRNA-145 as a novel biomarker in human ovarian cancer. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2015;36(7):5305-13.
41. Zhao H, Shen J, Medico L, Wang D, Ambrosone CB, Liu S. A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS One 2010;5(10):e13735.
42. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. nature 2005;435(7043):834-38.
43. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome research 2004;14(10a):1902-10.
44. Banzhaf-Strathmann J, Edbauer D. Good guy or bad guy: the opposing roles of microRNA 125b in cancer. Cell Commun Signal 2014;12:30.
45. Bousquet M, Nguyen D, Chen C, Shields L, Lodish HF. MicroRNA-125b transforms myeloid cell lines by repressing multiple mRNA. Haematologica 2012;97(11):1713-21.
46. Bi Q, Tang S, Xia L, Du R, Fan R, Gao L, et al. Ectopic Expression of MiR-125a Inhibits the Proliferation and Metastasis of Hepatocellular Carcinoma by Targeting MMP11 and VEGF. PLoS ONE 2012;7(6):e40169.
47. Xu N, Zhang L, Meisgen F, Harada M, Heilborn J, Homey B, et al. MicroRNA-125b Down-regulates Matrix Metallopeptidase 13 and Inhibits Cutaneous Squamous Cell Carcinoma Cell Proliferation, Migration, and Invasion. The Journal of Biological Chemistry 2012;287(35):29899-908.
48. Gong J, Zhang J, Li B, Zeng C, You K, Chen M, et al. MicroRNA-125b promotes apoptosis by regulating the expression of Mcl-1, Bcl-w and IL-6R. Oncogene 2013;32(25):3071-79.
49. Balakrishnan A, Stearns AT, Park PJ, Dreyfuss JM, Ashley SW, Rhoads DB, et al. Upregulation of proapoptotic microRNA mir-125a after massive small bowel resection in rats. Annals of surgery 2012;255(4):747.
50. Guo S, Lu J, Schlanger R, Zhang H, Wang JY, Fox MC, et al. MicroRNA miR-125a controls hematopoietic stem cell number. Proceedings of the National Academy of Sciences 2010;107(32):14229-34.
51. Zeng C-W, Zhang X-J, Lin K-Y, Ye H, Feng S-Y, Zhang H, et al. Camptothecin induces apoptosis in cancer cells via microRNA-125b-mediated mitochondrial pathways. Molecular pharmacology 2012;81(4):578-86.
52. Guo X, Wu Y, Hartley R. MicroRNA-125a represses cell growth by targeting HuR in breast cancer. RNA biology 2009;6(5):575-83.
53. Wang G, Mao W, Zheng S, Ye J. Epidermal growth factor receptor‐regulated miR‐125a‐5p–a metastatic inhibitor of lung cancer. Febs Journal 2009;276(19):5571-78.
54. JIANG L, ZHANG Q, CHANG H, Xueshan Q, Enhua W. hsa-miR-125a-5p Enhances Invasion in Non-small Cell Lung Carcinoma Cell Lines by Upregulating Rock-1. Chinese Journal of Lung Cancer 2009;12(10).
55. Cortez MA, Nicoloso MS, Shimizu M, Rossi S, Gopisetty G, Molina JR, et al. miR‐29b and miR‐125a regulate podoplanin and suppress invasion in glioblastoma. Genes, Chromosomes and Cancer 2010;49(11):981-90.
56. Ratert N, Meyer H-A, Jung M, Mollenkopf H-J, Wagner I, Miller K, et al. Reference miRNAs for miRNAome analysis of urothelial carcinomas. PLoS One 2012;7(6):e39309.
57. Sun YM, Lin KY, Chen YQ. Diverse functions of miR-125 family in different cell contexts. J Hematol Oncol 2013;6:6.
58. Tong Z, Liu N, Lin L, Guo X, Yang D, Zhang Q. miR-125a-5p inhibits cell proliferation and induces apoptosis in colon cancer via targeting BCL2, BCL2L12 and MCL1. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 2015;75:129-36.
59. Nishida N, Mimori K, Fabbri M, Yokobori T, Sudo T, Tanaka F, et al. MicroRNA-125a-5p is an independent prognostic factor in gastric cancer and inhibits the proliferation of human gastric cancer cells in combination with trastuzumab. Clinical cancer research : an official journal of the American Association for Cancer Research 2011;17(9):2725-33.
60. Yuan J, Xiao G, Peng G, Liu D, Wang Z, Liao Y, et al. MiRNA-125a-5p inhibits glioblastoma cell proliferation and promotes cell differentiation by targeting TAZ. Biochemical and biophysical research communications 2015;457(2):171-6.
61. Sand M, Skrygan M, Sand D, Georgas D, Hahn S, Gambichler T, et al. Expression of microRNAs in basal cell carcinoma. British Journal of Dermatology 2012;167(4):847-55.
62. Xie B, Ding Q, Han H, Wu D. miRCancer: a microRNA-cancer association database constructed by text mining on literature. Bioinformatics 2013;29(5):638-44.
63. Nishida N, Yokobori T, Mimori K, Sudo T, Tanaka F, Shibata K, et al. MicroRNA miR-125b is a prognostic marker in human colorectal cancer. International journal of oncology 2011;38(5):1437.
64. Le MT, Shyh-Chang N, Khaw SL, Chin L, Teh C, Tay J, et al. Conserved regulation of p53 network dosage by microRNA–125b occurs through evolving miRNA–target gene pairs. PLoS Genet 2011;7(9):e1002242.
65. Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP, et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. Jama 2007;297(17):1901-8.
66. Le MT, Teh C, Shyh-Chang N, Xie H, Zhou B, Korzh V, et al. MicroRNA-125b is a novel negative regulator of p53. Genes & development 2009;23(7):862-76.
67. Yuxia M, Zhennan T, Wei Z. Circulating miR-125b is a novel biomarker for screening non-small-cell lung cancer and predicts poor prognosis. J Cancer Res Clin Oncol 2012;138(12):2045-50.
68. Nishida N, Yokobori T, Mimori K, Sudo T, Tanaka F, Shibata K, et al. MicroRNA miR-125b is a prognostic marker in human colorectal cancer. Int J Oncol 2011;38(5):1437-43.
69. Bousquet M, Quelen C, Rosati R, Mansat-De Mas V, La Starza R, Bastard C, et al. Myeloid cell differentiation arrest by miR-125b-1 in myelodysplastic syndrome and acute myeloid leukemia with the t(2;11)(p21;q23) translocation. J Exp Med 2008;205(11):2499-506.
70. Li X, Zhang Y, Zhang H, Liu X, Gong T, Li M, et al. miRNA-223 promotes gastric cancer invasion and metastasis by targeting tumor suppressor EPB41L3. Mol Cancer Res 2011;9(7):824-33.
71. Amir S, Ma A-H, Shi X-B, Xue L, Kung H-J, deVere White RW. Oncomir miR-125b suppresses p14 ARF to modulate p53-dependent and p53-independent apoptosis in prostate cancer. PloS one 2013;8(4):e61064.
72. Jia H-Y, Wang Y-X, Yan W-T, Li H-Y, Tian Y-Z, Wang S-M, et al. MicroRNA-125b functions as a tumor suppressor in hepatocellular carcinoma cells. International journal of molecular sciences 2012;13(7):8762-74.
73. Smits M, Wurdinger T, van het Hof B, Drexhage JA, Geerts D, Wesseling P, et al. Myc-associated zinc finger protein (MAZ) is regulated by miR-125b and mediates VEGF-induced angiogenesis in glioblastoma. Faseb j 2012;26(6):2639-47.
74. Xia HF, He TZ, Liu CM, Cui Y, Song PP, Jin XH, et al. MiR-125b expression affects the proliferation and apoptosis of human glioma cells by targeting Bmf. Cell Physiol Biochem 2009;23(4-6):347-58.
75. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 2004;101(9):2999-3004.
76. Gong J, Zhang JP, Li B, Zeng C, You K, Chen MX, et al. MicroRNA-125b promotes apoptosis by regulating the expression of Mcl-1, Bcl-w and IL-6R. Oncogene 2013;32(25):3071-9.
77. Kappelmann M, Kuphal S, Meister G, Vardimon L, Bosserhoff AK. MicroRNA miR-125b controls melanoma progression by direct regulation of c-Jun protein expression. Oncogene 2013;32(24):2984-91.
78. Shi XB, Xue L, Yang J, Ma AH, Zhao J, Xu M, et al. An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci U S A 2007;104(50):19983-8.
79. Huang L, Luo J, Cai Q, Pan Q, Zeng H, Guo Z, et al. MicroRNA-125b suppresses the development of bladder cancer by targeting E2F3. Int J Cancer 2011;128(8):1758-69.
80. Nakanishi H, Taccioli C, Palatini J, Fernandez-Cymering C, Cui R, Kim T, et al. Loss of miR-125b-1 contributes to head and neck cancer development by dysregulating TACSTD2 and MAPK pathway. Oncogene 2014;33(6):702-12.
81. Kim HJ, Chae HZ, Kim YJ, Kim YH, Hwangs TS, Park EM, et al. Preferential elevation of Prx I and Trx expression in lung cancer cells following hypoxia and in human lung cancer tissues. Cell Biol Toxicol 2003;19(5):285-98.
82. Xu Y, Morse LR, da Silva RA, Odgren PR, Sasaki H, Stashenko P, et al. PAMM: a redox regulatory protein that modulates osteoclast differentiation. Antioxid Redox Signal 2010;13(1):27-37.
83. Valverde G, Zhou H, Lippold S, de Filippo C, Tang K, López Herráez D, et al. A Novel Candidate Region for Genetic Adaptation to High Altitude in Andean Populations. PLoS ONE 2015;10(5):e0125444.
84. Chen Y-F, Yang C-C, Kao S-Y, Liu C-J, Lin S-C, Chang K-W. MicroRNA-211 enhances the oncogenicity of carcinogen-induced oral carcinoma by repressing TCF12 and increasing antioxidant activity. Cancer research 2016;76(16):4872-86.
85. Liou G-Y, Storz P. Reactive oxygen species in cancer. Free radical research 2010;44(5):479-96.
86. Storz P. Reactive oxygen species in tumor progression. Frontiers in bioscience : a journal and virtual library 2005;10:1881-96.
87. Szatrowski TP, Nathan CF. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 1991;51(3):794-8.
88. Babior BM. NADPH oxidase: an update. Blood 1999;93(5):1464-76.
89. Wiseman H, Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. The Biochemical journal 1996;313 ( Pt 1):17-29.
90. Imlay JA, Chin SM, Linn S. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science (New York, NY) 1988;240(4852):640-2.
91. Barmack NH, Qian Z, Yakhnitsa V. CLIMBING FIBERS INDUCE microRNA TRANSCRIPTION IN CEREBELLAR PURKINJE CELLS. Neuroscience 2010;171(3):655-65.
92. Storz P. Mitochondrial ROS--radical detoxification, mediated by protein kinase D. Trends in cell biology 2007;17(1):13-8.
93. Antosiewicz J, Herman-Antosiewicz A, Marynowski SW, Singh SV. c-Jun NH(2)-terminal kinase signaling axis regulates diallyl trisulfide-induced generation of reactive oxygen species and cell cycle arrest in human prostate cancer cells. Cancer Res 2006;66(10):5379-86.
94. Townsend DM, Tew KD. Pharmacology of a mimetic of glutathione disulfide, NOV-002. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 2009;63(2):75-8.
95. Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nature reviews Drug discovery 2009;8(7):579-91.
96. Abiko Y, Arai J, Mitamura J, Kaku T. Alteration of proto-oncogenes during apoptosis in the oral squamous cell carcinoma cell line, SAS, induced by staurosporine. Cancer letters 1997;118(1):101-7.
97. Lin SC, Liu CJ, Chiu CP, Chang SM, Lu SY, Chen YJ. Establishment of OC3 oral carcinoma cell line and identification of NF-kappa B activation responses to areca nut extract. Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology 2004;33(2):79-86.
98. Hung PS, Kao SY, Shih YH, Chiou SH, Liu CJ, Chang KW, et al. Insulin-like growth factor binding protein-5 (IGFBP-5) suppresses the tumourigenesis of head and neck squamous cell carcinoma. The Journal of pathology 2008;214(3):368-76.
99. Levine RL. Carbonyl modified proteins in cellular regulation, aging, and disease. Free radical biology & medicine 2002;32(9):790-6.
100. Bhave SL, Teknos TN, Pan Q, James AG, Solove RJ. Molecular parameters of head and neck cancer metastasis. Critical reviews in eukaryotic gene expression 2011;21(2):143-53.
101. Ahmed KM, Cao N, Li JJ. HER-2 and NF-κB as the targets for therapy-resistant breast cancer. Anticancer research 2006;26(6B):4235-43.
102. Schreck R, Albermann K, Baeuerle PA. Nuclear factor kB: an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free radical research communications 1992;17(4):221-37.
103. Burdon RH. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radical Biology and Medicine 1995;18(4):775-94.
104. Kundu N, Zhang S, Fulton AM. Sublethal oxidative stress inhibits tumor cell adhesion and enhances experimental metastasis of murine mammary carcinoma. Clinical & experimental metastasis 1995;13(1):16-22.
105. Chang C-W, Chen Y-S, Chou S-H, Han C-L, Chen Y-J, Yang C-C, et al. Distinct Subpopulations of Head and Neck Cancer Cells with Different Levels of Intracellular Reactive Oxygen Species Exhibit Diverse Stemness, Proliferation, and Chemosensitivity. Cancer Research 2014;74(21):6291-305.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊