|
[1] C.J. Liu, M.M. Tsai, P.S. Hung, S.Y. Kao, T.Y. Liu, K.J. Wu, S.H. Chiou, S.C. Lin, K.W.Chang, miR-31 ablates expression of the HIF regulatory factor FIH to activate the HIF pathway in head and neck carcinoma, Cancer Res, 70 (2010) 1635-1644. [2] C.R. Leemans, B.J. Braakhuis, R.H. Brakenhoff, The molecular biology of head and neck cancer, Nat Rev Cancer, 11 (2011) 9-22. [3] C.J. Liu, W.G. Shen, S.Y. Peng, H.W. Cheng, S.Y. Kao, S.C. Lin, K.W. Chang, miR-134 induces oncogenicity and metastasis in head and neck carcinoma through targeting WWOX gene, Int J Cancer, 134 (2014) 811-821. [4] Y. Du, N.D. Peyser, J.R. Grandis, Integration of molecular targeted therapy with radiation in head and neck cancer, Pharmacol Ther, 142 (2014) 88-98. [5] H.H. Lu, S.Y. Kao, T.Y. Liu, S.T. Liu, W.P. Huang, K.W. Chang, S.C. Lin, Areca nut extract induced oxidative stress and upregulated hypoxia inducing factor leading to autophagy in oral cancer cells, Autophagy, 6 (2010) 725-737. [6] A.E. Al Moustafa, W.D. Foulkes, N. Benlimame, A. Wong, L. Yen, J. Bergeron, G. Batist,L. Alpert, M.A. Alaoui-Jamali, E6/E7 proteins of HPV type 16 and ErbB-2 cooperate to induce neoplastic transformation of primary normal oral epithelial cells, Oncogene, 23 (2004) 350-358. [7] H.F. Tu, S.C. Lin, K.W. Chang, MicroRNA aberrances in head and neck cancer: pathogenetic and clinical significance, Curr Opin Otolaryngol Head Neck Surg, 21 (2013) 104-111. [8] G.A. Calin, C.D. Dumitru, M. Shimizu, R. Bichi, S. Zupo, E. Noch, H. Aldler, S. Rattan, M. Keating, K. Rai, L. Rassenti, T. Kipps, M. Negrini, F. Bullrich, C.M. Croce, Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronilymphocytic leukemia, Proc Natl Acad Sci U S A, 99 (2002) 15524-15529. [9] A. Esquela-Kerscher, F.J. Slack, Oncomirs - microRNAs with a role in cancer, Nat Rev Cancer, 6 (2006) 259-269. [10] C.J. Liu, S.Y. Kao, H.F. Tu, M.M. Tsai, K.W. Chang, S.C. Lin, Increase of microRNA miR-31 level in plasma could be a potential marker of oral cancer, Oral Dis, 16 (2010) 360-364. [11] D.P. Bartel, MicroRNAs: target recognition and regulatory functions, Cell, 136 (2009) 215-233. [12] L. Xing, N.W. Todd, L. Yu, H. Fang, F. Jiang, Early detection of squamous cell lung cancer in sputum by a panel of microRNA markers, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc, 23 (2010) 1157-1164. [13] W.H. Roa, J.O. Kim, R. Razzak, H. Du, L. Guo, R. Singh, S. Gazala, S. Ghosh, E. Wong,A.A. Joy, J.Z. Xing, E.L. Bedard, Sputum microRNA profiling: a novel approach for the early detection of non-small cell lung cancer, Clin. Invest. Med., 35 (2012) E271. [14] G.A. Calin, C.M. Croce, MicroRNA signatures in human cancers, Nat Rev Cancer, 6(2006) 857-866. [15] P.S. Mitchell, R.K. Parkin, E.M. Kroh, B.R. Fritz, S.K. Wyman, E.L. Pogosova-Agadjanyan, A. Peterson, J. Noteboom, K.C. O'Briant, A. Allen, D.W. Lin, N. Urban, C.W. Drescher, B.S. Knudsen, D.L. Stirewalt, R. Gentleman, R.L. Vessella, P.S. Nelson, D.B.Martin, M. Tewari, Circulating microRNAs as stable blood-based markers for cancer detection, Proc Natl Acad Sci U S A, 105 (2008) 10513-10518. [16] N. Kosaka, H. Iguchi, T. Ochiya, Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis, Cancer Sci, 101 (2010) 2087-2092. [17] N. Vigneswaran, J. Wu, A. Song, A. Annapragada, W. Zacharias, Hypoxia-induced autophagic response is associated with aggressive phenotype and elevated incidence of metastasis in orthotopic immunocompetent murine models of head and neck squamous cell carcinomas (HNSCC), Exp. Mol. Pathol., 90 (2011) 215-225. [18] M.H. Yang, M.Z. Wu, S.H. Chiou, P.M. Chen, S.Y. Chang, C.J. Liu, S.C. Teng, K.J. Wu, Direct regulation of TWIST by HIF-1alpha promotes metastasis, Nat Cell Biol, 10 (2008) 295-305. [19] G.L. Semenza, HIF-1: upstream and downstream of cancer metabolism, Curr. Opin. Genet. Dev., 20 (2010) 51-56. [20] P.Y. Lin, C.H. Yu, J.T. Wang, H.H. Chen, S.J. Cheng, M.Y. Kuo, C.P. Chiang, Expression of hypoxia-inducible factor-1 alpha is significantly associated with the progression and prognosis of oral squamous cell carcinomas in Taiwan, J. Oral Pathol. Med., 37 (2008) 18-25. [21] J. Pouyssegur, F. Dayan, N.M. Mazure, Hypoxia signalling in cancer and approaches to enforce tumour regression, Nature, 441 (2006) 437-443. [22] C. Camps, F.M. Buffa, S. Colella, J. Moore, C. Sotiriou, H. Sheldon, A.L. Harris, J.M. Gleadle, J. Ragoussis, hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer, Clinical cancer research : an official journal of the American Association for Cancer Research, 14 (2008) 1340-1348. [23] R. Du, W. Sun, L. Xia, A. Zhao, Y. Yu, L. Zhao, H. Wang, C. Huang, S. Sun, Hypoxia-induced down-regulation of microRNA-34a promotes EMT by targeting the Notch signaling pathway in tubular epithelial cells, PloS one, 7 (2012) e30771. [24] M. He, Q.Y. Wang, Q.Q. Yin, J. Tang, Y. Lu, C.X. Zhou, C.W. Duan, D.L. Hong, T. Tanaka, G.Q. Chen, Q. Zhao, HIF-1alpha downregulates miR-17/20a directly targeting p21 and STAT3: a role in myeloid leukemic cell differentiation, Cell Death Differ., 20 (2013) 408-418. [25] F. Loayza-Puch, Y. Yoshida, T. Matsuzaki, C.Takahashi, H. Kitayama, M. Noda, Hypoxia and RAS-signaling pathways converge on, and cooperatively downregulate, the RECK tumor-suppressor protein through microRNAs, Oncogene, 29 (2010) 2638-2648. [26] P.M. Voorhoeve, C. le Sage, M. Schrier, A.J. Gillis, H. Stoop, R. Nagel, Y.P. Liu, J. van Duijse, J. Drost, A. Griekspoor, E. Zlotorynski, N. Yabuta, G. De Vita, H. Nojima, L.H. Looijenga, R. Agami, A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors, Cell, 124 (2006) 1169-1181. [27] S. Yamashita, H. Yamamoto, K. Mimori, N. Nishida, H. Takahashi, N. Haraguchi, F. Tanaka, K. Shibata, M. Sekimoto, H. Ishii, Y. Doki, M. Mori, MicroRNA-372 is associated with poor prognosis in colorectal cancer, Oncology, 82 (2012) 205-212. [28] W.J. Cho, J.M. Shin, J.S. Kim, M.R. Lee, K.S. Hong, J.H. Lee, K.H. Koo, J.W. Park,K.S. Kim, miR-372 regulates cell cycle and apoptosis of ags human gastric cancer cell line through direct regulation of LATS2, Mol Cells, 28 (2009) 521-527. [29] G. Li, Z. Zhang, Y. Tu, T. Jin, H. Liang, G. Cui, S. He, G. Gao, Correlation of microRNA-372 upregulation with poor prognosis in human glioma, Diagn Pathol, 8 (2013) 1. [30] H. Gu, X. Guo, L. Zou, H. Zhu, J. Zhang, Upregulation of microRNA-372 associates with tumor progression and prognosis in hepatocellular carcinoma, Mol. Cell. Biochem., 375 (2013) 23-30. [31] K.H. Lee, Y.G. Goan, M. Hsiao, C.H. Lee, S.H. Jian, J.T. Lin, Y.L. Chen, P.J. Lu, MicroRNA-373 (miR-373) post-transcriptionally regulates large tumor suppressor,homolog 2 (LATS2) and stimulates proliferation in human esophageal cancer, Experimental cell research, 315 (2009) 2529-2538 [32] T.S. Wong, X.B. Liu, B.Y. Wong, R.W. Ng, A.P. Yuen, W.I. Wei, Mature miR-184 as Potential Oncogenic microRNA of Squamous Cell Carcinoma of Tongue, Clin Cancer Res, 14 (2008) 2588-2592. [33] A.D. Zhou, L.T. Diao, H. Xu, Z.D. Xiao, J.H. Li, H. Zhou, L.H. Qu, beta-Catenin/LEF1 transactivates the microRNA-371-373 cluster that modulates the Wnt/beta-catenin-signaling pathway, Oncogene, 31 (2012) 2968-2978. [34] R.Q. Tian, X.H. Wang, L.J. Hou, W.H. Jia, Q. Yang, Y.X. Li, M. Liu, X. Li, H. Tang, MicroRNA-372 is down-regulated and targets cyclin-dependent kinase 2 (CDK2) and cyclin A1 in human cervical cancer, which may contribute to tumorigenesis, The Journal of biological chemistry, 286 (2011) 25556-25563. [35] R.K. Vadlamudi, I. Joung, J.L. Strominger, J. Shin, p62, a phosphotyrosine-independent ligand of the SH2 domain of p56lck, belongs to a new class of ubiquitin-binding proteins, The Journal of biological chemistry, 271 (1996) 20235-20237. [36] A. Puls, S. Schmidt, F. Grawe, S. Stabel, Interaction of protein kinase C zeta with ZIP, a novel protein kinase C-binding protein, Proceedings of the National Academy of Sciences of the United States of America, 94 (1997) 6191-6196. [37]I. Joung, J.L. Strominger, J. Shin, Molecular cloning of a phosphotyrosine-independent ligand of the p56lck SH2 domain, Proceedings of the National Academy of Sciences of the United States of America, 93 (1996) 5991-5995 [38] B. Ciani, R. Layfield, J.R. Cavey, P.W. Sheppard, M.S. Searle, Structure of the ubiquitin-associated domain of p62 (SQSTM1) and implications for mutations that cause Paget's disease of bone, The Journal of biological chemistry, 278 (2003) 37409-37412. [39] A. Duran, J.F. Linares, A.S. Galvez, K. Wikenheiser, J.M. Flores, M.T. Diaz-Meco, J.Moscat, The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis, Cancer cell, 13 (2008) 343-354. [40] A. Duran, R. Amanchy, J.F. Linares, J. Joshi, S. Abu-Baker, A. Porollo, M. Hansen, J.Moscat, M.T. Diaz-Meco, p62 is a key regulator of nutrient sensing in the mTORC1 pathway, Molecular cell, 44 (2011) 134-146. [41] Y. Ichimura, S. Waguri, Y.S. Sou, S. Kageyama, J. Hasegawa, R. Ishimura, T. Saito, Y. Yang, T. Kouno, T. Fukutomi, T. Hoshii, A. Hirao, K. Takagi, T. Mizushima, H. Motohashi, M.S. Lee, T. Yoshimori, K. Tanaka, M. Yamamoto, M. Komatsu, Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy, Molecular cell, 51 (2013) 618-631. [42] C. Gao, Y.G. Chen, Selective removal of dishevelled by autophagy: a role of p62, Autophagy, 7 (2011) 334-335. [43] K.F. Ahmad, A. Melnick, S. Lax, D. Bouchard, J. Liu, C.L. Kiang, S. Mayer, S. Takahashi, J.D. Licht, G.G. Prive, Mechanism of SMRT corepressor recruitment by the BCL6 BTB domain, Mol Cell, 12 (2003) 1551-1564. [44] P. Dhordain, O. Albagli, R.J. Lin, S. Ansieau, S. Quief, A. Leutz, J.P. Kerckaert, R.M. Evans, D. Leprince, Corepressor SMRT binds the BTB/POZ repressing domain of the LAZ3/BCL6 oncoprotein, Proc Natl Acad Sci U S A, 94 (1997) 10762-10767. [45] R. Beroukhim, C.H. Mermel, D. Porter, G. Wei, S. Raychaudhuri, J. Donovan, J. Barretina, J.S. Boehm, J. Dobson, M. Urashima, K.T. Mc Henry, R.M. Pinchback, A.H. Ligon, Y.J. Cho, L. Haery, H. Greulich, M. Reich, W. Winckler, M.S. Lawrence, B.A. Weir, K.E. Tanaka, D.Y. Chiang, A.J. Bass, A. Loo, C. Hoffman, J. Prensner, T. Liefeld, Q. Gao, D. Yecies, S. Signoretti, E. Maher, F.J. Kaye, H. Sasaki, J.E. Tepper, J.A. Fletcher, J. Tabernero, J. Baselga, M.S. Tsao, F. Demichelis, M.A. Rubin, P.A. Janne, M.J. Daly, C. Nucera, R.L. Levine, B.L. Ebert, S. Gabriel, A.K. Rustgi, C.R. Antonescu, M. Ladanyi, A. Letai, L.A. Garraway, M. Loda, D.G. Beer, L.D. True, A. Okamoto, S.L. Pomeroy, S. Singer, T.R. Golub, E.S. Lander, G. Getz, W.R. Sellers, M. Meyerson, The landscape of somatic copy-number alteration across human cancers, Nature, 463 (2010) 899-905. [46] T.I. Zack, S.E. Schumacher, S.L. Carter, A.D. Cherniack, G. Saksena, B. Tabak, M.S. Lawrence, C.Z. Zhsng, J. Wala, C.H. Mermel, C. Sougnez, S.B. Gabriel, B. Hernandez, H. Shen, P.W. Laird, G. Getz, M. Meyerson, R. Beroukhim, Pan-cancer patterns of somatic copy number alteration, Nat Genet, 45 (2013) 1134-1140. [47] B.N. Jeon, J.Y. Yoo, W.I. Choi, C.E. Lee, H.G. Yoon, M.W. Hur, Proto-oncogene FBI-1 (Pokemon/ZBTB7A) represses transcription of the tumor suppressor Rb gene via binding competition with Sp1 and recruitment of co-repressors, J Biol Chem, 283 (2008) 33199-33210. [48] G. Wang, A. Lunardi, J. Zhang, Z. Chen, U. Ala, K.A. Webster, Y. Tay, E. Gonzalez-Billalabeitia, A. Egia, D.R. Shaffer, B. Carver, X.S. Liu, R. Taulli, W.P. Kuo, C. Nardella, S. Signoretti, C. Cordon-Cardo, W.L. Gerald, P.P. Pandolfi, Zbtb7a suppresses prostate cancer through repression of a Sox9-dependent pathway for cellular senescence bypass and tumor invasion, Nat Genet, 45 (2013) 739-746. [49] X. Zu, L. Yu, Q. Sun, F. Liu, J. Wang, Z. Xie, Y. Wang, W. Xu, Y. Jiang, SP1 enhances Zbtb7A gene expression via direct binding to GC box in HePG2 cells, BMC Res Notes, 2 (2009) 175. [50] T. Maeda, R.M. Hobbs, T. Merghoub, I. Guernah, A. Zelent, C. Cordon-Cardo, J. Teruya-Feldstein, P.P. Pandolfi, Role of the proto-oncogene Pokemon in cellular transformation and ARF repression, Nature, 433 (2005) 278-285. [51] T. Maeda, R.M. Hobbs, P.P. Pandolfi, The transcription factor Pokemon: a new key player in cancer pathogenesis, Cancer Res, 65 (2005) 8575-8578. [52] X.S. Liu, J.E. Haines, E.K. Mehanna, M.D. Genet, I. Ben-Sahra, J.M. Asara, B.D. Manning, Z.M. Yuan, ZBTB7A acts as a tumor suppressor through the transcriptional repression of glycolysis, Genes Dev, 28 (2014) 1917-1928. [53] P.S. Hung, H.F. Tu, S.Y. Kao, C.C. Yang, C.J. Liu, T.Y. Huang, K.W. Chang, S.C. Lin, miR-31 is upregulated in oral premalignant epithelium and contributes to the immortalization of normal oral keratinocytes, Carcinogenesis, 35 (2014) 1162-1171. [54] S.C. Lin, C.J. Liu, C.P. Chiu, S.M. Chang, S.Y. Lu, Y.J. Chen, Establishment of OC3 oral carcinoma cell line and identification of NF-kappa B activation responses to areca nut extract, J Oral Pathol Med, 33 (2004) 79-86. [55] A. Jain, T. Lamark, E. Sjottem, K.B. Larsen, J.A. Awuh, A. Overvatn, M. McMahon, J.D. Hayes, T. Johansen, p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription, J Biol Chem, 285 (2010) 22576-22591. [56] C.J. Liu, M.M. Tsai, H.F. Tu, M.T. Lui, H.W. Cheng, S.C. Lin, miR-196a overexpression and miR-196a2 gene polymorphism are prognostic predictors of oral carcinomas, Ann Surg Oncol, 20 Suppl 3 (2013) S406-414. [57] T.H. Chu, C.C. Yang, C.J. Liu, M.T. Lui, S.C. Lin, K.W. Chang, miR-211 promotes the progression of head and neck carcinomas by targeting TGFbetaRII, Cancer Lett, 337 (2013) 115-124. [58] C.C. Yang, P.S. Hung, P.W. Wang, C.J. Liu, T.H. Chu, H.W. Cheng, S.C. Lin, miR-181 as a putative biomarker for lymph-node metastasis of oral squamous cell carcinoma, J Oral Pathol Med, 40 (2011) 397-404. [59] J.H. Lai, T.F. She, Y.M. Juang, Y.G. Tsay, A.H. Huang, S.L. Yu, J.J. Chen, C.C. Lai,Comparative proteomic profiling of human lung adenocarcinoma cells (CL 1-0) expressing miR-372, Electrophoresis, 33 (2012) 675-688. [60] D. Subramanyam, S. Lamouille, R.L. Judson, J.Y. Liu, N. Bucay, R. Derynck, R. Blelloch, Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells, Nat Biotechnol, 29 (2011) 443-448. [61] D. Inoue, T. Suzuki, Y. Mitsuishi, Y. Miki, S. Suzuki, S. Sugawara, M. Watanabe, A. Sakurada, C. Endo, A. Uruno, H. Sasano, T. Nakagawa, K. Satoh, N. Tanaka, H. Kubo, H. Motohashi, M. Yamamoto, Accumulation of p62/SQSTM1 is associated with poor prognosis in patients with lung adenocarcinoma, Cancer Sci, 103 (2012) 760-766. [62] C.B. Bui, J. Shin, Persistent expression of Nqo1 by p62-mediated Nrf2 activation facilitates p53-dependent mitotic catastrophe, Biochem Biophys Res Commun, 412 (2011) 347-352. [63] Y. Hashimoto, Y. Akiyama, Y. Yuasa, Multiple-to-multiple relationships between microRNAs and target genes in gastric cancer, PLoS One, 8 (2013) e62589. [64] M.E. Peter, Targeting of mRNAs by multiple miRNAs: the next step, Oncogene, 29 (2010) 2161-2164. [65] F. Petrocca, R. Visone, M.R. Onelli, M.H. Shah, M.S. Nicoloso, I. de Martino, D. Iliopoulos, E. Pilozzi, C.G. Liu, M. Negrini, L. Cavazzini, S. Volinia, H. Alder, L.P. Ruco, G. Baldassarre, C.M. Croce, A. Vecchione, E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer, Cancer Cell, 13 (2008) 272-286. [66] I. Ivanovska, A.S. Ball, R.L. Diaz, J.F. Magnus, M. Kibukawa, J.M. Schelter, S.V. Kobayashi, L. Lim, J. Burchard, A.L. Jackson, P.S. Linsley, M.A. Cleary, MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression, Mol Cell Biol, 28 (2008) 2167-2174. [67] D. Jiao, Y. Yan, S. Shui, G. Wu, J. Ren, Y. Wang, X. Han, miR-106b regulates the 5-fluorouracil resistance by targeting Zbtb7a in cholangiocarcinoma, Oncotarget, (2017). [68] J. Kong, X. Liu, X. Li, J. Wu, N. Wu, J. Chen, F. Fang, miR-125/Pokemon auto-circuit contributes to the progression of hepatocellular carcinoma, Tumour Biol, 37 (2016) 511-519. [69] M. Zhu, M. Li, T. Wang, E. Linghu, B. Wu, MicroRNA-137 represses FBI-1 to inhibit proliferation and in vitro invasion and migration of hepatocellular carcinoma cells, Tumour Biol, 37 (2016) 13995-14008. [70] X.L. Jin, Q.S. Sun, F. Liu, H.W. Yang, M. Liu, H.X. Liu, W. Xu, Y.Y. Jiang, microRNA21-mediated suppression of Sprouty1 by Pokemon affects liver cancer cell growth and proliferation, J Cell Biochem, 114 (2013) 1625-1633. [71] Z. Zhijun, H. Jingkang, MicroRNA-520e suppresses non-small-cell lung cancer cell growth by targeting Zbtb7a-mediated Wnt signaling pathway, Biochem Biophys Res Commun, 486 (2017) 49-56. [72] D.B. Shi, Y.W. Wang, A.Y. Xing, J.W. Gao, H. Zhang, X.Y. Guo, P. Gao, C/EBPalpha-induced miR-100 expression suppresses tumor metastasis and growth by targeting ZBTB7A in gastric cancer, Cancer Lett, 369 (2015) 376-385. [73] K. Liu, F. Liu, N. Zhang, S. Liu, Y. Jiang, Pokemon silencing leads to Bim-mediated anoikis of human hepatoma cell QGY7703, Int J Mol Sci, 13 (2012) 5818-5831. [74] X. Zhu, Y. Dai, Z. Chen, J. Xie, W. Zeng, Y. Lin, Knockdown of Pokemon protein expression inhibits hepatocellular carcinoma cell proliferation by suppression of AKT activity, Oncol Res, 20 (2013) 377-381. [75] M. Zhu, M. Li, F. Zhang, F. Feng, W. Chen, Y. Yang, J. Cui, D. Zhang, E. Linghu, FBI-1 enhances ETS-1 signaling activity and promotes proliferation of human colorectal carcinoma cells, PLoS One, 9 (2014) e98041. [76] Y. Zhao, Y.H. Yao, L. Li, W.F. An, H.Z. Chen, L.P. Sun, H.X. Kang, S. Wang, X.R. Hu, Pokemon enhances proliferation, cell cycle progression and anti-apoptosis activity of colorectal cancer independently of p14ARF-MDM2-p53 pathway, Med Oncol, 31 (2014) 288. [77] C. Guo, K. Zhu, W. Sun, B. Yang, W. Gu, J. Luo, B. Peng, J. Zheng, The effect of Pokemon on bladder cancer epithelial-mesenchymal transition, Biochem Biophys Res Commun, 443 (2014) 1226-1231. [78] K. Inoue, E.A. Fry, P. Taneja, Recent progress in mouse models for tumor suppressor genes and its implications in human cancer, Clin Med Insights Oncol, 7 (2013) 103-122. [79] X.S. Liu, M.D. Genet, J.E. Haines, E.K. Mehanna, S. Wu, H.I. Chen, Y. Chen, A.A. Qureshi, J. Han, X. Chen, D.E. Fisher, P.P. Pandolfi, Z.M. Yuan, ZBTB7A Suppresses Melanoma Metastasis by Transcriptionally Repressing MCAM, Mol Cancer Res, 13 (2015) 1206-1217. [80] W. Li, A. Kidiyoor, Y. Hu, C. Guo, M. Liu, X. Yao, Y. Zhang, B. Peng, J. Zheng, Evaluation of transforming growth factor-beta1 suppress Pokemon/epithelial-mesenchymal transition expression in human bladder cancer cells, Tumour Biol, 36 (2015) 1155-1162. [81] D. Sartini, L. Lo Muzio, S. Morganti, V. Pozzi, G. Di Ruscio, R. Rocchetti, C. Rubini, A. Santarelli, M. Emanuelli, Pokemon proto-oncogene in oral cancer: potential role in the early phase of tumorigenesis, Oral Dis, 21 (2015) 462-469. [82] D.S. Hsu, H.Y. Lan, C.H. Huang, S.K. Tai, S.Y. Chang, T.L. Tsai, C.C. Chang, C.H. Tzeng, K.J. Wu, J.Y. Kao, M.H. Yang, Regulation of excision repair cross-complementation group 1 by Snail contributes to cisplatin resistance in head and neck cancer, Clin Cancer Res, 16 (2010) 4561-4571. [83] L. Li, H.C. Liu, C. Wang, X. Liu, F.C. Hu, N. Xie, L. Lu, X. Chen, H.Z. Huang, Overexpression of beta-Catenin Induces Cisplatin Resistance in Oral Squamous Cell Carcinoma, Biomed Res Int, 2016 (2016) 5378567. [84] T. Ota, H. Jono, K. Ota, S. Shinriki, M. Ueda, T. Sueyoshi, K. Nakatani, Y. Hiraishi, T. Wada, S. Fujita, K. Obayashi, M. Shinohara, Y. Ando, Downregulation of midkine induces cisplatin resistance in human oral squamous cell carcinoma, Oncol Rep, 27 (2012) 1674-1680. [85] G.C. Huang, S.Y. Liu, M.H. Lin, Y.Y. Kuo, Y.C. Liu, The synergistic cytotoxicity of cisplatin and taxol in killing oral squamous cell carcinoma, Jpn J Clin Oncol, 34 (2004) 499-504. [86] B. Stordal, N. Pavlakis, R. Davey, A systematic review of platinum and taxane resistance from bench to clinic: an inverse relationship, Cancer Treat Rev, 33 (2007) 688-703. [87] L. Feng, L.L. E, M.M. Soloveiv, D.S. Wang, B.O. Zhang, Y.W. Dong, H.C. Liu, Synergistic cytotoxicity of cisplatin and Taxol in overcoming Taxol resistance through the inhibition of LDHA in oral squamous cell carcinoma, Oncol Lett, 9 (2015) 1827-1832. [88] Y.Q. Zhang, C.X. Xiao, B.Y. Lin, Y. Shi, Y.P. Liu, J.J. Liu, B. Guleng, J.L. Ren, Silencing of Pokemon enhances caspase-dependent apoptosis via fas- and mitochondria-mediated pathways in hepatocellular carcinoma cells, PLoS One, 8 (2013) e68981. [89] D.K. Lee, J.E. Kang, H.J. Park, M.H. Kim, T.H. Yim, J.M. Kim, M.K. Heo, K.Y. Kim, H.J. Kwon, M.W. Hur, FBI-1 enhances transcription of the nuclear factor-kappaB (NF-kappaB)-responsive E-selectin gene by nuclear localization of the p65 subunit of NF-kappaB, J Biol Chem, 280 (2005) 27783-27791. [90] Q.L. Deveraux, N. Roy, H.R. Stennicke, T. Van Arsdale, Q. Zhou, S.M. Srinivasula, E.S. Alnemri, G.S. Salvesen, J.C. Reed, IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases, EMBO J, 17 (1998) 2215-2223. [91] V.N. Ivanov, A. Bhoumik, Z. Ronai, Death receptors and melanoma resistance to apoptosis, Oncogene, 22 (2003) 3152-3161. [92] R. Ravi, G.C. Bedi, L.W. Engstrom, Q. Zeng, B. Mookerjee, C. Gelinas, E.J. Fuchs, A. Bedi, Regulation of death receptor expression and TRAIL/Apo2L-induced apoptosis by NF-kappaB, Nat Cell Biol, 3 (2001) 409-416. [93] Y. Zheng, F. Ouaaz, P. Bruzzo, V. Singh, S. Gerondakis, A.A. Beg, NF-kappa B RelA (p65) is essential for TNF-alpha-induced fas expression but dispensable for both TCR-induced expression and activation-induced cell death, J Immunol, 166 (2001) 4949-4957. [94] T. Yoshida, A. Maeda, N. Tani, T. Sakai, Promoter structure and transcription initiation sites of the human death receptor 5/TRAIL-R2 gene, FEBS Lett, 507 (2001) 381-385. [95] P. Schneider, M. Thome, K. Burns, J.L. Bodmer, K. Hofmann, T. Kataoka, N. Holler, J. Tschopp, TRAIL receptors 1 (DR4) and 2 (DR5) signal FADD-dependent apoptosis and activate NF-kappaB, Immunity, 7 (1997) 831-836.
|