跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 11:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉俐瑩
研究生(外文):Li-Yin Yeh
論文名稱:miR-372抑制p62和ZBTB7A促進口腔癌之癌化
論文名稱(外文):The targeting of miR-372 on p62 and ZBTB7A for oral cancer promotion
指導教授:張國威
指導教授(外文):Kuo-Wei Chang
學位類別:博士
校院名稱:國立陽明大學
系所名稱:口腔生物研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:84
中文關鍵詞:口腔癌miR-372
外文關鍵詞:oral cancermiR-372
相關次數:
  • 被引用被引用:0
  • 點閱點閱:314
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
根據世界衛生組織資料顯示口腔癌為全球盛行率第八的癌症。而在國內衛生署統計男性十大癌症排行中,口腔癌位居第四,其發生率更是節節攀升。因此口腔癌相關的致癌因子研究更顯得重要。MicroRNAs (miRNAs)為內生性非編碼的小片段序列,作用為負向調控其目標基因,miRNA的突變和異常表現與口腔癌有密切的相關。
先前本實驗室發現miR-372在口腔癌臨床組織中有較高的表現,而在本研究中發現miR-372會促進口腔癌細胞株的移行能力。透過預測軟體分析以及西方點墨法、qRT-PCR找到miR-372的新目標基因p62,進而發現miR-372 透過抑制p62促進口腔癌細胞株的移行、侵襲及非貼附性生長能力。NQO1為Nrf2 轉錄因子抗氧化機轉下游重要的phase Ⅱ酵素,在本研究中發現miR-372-p62分子路徑可調控NQO1的表現,影響口腔癌細胞株的活性氧化物質(ROS)的平衡,這些活性氧化物質的累積會增加細胞的移行能力。缺氧為誘導癌症侵襲性之重要因素,本研究探討miR-372訊息軸是否受到缺氧環境的調控,結果顯示在低氧環境培養下,miR-372表現量明顯上升,p62和NQO1的表現量則隨著培養時間而下降。過去文獻指出miRNA可做為評估預後的重要指標,本研究在口腔癌臨床組織中亦證實miR-372-p62-NQO1訊息軸的調控,而miR-372在血液以及唾液中的表現,可能為口腔癌較差的預後指標。
本研究亦探索miR-372是否能經由其他路徑調控口腔癌的進展。由生物訊息分析發現miR-372和ZBTB7A呈負相關且在口腔癌細胞株中降低ZBTB7A的表現。雖然ZBTB7A在各種癌症中角色不一,在口腔癌細胞中ZBTB7A的表現抑制細胞移行、侵襲和及非貼覆性生長能力,同時促進細胞凋亡產生。由上述結果得知miR-372參與多種口腔癌癌化過程調控,透過標靶p62和ZBTB7A促進口腔癌癌化的病程。
According to the survey of WHO oral carcinoma is ranked the eighth leading malignancy in the world cancer. In Taiwan, it ranks fourth at the male top ten cancers. The incidence rate is increasing year by year. Therefore, the investigation of oral carcinoma demands immediate attention. MicroRNAs are small non-coding RNAs functioning by repressing target genes. It has been reported that the mutation and aberrant expression of miRNAs are closely related to oral tumorigenesis.
The previous study in our laboratory found that miR-372 was highly expressed in oral squamous cell carcinoma (OSCC) tissues. In this study we found that miR-372 increased the OSCC cell migration. By using in silico platform, western blot analysis, qRT-PCR assay we found that p62 (Sequestosome 1) was the new target gene of miR-372. miR-372 promoted cell migration, invasion, anchorage-independent growth of OSCC cells. NQO1 is a downstream major phase Ⅱ enzyme of Nrf2 antioxidant mechanism. Our results showed that miR-372-p62 axis modulated NQO1 expression, which further altered the balance of ROS level in cells. The accumulation of ROS increased the capability of cell migrations. Hypoxia has significant role in promoting cancer invasion. We identified that miR-372 axis was regulated by hypoxia as miR-372 expression was increased, and the expression of p62 and NQO1 were decreased in accordance with hypoxic time course. miRNAs have been reported as good prognosis markers in cancer. Our results confirmed the miR-372-p62-NQO1 regulation in OSCC tissues. In addition, the level of miR-372 in plasma and saliva might be the poor prognosis marker in OSCC.
To discover the novel miR-372 related target, we searched biological database and found that ZBTB7A expression was opposite to miR-372expression. Although ZBTB7A has different roles in various cancers, our analysis showed that miR-372 repressed ZBTB7A expression in OSCC cells. Overexpression of ZBTB7A in OSCC cells decreased the abilities of cell migration, invasion and anchorage-independent growth and increased the apoptosis of OSCC cells. The study concludes that miR-372 modulates crucial signaling pathways associated with OSCC pathogenesis by targeting p62 and ZBTB7A.
中文摘要........................................I
Abstract........................................II
目錄............................................III
I.緒論(Introduction)...........................1
1.1口腔癌(Oral Carcinoma)......................1
1.2微型RNA(MicroRNA,miRNA)........................2
1.3缺氧調控(Hypoxia).......................3
1.4 miR-372和癌症..........................4
1.5 p62 (Sequestosome-1, SQSTM1)....................5
1.6 Zinc finger and BTB domain containing 7 (ZBTB7A)....6
II. 研究動機與目標(Purpose)..................8
2.1 研究動機................................8
2.2 研究目標.........................8
III. 材料與方法(Materials and Methods)............9
3.1 細胞培養................................9
3.2 試劑....................................9
3.3 細胞表現型.............................9
3.4 報導基因質體建構和活性分析(Reporter construct and activity assays)........................12
3.5 組織和血液樣本.......................12
3.6 穩定表現細胞株之建立....................13
3.7 即時聚合酶鏈鎖反應 (Quantitative (q)RT-PCR).....14
3.8 西方墨點法(Western blot analysis)............14
3.9 免疫染色...........................14
3.10 ROS 偵測......................15
3.11 動物實驗....................15
3.12 細胞週期測定.....................15
3.13 統計分析 (Statistical analysis)..............16
IV. 實驗結果(Result)....................17
4.1 miR-372在口腔癌細胞中之表現和功能.............17
4.2 miR-372在口腔癌細胞中的新目標基因..............17
4.3 p62在口腔癌細胞中的表現與功能................18
4.4 p62在口腔癌細胞中的下游路徑.................19
4.5 miR-372和p62參與ROS的調控.................20
4.6 缺氧調控透過miR-372-p62-NQO1訊息軸調控細胞移行能力....21
4.7 miR-372和p62在口腔癌組織中的表現............23
4.8 miR-372在口腔癌細胞中其他的新目標基因...........25
4.9 ZBTB7A 在口腔癌細胞中的功能.................26
V. 討論(Discussion).......................30
VI. 圖列(Figures)............................36
圖一、miR-372在口腔癌細胞高表現且促進口腔癌細胞移行能力...36
圖二、miR-372對口腔癌細胞之增生能力沒有影響........37
圖三、miR-372抑制p62 mRNA和蛋白質表現...............38
圖四、miR-372直接作用於p62 mRNA 3’UTR.............39
圖五、口腔癌細胞中p62的表現量較正常上皮細胞低.........40
圖六、細胞中抑制p62促進細胞之移行能力..............41
圖七、穩定表現和抑制p62之細胞株對細胞移行能力的影響....42
圖八、p62能回復miR-372造成之惡性表現型............43
圖九、p62和NQO1表現量和表現位置相關...............44
圖十、NQO1對細胞移行能力之影響.................45
圖十一、miR-372-p62-NQO1訊息軸對ROS的影響.........46
圖十二、NAC有效減低細胞爬行能力................47
圖十三、缺氧環境對於口腔癌細胞中miRNAs之影響......48
圖十四、缺氧情形調控miR-372-p62-NQO1訊息軸.........49
圖十五、缺氧情形調控miR-372-p62-NQO1訊息軸(NQO1處理)......50
圖十六、缺氧情形調控miR-372-p62-NQO1訊息軸(多重處理).....51
圖十七、p62有效降低缺氧調控造成之細胞移行能力上升..........52
圖十八、p62不影響腫瘤生長..................53
圖十九、p62於組織中的表現........................54
圖二十、臨床組織中miR-372-p62-NQO1之表現.............55
圖二十一、口腔癌病人唾液和血漿中miR-372之表現.........56
圖二十二、ZBTB7A於口腔角質細胞之表現.............57
圖二十三、miR-372抑制ZBTB7A表現...............58
圖二十四、miR-372抑制ZBTB7A表現..............59
圖二十五、ZBTB7A 為miR-372之新目標基因...........60
圖二十六、刪減ZBTB7A表現增加細胞移行能力..........61
圖二十七、ZBTB7A穩定抑制和過度表達細胞株之建立........62
圖二十八、ZBTB7A在SAS口腔癌細胞株中之功能........63
圖二十九、刪減ZBTB7A增加細胞增生能力..............64
圖三十、ZBTB7A對於細胞週期之影響..............65
圖三十一、ZBTB7A對於Cisplatin、Taxol處理之SAS、FaDu細胞存活度之影響.............................66
圖三十二、ZBTB7A對於細胞凋亡之影響..............67
圖三十三、ZBTB7A對於細胞凋亡訊息之調控...........68
VII. 表列(Tables)..................69
Table 1.本研究中使用之小分子干擾核糖核酸(siRNA)....69
Table 2. 臨床口腔癌檢體組織...................70
Table 3. sh-RNA和本研究使用之穩定刪減和過表現質體........71
Table 4. 本研究使用之抗體(上;初級抗體,下;次級抗體).....72
VIII. 附圖(Supplementary Figures).....................73
附圖一、找尋miR-372新目標基因示意圖......................73
附圖二、以starbase分析ZBTB7A在不同癌症中表現之情形,HNSCC為頭頸鱗狀細胞癌............................................74
附圖三、以starbase分析口腔癌,ZBTB7A和miR-372表現呈負相關.75
IX. 參考文獻(References)..............................76
[1] C.J. Liu, M.M. Tsai, P.S. Hung, S.Y. Kao, T.Y. Liu, K.J. Wu, S.H. Chiou, S.C. Lin, K.W.Chang, miR-31 ablates expression of the HIF regulatory factor FIH to activate the HIF pathway in head and neck carcinoma, Cancer Res, 70 (2010) 1635-1644.
[2] C.R. Leemans, B.J. Braakhuis, R.H. Brakenhoff, The molecular biology of head and neck cancer, Nat Rev Cancer, 11 (2011) 9-22.
[3] C.J. Liu, W.G. Shen, S.Y. Peng, H.W. Cheng, S.Y. Kao, S.C. Lin, K.W. Chang, miR-134 induces oncogenicity and metastasis in head and neck carcinoma through targeting WWOX gene, Int J Cancer, 134 (2014) 811-821.
[4] Y. Du, N.D. Peyser, J.R. Grandis, Integration of molecular targeted therapy with radiation in head and neck cancer, Pharmacol Ther, 142 (2014) 88-98.
[5] H.H. Lu, S.Y. Kao, T.Y. Liu, S.T. Liu, W.P. Huang, K.W. Chang, S.C. Lin, Areca nut extract induced oxidative stress and upregulated hypoxia inducing factor leading to autophagy in oral cancer cells, Autophagy, 6 (2010) 725-737.
[6] A.E. Al Moustafa, W.D. Foulkes, N. Benlimame, A. Wong, L. Yen, J. Bergeron, G. Batist,L. Alpert, M.A. Alaoui-Jamali, E6/E7 proteins of HPV type 16 and ErbB-2 cooperate to induce neoplastic transformation of primary normal oral epithelial cells, Oncogene, 23 (2004) 350-358.
[7] H.F. Tu, S.C. Lin, K.W. Chang, MicroRNA aberrances in head and neck cancer: pathogenetic and clinical significance, Curr Opin Otolaryngol Head Neck Surg, 21 (2013) 104-111.
[8] G.A. Calin, C.D. Dumitru, M. Shimizu, R. Bichi, S. Zupo, E. Noch, H. Aldler, S. Rattan, M. Keating, K. Rai, L. Rassenti, T. Kipps, M. Negrini, F. Bullrich, C.M. Croce, Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronilymphocytic leukemia, Proc Natl Acad Sci U S A, 99 (2002) 15524-15529.
[9] A. Esquela-Kerscher, F.J. Slack, Oncomirs - microRNAs with a role in cancer, Nat Rev Cancer, 6 (2006) 259-269.
[10] C.J. Liu, S.Y. Kao, H.F. Tu, M.M. Tsai, K.W. Chang, S.C. Lin, Increase of microRNA miR-31 level in plasma could be a potential marker of oral cancer, Oral Dis, 16 (2010) 360-364.
[11] D.P. Bartel, MicroRNAs: target recognition and regulatory functions, Cell, 136 (2009) 215-233.
[12] L. Xing, N.W. Todd, L. Yu, H. Fang, F. Jiang, Early detection of squamous cell lung cancer in sputum by a panel of microRNA markers, Modern pathology : an official journal
of the United States and Canadian Academy of Pathology, Inc, 23 (2010) 1157-1164.
[13] W.H. Roa, J.O. Kim, R. Razzak, H. Du, L. Guo, R. Singh, S. Gazala, S. Ghosh, E. Wong,A.A. Joy, J.Z. Xing, E.L. Bedard, Sputum microRNA profiling: a novel approach for the early detection of non-small cell lung cancer, Clin. Invest. Med., 35 (2012) E271.
[14] G.A. Calin, C.M. Croce, MicroRNA signatures in human cancers, Nat Rev Cancer, 6(2006) 857-866.
[15] P.S. Mitchell, R.K. Parkin, E.M. Kroh, B.R. Fritz, S.K. Wyman, E.L. Pogosova-Agadjanyan, A. Peterson, J. Noteboom, K.C. O'Briant, A. Allen, D.W. Lin, N. Urban, C.W.
Drescher, B.S. Knudsen, D.L. Stirewalt, R. Gentleman, R.L. Vessella, P.S. Nelson, D.B.Martin, M. Tewari, Circulating microRNAs as stable blood-based markers for cancer
detection, Proc Natl Acad Sci U S A, 105 (2008) 10513-10518.
[16] N. Kosaka, H. Iguchi, T. Ochiya, Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis, Cancer Sci, 101 (2010) 2087-2092.
[17] N. Vigneswaran, J. Wu, A. Song, A. Annapragada, W. Zacharias, Hypoxia-induced autophagic response is associated with aggressive phenotype and elevated incidence of metastasis in orthotopic immunocompetent murine models of head and neck squamous cell carcinomas (HNSCC), Exp. Mol. Pathol., 90 (2011) 215-225.
[18] M.H. Yang, M.Z. Wu, S.H. Chiou, P.M. Chen, S.Y. Chang, C.J. Liu, S.C. Teng, K.J. Wu, Direct regulation of TWIST by HIF-1alpha promotes metastasis, Nat Cell Biol, 10 (2008) 295-305.
[19] G.L. Semenza, HIF-1: upstream and downstream of cancer metabolism, Curr. Opin. Genet. Dev., 20 (2010) 51-56.
[20] P.Y. Lin, C.H. Yu, J.T. Wang, H.H. Chen, S.J. Cheng, M.Y. Kuo, C.P. Chiang, Expression of hypoxia-inducible factor-1 alpha is significantly associated with the progression and prognosis of oral squamous cell carcinomas in Taiwan, J. Oral Pathol. Med., 37 (2008) 18-25.
[21] J. Pouyssegur, F. Dayan, N.M. Mazure, Hypoxia signalling in cancer and approaches to enforce tumour regression, Nature, 441 (2006) 437-443.
[22] C. Camps, F.M. Buffa, S. Colella, J. Moore, C. Sotiriou, H. Sheldon, A.L. Harris, J.M. Gleadle, J. Ragoussis, hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer, Clinical cancer research : an official journal of the American Association for Cancer Research, 14 (2008) 1340-1348.
[23] R. Du, W. Sun, L. Xia, A. Zhao, Y. Yu, L. Zhao, H. Wang, C. Huang, S. Sun, Hypoxia-induced down-regulation of microRNA-34a promotes EMT by targeting the Notch signaling pathway in tubular epithelial cells, PloS one, 7 (2012) e30771.
[24] M. He, Q.Y. Wang, Q.Q. Yin, J. Tang, Y. Lu, C.X. Zhou, C.W. Duan, D.L. Hong, T. Tanaka, G.Q. Chen, Q. Zhao, HIF-1alpha downregulates miR-17/20a directly targeting p21 and STAT3: a role in myeloid leukemic cell differentiation, Cell Death Differ., 20 (2013) 408-418.
[25] F. Loayza-Puch, Y. Yoshida, T. Matsuzaki, C.Takahashi, H. Kitayama, M. Noda, Hypoxia and RAS-signaling pathways converge on, and cooperatively downregulate, the RECK tumor-suppressor protein through microRNAs, Oncogene, 29 (2010) 2638-2648.
[26] P.M. Voorhoeve, C. le Sage, M. Schrier, A.J. Gillis, H. Stoop, R. Nagel, Y.P. Liu, J. van Duijse, J. Drost, A. Griekspoor, E. Zlotorynski, N. Yabuta, G. De Vita, H. Nojima, L.H. Looijenga, R. Agami, A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors, Cell, 124 (2006) 1169-1181.
[27] S. Yamashita, H. Yamamoto, K. Mimori, N. Nishida, H. Takahashi, N. Haraguchi, F. Tanaka, K. Shibata, M. Sekimoto, H. Ishii, Y. Doki, M. Mori, MicroRNA-372 is associated with poor prognosis in colorectal cancer, Oncology, 82 (2012) 205-212.
[28] W.J. Cho, J.M. Shin, J.S. Kim, M.R. Lee, K.S. Hong, J.H. Lee, K.H. Koo, J.W. Park,K.S. Kim, miR-372 regulates cell cycle and apoptosis of ags human gastric cancer cell
line through direct regulation of LATS2, Mol Cells, 28 (2009) 521-527.
[29] G. Li, Z. Zhang, Y. Tu, T. Jin, H. Liang, G. Cui, S. He, G. Gao, Correlation of microRNA-372 upregulation with poor prognosis in human glioma, Diagn Pathol, 8 (2013) 1.
[30] H. Gu, X. Guo, L. Zou, H. Zhu, J. Zhang, Upregulation of microRNA-372 associates with tumor progression and prognosis in hepatocellular carcinoma, Mol. Cell. Biochem., 375 (2013) 23-30.
[31] K.H. Lee, Y.G. Goan, M. Hsiao, C.H. Lee, S.H. Jian, J.T. Lin, Y.L. Chen, P.J. Lu, MicroRNA-373 (miR-373) post-transcriptionally regulates large tumor suppressor,homolog 2 (LATS2) and stimulates proliferation in human esophageal cancer, Experimental cell research, 315 (2009) 2529-2538
[32] T.S. Wong, X.B. Liu, B.Y. Wong, R.W. Ng, A.P. Yuen, W.I. Wei, Mature miR-184 as Potential Oncogenic microRNA of Squamous Cell Carcinoma of Tongue, Clin Cancer Res, 14 (2008) 2588-2592.
[33] A.D. Zhou, L.T. Diao, H. Xu, Z.D. Xiao, J.H. Li, H. Zhou, L.H. Qu, beta-Catenin/LEF1 transactivates the microRNA-371-373 cluster that modulates the Wnt/beta-catenin-signaling pathway, Oncogene, 31 (2012) 2968-2978.
[34] R.Q. Tian, X.H. Wang, L.J. Hou, W.H. Jia, Q. Yang, Y.X. Li, M. Liu, X. Li, H. Tang, MicroRNA-372 is down-regulated and targets cyclin-dependent kinase 2 (CDK2) and
cyclin A1 in human cervical cancer, which may contribute to tumorigenesis, The Journal of biological chemistry, 286 (2011) 25556-25563.
[35] R.K. Vadlamudi, I. Joung, J.L. Strominger, J. Shin, p62, a phosphotyrosine-independent ligand of the SH2 domain of p56lck, belongs to a new class of ubiquitin-binding
proteins, The Journal of biological chemistry, 271 (1996) 20235-20237.
[36] A. Puls, S. Schmidt, F. Grawe, S. Stabel, Interaction of protein kinase C zeta with ZIP, a novel protein kinase C-binding protein, Proceedings of the National Academy of
Sciences of the United States of America, 94 (1997) 6191-6196.
[37]I. Joung, J.L. Strominger, J. Shin, Molecular cloning of a phosphotyrosine-independent ligand of the p56lck SH2 domain, Proceedings of the National Academy of Sciences of
the United States of America, 93 (1996) 5991-5995
[38] B. Ciani, R. Layfield, J.R. Cavey, P.W. Sheppard, M.S. Searle, Structure of the ubiquitin-associated domain of p62 (SQSTM1) and implications for mutations that cause Paget's
disease of bone, The Journal of biological chemistry, 278 (2003) 37409-37412.
[39] A. Duran, J.F. Linares, A.S. Galvez, K. Wikenheiser, J.M. Flores, M.T. Diaz-Meco, J.Moscat, The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis, Cancer cell, 13 (2008) 343-354.
[40] A. Duran, R. Amanchy, J.F. Linares, J. Joshi, S. Abu-Baker, A. Porollo, M. Hansen, J.Moscat, M.T. Diaz-Meco, p62 is a key regulator of nutrient sensing in the mTORC1 pathway, Molecular cell, 44 (2011) 134-146.
[41] Y. Ichimura, S. Waguri, Y.S. Sou, S. Kageyama, J. Hasegawa, R. Ishimura, T. Saito, Y. Yang, T. Kouno, T. Fukutomi, T. Hoshii, A. Hirao, K. Takagi, T. Mizushima, H.
Motohashi, M.S. Lee, T. Yoshimori, K. Tanaka, M. Yamamoto, M. Komatsu, Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy, Molecular cell, 51 (2013) 618-631.
[42] C. Gao, Y.G. Chen, Selective removal of dishevelled by autophagy: a role of p62, Autophagy, 7 (2011) 334-335.
[43] K.F. Ahmad, A. Melnick, S. Lax, D. Bouchard, J. Liu, C.L. Kiang, S. Mayer, S. Takahashi, J.D. Licht, G.G. Prive, Mechanism of SMRT corepressor recruitment by the BCL6 BTB domain, Mol Cell, 12 (2003) 1551-1564.
[44] P. Dhordain, O. Albagli, R.J. Lin, S. Ansieau, S. Quief, A. Leutz, J.P. Kerckaert, R.M. Evans, D. Leprince, Corepressor SMRT binds the BTB/POZ repressing domain of the
LAZ3/BCL6 oncoprotein, Proc Natl Acad Sci U S A, 94 (1997) 10762-10767.
[45] R. Beroukhim, C.H. Mermel, D. Porter, G. Wei, S. Raychaudhuri, J. Donovan, J. Barretina, J.S. Boehm, J. Dobson, M. Urashima, K.T. Mc Henry, R.M. Pinchback, A.H.
Ligon, Y.J. Cho, L. Haery, H. Greulich, M. Reich, W. Winckler, M.S. Lawrence, B.A. Weir, K.E. Tanaka, D.Y. Chiang, A.J. Bass, A. Loo, C. Hoffman, J. Prensner, T. Liefeld, Q. Gao, D. Yecies, S. Signoretti, E. Maher, F.J. Kaye, H. Sasaki, J.E. Tepper, J.A. Fletcher, J. Tabernero, J. Baselga, M.S. Tsao, F. Demichelis, M.A. Rubin, P.A. Janne, M.J. Daly, C. Nucera, R.L. Levine, B.L. Ebert, S. Gabriel, A.K. Rustgi, C.R. Antonescu, M. Ladanyi, A. Letai, L.A. Garraway, M. Loda, D.G. Beer, L.D. True, A. Okamoto, S.L. Pomeroy, S. Singer, T.R. Golub, E.S. Lander, G. Getz, W.R. Sellers, M. Meyerson, The landscape of somatic copy-number alteration across human cancers, Nature, 463 (2010)
899-905.
[46] T.I. Zack, S.E. Schumacher, S.L. Carter, A.D. Cherniack, G. Saksena, B. Tabak, M.S. Lawrence, C.Z. Zhsng, J. Wala, C.H. Mermel, C. Sougnez, S.B. Gabriel, B. Hernandez, H. Shen, P.W. Laird, G. Getz, M. Meyerson, R. Beroukhim, Pan-cancer patterns of somatic copy number alteration, Nat Genet, 45 (2013) 1134-1140.
[47] B.N. Jeon, J.Y. Yoo, W.I. Choi, C.E. Lee, H.G. Yoon, M.W. Hur, Proto-oncogene FBI-1 (Pokemon/ZBTB7A) represses transcription of the tumor suppressor Rb gene via binding
competition with Sp1 and recruitment of co-repressors, J Biol Chem, 283 (2008) 33199-33210.
[48] G. Wang, A. Lunardi, J. Zhang, Z. Chen, U. Ala, K.A. Webster, Y. Tay, E. Gonzalez-Billalabeitia, A. Egia, D.R. Shaffer, B. Carver, X.S. Liu, R. Taulli, W.P. Kuo, C. Nardella, S. Signoretti, C. Cordon-Cardo, W.L. Gerald, P.P. Pandolfi, Zbtb7a suppresses prostate cancer through repression of a Sox9-dependent pathway for cellular senescence bypass and tumor invasion, Nat Genet, 45 (2013) 739-746.
[49] X. Zu, L. Yu, Q. Sun, F. Liu, J. Wang, Z. Xie, Y. Wang, W. Xu, Y. Jiang, SP1 enhances Zbtb7A gene expression via direct binding to GC box in HePG2 cells, BMC Res Notes,
2 (2009) 175.
[50] T. Maeda, R.M. Hobbs, T. Merghoub, I. Guernah, A. Zelent, C. Cordon-Cardo, J. Teruya-Feldstein, P.P. Pandolfi, Role of the proto-oncogene Pokemon in cellular transformation and ARF repression, Nature, 433 (2005) 278-285.
[51] T. Maeda, R.M. Hobbs, P.P. Pandolfi, The transcription factor Pokemon: a new key player in cancer pathogenesis, Cancer Res, 65 (2005) 8575-8578.
[52] X.S. Liu, J.E. Haines, E.K. Mehanna, M.D. Genet, I. Ben-Sahra, J.M. Asara, B.D. Manning, Z.M. Yuan, ZBTB7A acts as a tumor suppressor through the transcriptional repression of glycolysis, Genes Dev, 28 (2014) 1917-1928.
[53] P.S. Hung, H.F. Tu, S.Y. Kao, C.C. Yang, C.J. Liu, T.Y. Huang, K.W. Chang, S.C. Lin, miR-31 is upregulated in oral premalignant epithelium and contributes to the immortalization of normal oral keratinocytes, Carcinogenesis, 35 (2014) 1162-1171.
[54] S.C. Lin, C.J. Liu, C.P. Chiu, S.M. Chang, S.Y. Lu, Y.J. Chen, Establishment of OC3 oral carcinoma cell line and identification of NF-kappa B activation responses to areca nut extract, J Oral Pathol Med, 33 (2004) 79-86.
[55] A. Jain, T. Lamark, E. Sjottem, K.B. Larsen, J.A. Awuh, A. Overvatn, M. McMahon, J.D. Hayes, T. Johansen, p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription, J Biol Chem, 285 (2010) 22576-22591.
[56] C.J. Liu, M.M. Tsai, H.F. Tu, M.T. Lui, H.W. Cheng, S.C. Lin, miR-196a overexpression and miR-196a2 gene polymorphism are prognostic predictors of oral carcinomas, Ann Surg Oncol, 20 Suppl 3 (2013) S406-414.
[57] T.H. Chu, C.C. Yang, C.J. Liu, M.T. Lui, S.C. Lin, K.W. Chang, miR-211 promotes the progression of head and neck carcinomas by targeting TGFbetaRII, Cancer Lett, 337
(2013) 115-124.
[58] C.C. Yang, P.S. Hung, P.W. Wang, C.J. Liu, T.H. Chu, H.W. Cheng, S.C. Lin, miR-181 as a putative biomarker for lymph-node metastasis of oral squamous cell carcinoma, J Oral Pathol Med, 40 (2011) 397-404.
[59] J.H. Lai, T.F. She, Y.M. Juang, Y.G. Tsay, A.H. Huang, S.L. Yu, J.J. Chen, C.C. Lai,Comparative proteomic profiling of human lung adenocarcinoma cells (CL 1-0)
expressing miR-372, Electrophoresis, 33 (2012) 675-688.
[60] D. Subramanyam, S. Lamouille, R.L. Judson, J.Y. Liu, N. Bucay, R. Derynck, R. Blelloch, Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells, Nat Biotechnol, 29 (2011) 443-448.
[61] D. Inoue, T. Suzuki, Y. Mitsuishi, Y. Miki, S. Suzuki, S. Sugawara, M. Watanabe, A. Sakurada, C. Endo, A. Uruno, H. Sasano, T. Nakagawa, K. Satoh, N. Tanaka, H. Kubo,
H. Motohashi, M. Yamamoto, Accumulation of p62/SQSTM1 is associated with poor prognosis in patients with lung adenocarcinoma, Cancer Sci, 103 (2012) 760-766.
[62] C.B. Bui, J. Shin, Persistent expression of Nqo1 by p62-mediated Nrf2 activation facilitates p53-dependent mitotic catastrophe, Biochem Biophys Res Commun, 412
(2011) 347-352.
[63] Y. Hashimoto, Y. Akiyama, Y. Yuasa, Multiple-to-multiple relationships between microRNAs and target genes in gastric cancer, PLoS One, 8 (2013) e62589.
[64] M.E. Peter, Targeting of mRNAs by multiple miRNAs: the next step, Oncogene, 29 (2010) 2161-2164.
[65] F. Petrocca, R. Visone, M.R. Onelli, M.H. Shah, M.S. Nicoloso, I. de Martino, D. Iliopoulos, E. Pilozzi, C.G. Liu, M. Negrini, L. Cavazzini, S. Volinia, H. Alder, L.P.
Ruco, G. Baldassarre, C.M. Croce, A. Vecchione, E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer, Cancer Cell, 13
(2008) 272-286.
[66] I. Ivanovska, A.S. Ball, R.L. Diaz, J.F. Magnus, M. Kibukawa, J.M. Schelter, S.V. Kobayashi, L. Lim, J. Burchard, A.L. Jackson, P.S. Linsley, M.A. Cleary, MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression, Mol Cell Biol, 28 (2008) 2167-2174.
[67] D. Jiao, Y. Yan, S. Shui, G. Wu, J. Ren, Y. Wang, X. Han, miR-106b regulates the 5-fluorouracil resistance by targeting Zbtb7a in cholangiocarcinoma, Oncotarget, (2017).
[68] J. Kong, X. Liu, X. Li, J. Wu, N. Wu, J. Chen, F. Fang, miR-125/Pokemon auto-circuit contributes to the progression of hepatocellular carcinoma, Tumour Biol, 37 (2016) 511-519.
[69] M. Zhu, M. Li, T. Wang, E. Linghu, B. Wu, MicroRNA-137 represses FBI-1 to inhibit proliferation and in vitro invasion and migration of hepatocellular carcinoma cells,
Tumour Biol, 37 (2016) 13995-14008.
[70] X.L. Jin, Q.S. Sun, F. Liu, H.W. Yang, M. Liu, H.X. Liu, W. Xu, Y.Y. Jiang, microRNA21-mediated suppression of Sprouty1 by Pokemon affects liver cancer cell growth and
proliferation, J Cell Biochem, 114 (2013) 1625-1633.
[71] Z. Zhijun, H. Jingkang, MicroRNA-520e suppresses non-small-cell lung cancer cell growth by targeting Zbtb7a-mediated Wnt signaling pathway, Biochem Biophys Res Commun, 486 (2017) 49-56.
[72] D.B. Shi, Y.W. Wang, A.Y. Xing, J.W. Gao, H. Zhang, X.Y. Guo, P. Gao, C/EBPalpha-induced miR-100 expression suppresses tumor metastasis and growth by targeting
ZBTB7A in gastric cancer, Cancer Lett, 369 (2015) 376-385.
[73] K. Liu, F. Liu, N. Zhang, S. Liu, Y. Jiang, Pokemon silencing leads to Bim-mediated anoikis of human hepatoma cell QGY7703, Int J Mol Sci, 13 (2012) 5818-5831.
[74] X. Zhu, Y. Dai, Z. Chen, J. Xie, W. Zeng, Y. Lin, Knockdown of Pokemon protein expression inhibits hepatocellular carcinoma cell proliferation by suppression of AKT activity, Oncol Res, 20 (2013) 377-381.
[75] M. Zhu, M. Li, F. Zhang, F. Feng, W. Chen, Y. Yang, J. Cui, D. Zhang, E. Linghu, FBI-1 enhances ETS-1 signaling activity and promotes proliferation of human colorectal
carcinoma cells, PLoS One, 9 (2014) e98041.
[76] Y. Zhao, Y.H. Yao, L. Li, W.F. An, H.Z. Chen, L.P. Sun, H.X. Kang, S. Wang, X.R. Hu, Pokemon enhances proliferation, cell cycle progression and anti-apoptosis activity of colorectal cancer independently of p14ARF-MDM2-p53 pathway, Med Oncol, 31 (2014) 288.
[77] C. Guo, K. Zhu, W. Sun, B. Yang, W. Gu, J. Luo, B. Peng, J. Zheng, The effect of Pokemon on bladder cancer epithelial-mesenchymal transition, Biochem Biophys Res
Commun, 443 (2014) 1226-1231.
[78] K. Inoue, E.A. Fry, P. Taneja, Recent progress in mouse models for tumor suppressor genes and its implications in human cancer, Clin Med Insights Oncol, 7 (2013) 103-122.
[79] X.S. Liu, M.D. Genet, J.E. Haines, E.K. Mehanna, S. Wu, H.I. Chen, Y. Chen, A.A. Qureshi, J. Han, X. Chen, D.E. Fisher, P.P. Pandolfi, Z.M. Yuan, ZBTB7A Suppresses
Melanoma Metastasis by Transcriptionally Repressing MCAM, Mol Cancer Res, 13 (2015) 1206-1217.
[80] W. Li, A. Kidiyoor, Y. Hu, C. Guo, M. Liu, X. Yao, Y. Zhang, B. Peng, J. Zheng, Evaluation of transforming growth factor-beta1 suppress Pokemon/epithelial-mesenchymal transition expression in human bladder cancer cells, Tumour Biol, 36 (2015) 1155-1162.
[81] D. Sartini, L. Lo Muzio, S. Morganti, V. Pozzi, G. Di Ruscio, R. Rocchetti, C. Rubini, A. Santarelli, M. Emanuelli, Pokemon proto-oncogene in oral cancer: potential role in the early phase of tumorigenesis, Oral Dis, 21 (2015) 462-469.
[82] D.S. Hsu, H.Y. Lan, C.H. Huang, S.K. Tai, S.Y. Chang, T.L. Tsai, C.C. Chang, C.H. Tzeng, K.J. Wu, J.Y. Kao, M.H. Yang, Regulation of excision repair cross-complementation group 1 by Snail contributes to cisplatin resistance in head and neck cancer, Clin Cancer Res, 16 (2010) 4561-4571.
[83] L. Li, H.C. Liu, C. Wang, X. Liu, F.C. Hu, N. Xie, L. Lu, X. Chen, H.Z. Huang, Overexpression of beta-Catenin Induces Cisplatin Resistance in Oral Squamous Cell
Carcinoma, Biomed Res Int, 2016 (2016) 5378567.
[84] T. Ota, H. Jono, K. Ota, S. Shinriki, M. Ueda, T. Sueyoshi, K. Nakatani, Y. Hiraishi, T. Wada, S. Fujita, K. Obayashi, M. Shinohara, Y. Ando, Downregulation of midkine
induces cisplatin resistance in human oral squamous cell carcinoma, Oncol Rep, 27 (2012) 1674-1680.
[85] G.C. Huang, S.Y. Liu, M.H. Lin, Y.Y. Kuo, Y.C. Liu, The synergistic cytotoxicity of cisplatin and taxol in killing oral squamous cell carcinoma, Jpn J Clin Oncol, 34 (2004) 499-504.
[86] B. Stordal, N. Pavlakis, R. Davey, A systematic review of platinum and taxane resistance from bench to clinic: an inverse relationship, Cancer Treat Rev, 33 (2007) 688-703.
[87] L. Feng, L.L. E, M.M. Soloveiv, D.S. Wang, B.O. Zhang, Y.W. Dong, H.C. Liu, Synergistic cytotoxicity of cisplatin and Taxol in overcoming Taxol resistance through the inhibition of LDHA in oral squamous cell carcinoma, Oncol Lett, 9 (2015) 1827-1832.
[88] Y.Q. Zhang, C.X. Xiao, B.Y. Lin, Y. Shi, Y.P. Liu, J.J. Liu, B. Guleng, J.L. Ren, Silencing of Pokemon enhances caspase-dependent apoptosis via fas- and mitochondria-mediated pathways in hepatocellular carcinoma cells, PLoS One, 8 (2013) e68981.
[89] D.K. Lee, J.E. Kang, H.J. Park, M.H. Kim, T.H. Yim, J.M. Kim, M.K. Heo, K.Y. Kim, H.J. Kwon, M.W. Hur, FBI-1 enhances transcription of the nuclear factor-kappaB (NF-kappaB)-responsive E-selectin gene by nuclear localization of the p65 subunit of NF-kappaB, J Biol Chem, 280 (2005) 27783-27791.
[90] Q.L. Deveraux, N. Roy, H.R. Stennicke, T. Van Arsdale, Q. Zhou, S.M. Srinivasula, E.S. Alnemri, G.S. Salvesen, J.C. Reed, IAPs block apoptotic events induced by caspase-8
and cytochrome c by direct inhibition of distinct caspases, EMBO J, 17 (1998) 2215-2223.
[91] V.N. Ivanov, A. Bhoumik, Z. Ronai, Death receptors and melanoma resistance to apoptosis, Oncogene, 22 (2003) 3152-3161.
[92] R. Ravi, G.C. Bedi, L.W. Engstrom, Q. Zeng, B. Mookerjee, C. Gelinas, E.J. Fuchs, A. Bedi, Regulation of death receptor expression and TRAIL/Apo2L-induced apoptosis by NF-kappaB, Nat Cell Biol, 3 (2001) 409-416.
[93] Y. Zheng, F. Ouaaz, P. Bruzzo, V. Singh, S. Gerondakis, A.A. Beg, NF-kappa B RelA (p65) is essential for TNF-alpha-induced fas expression but dispensable for both TCR-induced expression and activation-induced cell death, J Immunol, 166 (2001) 4949-4957.
[94] T. Yoshida, A. Maeda, N. Tani, T. Sakai, Promoter structure and transcription initiation sites of the human death receptor 5/TRAIL-R2 gene, FEBS Lett, 507 (2001) 381-385.
[95] P. Schneider, M. Thome, K. Burns, J.L. Bodmer, K. Hofmann, T. Kataoka, N. Holler, J. Tschopp, TRAIL receptors 1 (DR4) and 2 (DR5) signal FADD-dependent apoptosis and activate NF-kappaB, Immunity, 7 (1997) 831-836.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top