跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/17 00:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高鈺祐
研究生(外文):Yu-Yu Kao
論文名稱:探討miR-31與其標靶基因SIRT3在口腔癌中誘導細胞代謝失調導致腫瘤細胞之惡化
論文名稱(外文):To investigate miR-31 regulation on the metabolism and progression of oral cancer by targeting SIRT3
指導教授:張國威
指導教授(外文):Kuo-Wei Chang
學位類別:博士
校院名稱:國立陽明大學
系所名稱:口腔生物研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:92
中文關鍵詞:口腔癌微型RNA代謝粒線體功能障礙唾液
外文關鍵詞:oral squamous cell carcinomamiRNAmetabolismmitochondrial dysfunctionsaliva
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背景:發現早期偵測的生物指標,對於口腔癌之診斷和預防是很重要的。微型RNA(miRNA)是非編碼的短RNA,其在腫瘤進程中扮演著重要的角色。
方法:本研究檢測了在Nitroquinoline 1-Oxide (4NQO) 誘導的小鼠舌癌模式中,組織、唾液和血漿中致癌miRNA的表現,藉以探討其潛在的診斷或治療方面之應用性,並以口腔癌細胞探究miR-31影響代謝之致病機制。
結果:組織學染色的結果發現,口腔上皮長時間的暴露於致癌物4NQO的接觸,可以觀察到表皮層病灶一步一步持續性的發展過程,從過度角化到上皮異常增生,最後形成鱗狀上皮腫瘤。在舌頭上皮的染色結果發現miR-31表現與體液中之miR-31,與上皮的發病進程,有相同上升的趨勢。而miR-31之標靶SIRT3則隨著病態進行而逐漸降低,SIRT3扮演著抑癌基因角色,人類口腔癌中SIRT3表現下降,在口腔癌中miR-31-SIRT3共同調控了粒線體膜電位語與粒線體結構,進而將口腔癌細胞之代謝途徑從有氧代謝切換為無氧代謝。
結論:本研究發現在小鼠舌頭腫瘤發生的過程中,致癌miRNA的異常表現與人類的表現是相似的。miR-31-SIRT3促使口腔癌細胞中的粒線體功能障礙和代謝狀態的轉移,導致腫瘤進展之惡化。由於miR-31在口腔癌中為致癌的角色,所以阻斷miR-31表達對於預防口腔癌發展將是有價值的。
Background: Oral squamous cell carcinoma (OSCC) is one of the leading causes of cancer death in Taiwan, and it occurs more frequently in male population due to the abuse of tobacco and betel quid. To develop biomarkers for early cancer detection may bestow substantial benefits in diagnosis and the prevention of tumor progression. miRNAs are short, non-coding RNAs, which play important roles in oncogenesis. This study investigated the disruptions in miR-31, which could be associated with metabolic change and tumor progression.
Methods: Mice were fed with 4-Nitroquinoline 1-Oxide (4NQO) in drinking water for 12 weeks and were kept for extended periods for tumor induction. The seahorse machine was used to detect the metabolic states of OSCC cell lines. The SIRT3 gene as potential miR-31 target to affect metabolism and tumor progression was also explored.
Results: The histological and miR-31 level in body fluid evaluation showed the consecutive increase in the severity of epithelial pathogenesis from hyperkeratosis, hyperplasia to epithelial dysplasia and squamous tumors following the increase of 4NQO exposure. The increase of miR-31 staining parallels the severity of epithelial pathogenesis in tongue tissue. In addition, the expression of miR-31 target, SIRT3, was declined. SIRT3 expression is down-regulated in human OSCC. SIRT3 drives suppressor activity. miR-31-SIRT3 regulates the mitochondrial membrane potential and mitochondrial structure. miR-31 switched OSCC cell lines from aerobic metabolism to anaerobic metabolism.
Conclusion: The disruption in the expression of oncogenic miRNAs in thus mouse model is similar to the disruption being identified in human oral cancer counterparts. miR-31-SIRT3 regulated the mitochondrial dysfunction and shift of the metabolism status in OSCC cell lines and worsened the tumor progression. As miR-31 was functionally oncogenic, the blockage of miR-31 expression would be valuable for the prevention of OSCC development.
目錄
目錄 i
Abstract v
中文摘要 vi
壹、緒論 1
一、口腔癌 1
二、 miRNA 2
1. miRNA之生物合成 2
2. miRNA與口腔癌之關係 2
3 .體液中的miRNA表現 3
三、SIRT3 5
1. SIRT3家族 5
2. SIRT3在癌症中扮演的角色 5
3 . SIRT3與代謝的相關性 6
四、粒線體 7
1. 粒線體 7
2. 粒線體與氧化壓力 7
3 . 粒線體與癌症 8
五、4NQO誘導鱗狀上皮癌致癌模式 9
貳、研究目標 10
一、研究動機 10
二、研究目標 10
参、材料與方法 12
一、 口腔鱗狀上皮細胞培養 12
二、細胞處理4NQO、AG1478與Triciribine 13
三、4NQO誘導小鼠鱗狀上皮癌致癌模式 13
四、小鼠唾液與血液採集 13
五、舌頭組織處理 14
六、原位雜交法 14
七、免疫組織染色 15
八、微型RNA之反轉錄即時定量聚合酶連鎖反應 15
九、即時聚合酶連鎖反應 (Real-time RT-PCR) 15
十、細胞能量運用測定 16
十一、細胞氧化壓力 16
十二、SIRT3過表現與shSIRT3之細胞株建立 17
十三、病毒製備與感染 17
十四、西方點墨法 18
十五、微型RNA模擬物(miR-31 mimic)、抑制物(miR-31 inhibitor)與報導者質體之轉染法 19
十六、報導者分析法(Reporter assay) 19
十七、細胞增生實驗 20
十八、細胞刮痕移行試驗 20
十九、細胞侵襲孔洞試驗 20
二十、粒線體形狀結構觀察 21
二十一、粒線體膜電位membrane potential change (Δψ)分析 21
二十二、統計 21
肆、結果 23
一、基本生理指標與癌症惡病質現象 23
二、miRNA隨著舌癌的進展而增加 23
三、致癌基因隨著舌癌的進展而增加 23
四、唾液與血漿將中miRNA隨著舌癌的進展而增加 24
五、唾液與血漿將中miRNA相關性 25
六、miRNA具有分辨疾病與健康狀態的能力 25
七、4NQO誘導EGFR和AKT的活化藉由miRNA的調控 25
八、miR-31與SIRT3在4NQO的舌癌病變動物模式中之表現 26
九、miR-31與SIRT3在口腔癌病人檢體中之表現 26
十、SIRT3為miR-31調控的標靶基因 26
十一、SIRT3對口腔癌細胞增生能力之調控 27
十二、SIRT3對口腔癌細胞侵襲能力之調控 27
十二、miR-31對口腔癌細胞氧化壓力之調控 27
十三、SIRT3對口腔癌細胞爬行能力之調控 27
十四、miR-31與SIRT3對於粒線體複合體之調控 27
十五、miR-31與SIRT3對於粒線體結構之調控 28
十六、miR-31與SIRT3對於粒線體膜電位差(Δψ)分析 28
十七、miR-31對口腔癌細胞粒線體功能性之影響 28
十八、miR-31與SIRT3對口腔癌細胞代謝之調控 28
十九、miR-31與SIRT3對口腔癌細胞氧化壓力之調控 29
伍、討論 30
陸、總論 37
柒、參考文獻 56
捌、圖 68
圖一 68
圖二 69
圖三 70
圖四 71
圖五 72
圖六 73
圖七 74
圖八 75
圖九 76
圖十 77
圖十一 78
圖十二 79
圖十三 80
圖十四 81
圖十五 82
圖十六 83
圖十七 84
圖十八 85
圖十九 86
圖二十 87
圖二十一 88
圖二十二 89
圖二十三 90
圖二十四 91
圖二十五 92
1. Lippman SM, Hong WK. Molecular markers of the risk of oral cancer. The New England journal of medicine. 2001;344:1323-6.
2. Tu H-F, Lin S-C, Chang K-W. MicroRNA aberrances in head and neck cancer: pathogenetic and clinical significance. Current opinion in otolaryngology & head and neck surgery. 2013;21:104-11.
3. Tsai C-W, Chang W-S, Lin K-C, Shih L-C, Tsai M-H, Hsiao C-L, et al. Significant Association of Interleukin-10 Genotypes and Oral Cancer Susceptibility in Taiwan. Anticancer research. 2014;34:3731-7.
4. Marshall JR, Graham S, Haughey BP, Shedd D, O'Shea R, Brasure J, et al. Smoking, alcohol, dentition and diet in the epidemiology of oral cancer. European Journal of Cancer Part B: Oral Oncology. 1992;28:9-15.
5. Llewellyn CD, Linklater K, Bell J, Johnson NW, Warnakulasuriya S. An analysis of risk factors for oral cancer in young people: a case-control study. Oral oncology. 2004;40:304-13.
6. Stich H, Stich W, Parida B. Elevated frequency of micronucleated cells in the buccal mucosa of individuals at high risk for oral cancer: betel quid chewers. Cancer letters. 1982;17:125-34.
7. Lucenteforte E, Garavello W, Bosetti C, La Vecchia C. Dietary factors and oral and pharyngeal cancer risk. Oral oncology. 2009;45:461-7.
8. Ko YC, Huang YL, Lee CH, Chen MJ, Lin LM, Tsai CC. Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. Journal of oral pathology & medicine. 1995;24:450-3.
9. Parfenov M, Pedamallu CS, Gehlenborg N, Freeman SS, Danilova L, Bristow CA, et al. Characterization of HPV and host genome interactions in primary head and neck cancers. Proceedings of the National Academy of Sciences. 2014;111:15544-9.
10. Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral oncology. 2009;45:309-16.
11. Leemans CR, Braakhuis BJ, Brakenhoff RH. The molecular biology of head and neck cancer. Nature Reviews Cancer. 2011;11:9-22.
12. Rousseau A, Badoual C. Solid Tumour Section. http://AtlasGeneticsOncology org. 2012:145.
13. Carvalho AL, Nishimoto IN, Califano JA, Kowalski LP. Trends in incidence and prognosis for head and neck cancer in the United States: a site‐specific analysis of the SEER database. International journal of cancer. 2005;114:806-16.
14. Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, et al. A uniform system for microRNA annotation. Rna. 2003;9:277-9.
15. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. cell. 2004;116:281-97.
16. Cullen BR. Transcription and processing of human microRNA precursors. Molecular cell. 2004;16:861-5.
17. Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nature cell biology. 2009;11:228-34.
18. Wahid F, Shehzad A, Khan T, Kim YY. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2010;1803:1231-43.
19. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nature Reviews Genetics. 2010;11:597-610.
20. Shimizu S, Takehara T, Hikita H, Kodama T, Miyagi T, Hosui A, et al. The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human hepatocellular carcinoma. Journal of hepatology. 2010;52:698-704.
21. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, et al. RAS is regulated by the let-7 microRNA family. Cell. 2005;120:635-47.
22. Kim HH, Kuwano Y, Srikantan S, Lee EK, Martindale JL, Gorospe M. HuR recruits let-7/RISC to repress c-Myc expression. Genes & development. 2009;23:1743-8.
23. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America. 2005;102:13944-9.
24. Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L, et al. The miR-15a–miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nature medicine. 2008;14:1271-7.
25. Liu CJ, Lin SC, Yang CC, Cheng HW, Chang KW. Exploiting salivary miR‐31 as a clinical biomarker of oral squamous cell carcinoma. Head & neck. 2012;34:219-24.
26. Reis PP, Tomenson M, Cervigne NK, Machado J, Jurisica I, Pintilie M, et al. Programmed cell death 4 loss increases tumor cell invasion and is regulated by miR-21 in oral squamous cell carcinoma. Molecular cancer. 2010;9:238.
27. Liu X, Chen Z, Yu J, Xia J, Zhou X. MicroRNA profiling and head and neck cancer. Comparative and functional genomics. 2009;2009.
28. Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO molecular medicine. 2012;4:143-59.
29. Cervigne NK, Reis PP, Machado J, Sadikovic B, Bradley G, Galloni NN, et al. Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma. Human molecular genetics. 2009;18:4818-29.
30. Zheng Z-M, Wang X. Regulation of cellular miRNA expression by human papillomaviruses. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2011;1809:668-77.
31. Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szász AM, Wang ZC, et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell. 2009;137:1032-46.
32. Zhang Y, Guo J, Li D, Xiao B, Miao Y, Jiang Z, et al. Down-regulation of miR-31 expression in gastric cancer tissues and its clinical significance. Medical Oncology. 2010;27:685-9.
33. Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecologic oncology. 2008;110:13-21.
34. Creighton CJ, Fountain MD, Yu Z, Nagaraja AK, Zhu H, Khan M, et al. Molecular profiling uncovers a p53-associated role for microRNA-31 in inhibiting the proliferation of serous ovarian carcinomas and other cancers. Cancer research. 2010;70:1906-15.
35. Liu C-J, Tsai M-M, Hung P-S, Kao S-Y, Liu T-Y, Wu K-J, et al. miR-31 ablates expression of the HIF regulatory factor FIH to activate the HIF pathway in head and neck carcinoma. Cancer research. 2010;70:1635-44.
36. Siow M, Karen Ng L, Vincent Chong V, Jamaludin M, Abraham M, Abdul Rahman Z, et al. Dysregulation of miR‐31 and miR‐375 expression is associated with clinical outcomes in oral carcinoma. Oral diseases. 2014;20:345-51.
37. Xi S, Yang M, Tao Y, Xu H, Shan J, Inchauste S, et al. Cigarette smoke induces C/EBP-β-mediated activation of miR-31 in normal human respiratory epithelia and lung cancer cells. PLoS One. 2010;5:e13764.
38. Wang C-J, Zhou Z-G, Wang L, Yang L, Zhou B, Gu J, et al. Clinicopathological significance of microRNA-31,-143 and-145 expression in colorectal cancer. Disease markers. 2009;26:27-34.
39. Yang CC, Hung PS, Wang PW, Liu CJ, Chu TH, Cheng HW, et al. miR‐181 as a putative biomarker for lymph‐node metastasis of oral squamous cell carcinoma. Journal of Oral Pathology & Medicine. 2011;40:397-404.
40. Hung P-S, Liu C-J, Chou C-S, Kao S-Y, Yang C-C, Chang K-W, et al. miR-146a enhances the oncogenicity of oral carcinoma by concomitant targeting of the IRAK1, TRAF6 and NUMB genes. PloS one. 2013;8:e79926.
41. Tu HF, Chang KW, Cheng HW, Liu CJ. Upregulation of miR‐372 and‐373 associates with lymph node metastasis and poor prognosis of oral carcinomas. The Laryngoscope. 2015;125:E365-E70.
42. Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, et al. Detection of elevated levels of tumour‐associated microRNAs in serum of patients with diffuse large B‐cell lymphoma. British journal of haematology. 2008;141:672-5.
43. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences. 2008;105:10513-8.
44. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clinical chemistry. 2010;56:1733-41.
45. Park NJ, Zhou H, Elashoff D, Henson BS, Kastratovic DA, Abemayor E, et al. Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clinical Cancer Research. 2009;15:5473-7.
46. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proceedings of the National Academy of Sciences. 2011;108:5003-8.
47. Gallo A, Tandon M, Alevizos I, Illei GG. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PloS one. 2012;7:e30679.
48. Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Newell J, Kerin MJ. Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Annals of surgery. 2010;251:499-505.
49. Miyachi M, Tsuchiya K, Yoshida H, Yagyu S, Kikuchi K, Misawa A, et al. Circulating muscle-specific microRNA, miR-206, as a potential diagnostic marker for rhabdomyosarcoma. Biochemical and biophysical research communications. 2010;400:89-93.
50. Wong T-S, Liu X-B, Wong BY-H, Ng RW-M, Yuen AP-W, Wei WI. Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clinical Cancer Research. 2008;14:2588-92.
51. Resnick KE, Alder H, Hagan JP, Richardson DL, Croce CM, Cohn DE. The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecologic oncology. 2009;112:55-9.
52. Tsujiura M, Ichikawa D, Komatsu S, Shiozaki A, Takeshita H, Kosuga T, et al. Circulating microRNAs in plasma of patients with gastric cancers. British journal of cancer. 2010;102:1174-9.
53. Wang J, Chen J, Chang P, LeBlanc A, Li D, Abbruzzesse JL, et al. MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer prevention research. 2009;2:807-13.
54. Liu CJ, Kao SY, Tu HF, Tsai MM, Chang KW, Lin SC. Increase of microRNA miR‐31 level in plasma could be a potential marker of oral cancer. Oral diseases. 2010;16:360-4.
55. Ayaz L, Görür A, Yaroğlu HY, Özcan C, Tamer L. Differential expression of microRNAs in plasma of patients with laryngeal squamous cell carcinoma: potential early-detection markers for laryngeal squamous cell carcinoma. Journal of cancer research and clinical oncology. 2013;139:1499-506.
56. Ho AS, Huang X, Cao H, Christman-Skieller C, Bennewith K, Le Q-T, et al. Circulating miR-210 as a novel hypoxia marker in pancreatic cancer. Translational oncology. 2010;3:109-13.
57. Tanaka M, Oikawa K, Takanashi M, Kudo M, Ohyashiki J, Ohyashiki K, et al. Down-regulation of miR-92 in human plasma is a novel marker for acute leukemia patients. PloS one. 2009;4:e5532.
58. Hanke M, Hoefig K, Merz H, Feller AC, Kausch I, Jocham D, et al. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urologic Oncology: Seminars and Original Investigations; 2010: Elsevier. p. 655-61.
59. Imai S-I, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000;403:795-800.
60. Haigis MC, Guarente LP. Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction. Genes & development. 2006;20:2913-21.
61. Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes & development. 1999;13:2570-80.
62. Rogina B, Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proceedings of the National Academy of Sciences of the United States of America. 2004;101:15998-6003.
63. Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature. 2001;410:227-30.
64. Herranz D, Muñoz-Martin M, Cañamero M, Mulero F, Martinez-Pastor B, Fernandez-Capetillo O, et al. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nature communications. 2010;1:3.
65. Bellizzi D, Rose G, Cavalcante P, Covello G, Dato S, De Rango F, et al. A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics. 2005;85:258-63.
66. Alhazzazi TY, Kamarajan P, Joo N, Huang JY, Verdin E, D'Silva NJ, et al. Sirtuin‐3 (SIRT3), a novel potential therapeutic target for oral cancer. Cancer. 2011;117:1670-8.
67. Chen I-C, Chiang W-F, Liu S-Y, Chen P-F, Chiang H-C. Role of SIRT3 in the regulation of redox balance during oral carcinogenesis. Mol Cancer. 2013;12:68.
68. Chen I, Chiang WF, Chen PF, Chiang HC. STRESS‐Responsive Deacetylase SIRT3 is Up‐Regulated by Areca Nut Extract‐Induced Oxidative Stress in Human Oral Keratinocytes. Journal of cellular biochemistry. 2014;115:328-39.
69. Lu C-T, Hsu C-M, Lin P-M, Lai C-C, Lin H-C, Yang C-H, et al. The potential of SIRT6 and SIRT7 as circulating markers for head and neck squamous cell carcinoma. Anticancer research. 2014;34:7137-43.
70. Ashraf N, Zino S, Macintyre A, Kingsmore D, Payne A, George W, et al. Altered sirtuin expression is associated with node-positive breast cancer. British journal of cancer. 2006;95:1056-61.
71. Finley LW, Carracedo A, Lee J, Souza A, Egia A, Zhang J, et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer cell. 2011;19:416-28.
72. Zhao Y, Yang H, Wang X, Zhang R, Wang C, Guo Z. Sirtuin-3 (SIRT3) expression is associated with overall survival in esophageal cancer. Annals of diagnostic pathology. 2013;17:483-5.
73. Zhang CZ, Liu L, Cai M, Pan Y, Fu J, Cao Y, et al. Low SIRT3 expression correlates with poor differentiation and unfavorable prognosis in primary hepatocellular carcinoma. PloS one. 2012;7:e51703.
74. Xiao K, Jiang J, Wang W, Cao S, Zhu L, Zeng H, et al. Sirt3 is a tumor suppressor in lung adenocarcinoma cells. Oncology reports. 2013;30:1323-8.
75. Yang B, Fu X, Shao L, Ding Y, Zeng D. Aberrant expression of SIRT3 is conversely correlated with the progression and prognosis of human gastric cancer. Biochemical and biophysical research communications. 2014;443:156-60.
76. Verdin E, Hirschey MD, Finley LW, Haigis MC. Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends in biochemical sciences. 2010;35:669-75.
77. Ahn B-H, Kim H-S, Song S, Lee IH, Liu J, Vassilopoulos A, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proceedings of the National Academy of Sciences. 2008;105:14447-52.
78. Cimen H, Han M-J, Yang Y, Tong Q, Koc H, Koc EC. Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry. 2009;49:304-11.
79. Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard DB, et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature. 2010;464:121-5.
80. Qiu X, Brown K, Hirschey MD, Verdin E, Chen D. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell metabolism. 2010;12:662-7.
81. Schlicker C, Gertz M, Papatheodorou P, Kachholz B, Becker CF, Steegborn C. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. Journal of molecular biology. 2008;382:790-801.
82. Attardi G, Schatz G. Biogenesis of mitochondria. Annual review of cell biology. 1988;4:289-331.
83. Fliss MS, Usadel H, Caballero OL, Wu L, Buta MR, Eleff SM, et al. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science. 2000;287:2017-9.
84. Mitchell P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature. 1961;191:144-8.
85. Ernster L, Schatz G. Mitochondria: a historical review. J Cell Biol. 1981;91:227s-55s.
86. Mitchell P, Moyle J. Stoichiometry of proton translocation through the respiratory chain and adenosine triphosphatase systems of rat liver mitochondria. Nature. 1965;208:147-51.
87. Schildgen V, Wulfert M, Gattermann N. Impaired mitochondrial gene transcription in myelodysplastic syndromes and acute myeloid leukemia with myelodysplasia-related changes. Experimental hematology. 2011;39:666-75. e1.
88. Takahashi A, Ohtani N, Yamakoshi K, Iida S-i, Tahara H, Nakayama K, et al. Mitogenic signalling and the p16INK4a–Rb pathway cooperate to enforce irreversible cellular senescence. Nature cell biology. 2006;8:1291-7.
89. Richter C. Do mitochondrial DNA fragments promote cancer and aging? FEBS letters. 1988;241:1-5.
90. Wei Y-H, Lee H-C. Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Experimental biology and medicine. 2002;227:671-82.
91. Copeland WC, Wachsman JT, Johnson F, Penta JS. Mitochondrial DNA alterations in cancer. Cancer investigation. 2002;20:557-69.
92. Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H, et al. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science. 2008;320:661-4.
93. Pandey R, Mehrotra D, Catapano C, Choubey V, Sarin R, Mahdi AA, et al. Association of mitochondrial deoxyribonucleic acid mutation with polymorphism in CYP2E1 gene in oral carcinogenesis. Journal of Oral Biology and Craniofacial Research. 2012;2:4-9.
94. Harper ME, Bevilacqua L, Hagopian K, Weindruch R, Ramsey JJ. Ageing, oxidative stress, and mitochondrial uncoupling. Acta Physiologica Scandinavica. 2004;182:321-31.
95. Clerkin J, Naughton R, Quiney C, Cotter T. Mechanisms of ROS modulated cell survival during carcinogenesis. Cancer letters. 2008;266:30-6.
96. Birch‐Machin M. The role of mitochondria in ageing and carcinogenesis. Clinical and experimental dermatology. 2006;31:548-52.
97. Ziech D, Franco R, Pappa A, Panayiotidis MI. Reactive Oxygen Species (ROS)––Induced genetic and epigenetic alterations in human carcinogenesis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2011;711:167-73.
98. Singh KK. Mitochondrial dysfunction is a common phenotype in aging and cancer. Annals of the New York Academy of Sciences. 2004;1019:260-4.
99. Ralph SJ, Rodríguez-Enríquez S, Neuzil J, Saavedra E, Moreno-Sánchez R. The causes of cancer revisited:“mitochondrial malignancy” and ROS-induced oncogenic transformation–why mitochondria are targets for cancer therapy. Molecular aspects of medicine. 2010;31:145-70.
100. Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM. The antioxidant function of the p53 tumor suppressor. Nature medicine. 2005;11:1306-13.
101. Chen F, Vallyathan V, Castranova V, Shi X. Cell apoptosis induced by carcinogenic metals. Molecular and cellular biochemistry. 2001;222:183-8.
102. Qanungo S, Das M, Haldar S, Basu A. Epigallocatechin-3-gallate induces mitochondrial membrane depolarization and caspase-dependent apoptosis in pancreatic cancer cells. Carcinogenesis. 2005;26:958-67.
103. Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proceedings of the National Academy of Sciences. 2010;107:8788-93.
104. Yoon Y-S, Lee J-H, Hwang S-C, Choi KS, Yoon G. TGF β1 induces prolonged mitochondrial ROS generation through decreased complex IV activity with senescent arrest in Mv1Lu cells. Oncogene. 2005;24:1895-903.
105. DONAHUE RJ, RAZMARA M, HOEK JB, KNUDSEN TB. Direct influence of the p53 tumor suppressor on mitochondrial biogenesis and function. The FASEB Journal. 2001;15:635-44.
106. Marchenko ND, Zaika A, Moll UM. Death signal-induced localization of p53 protein to mitochondria a potential role in apoptotic signaling. Journal of Biological Chemistry. 2000;275:16202-12.
107. Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria in cancer cells: what is so special about them? Trends in cell biology. 2008;18:165-73.
108. Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Molecular cell. 2005;18:283-93.
109. Stelow EB, Mills SE. Squamous cell carcinoma variants of the upper aerodigestive tract. PATHOLOGY PATTERNS REVIEWS. 2005;124:S96.
110. Zhou S, Kachhap S, Singh KK. Mitochondrial impairment in p53-deficient human cancer cells. Mutagenesis. 2003;18:287-92.
111. Nyhus L, Mc Quarry DG. Host genes controlling the susceptibility and resistance to squamous cell carcinoma. Mastery of surgery Pathol Int. 2004;50:353-62.
112. Tanaka T, Makita H, Ohnishi M, Hirose Y, Wang A, Mori H, et al. Chemoprevention of 4-nitroquinoline 1-oxide-induced oral carcinogenesis by dietary curcumin and hesperidin: comparison with the protective effect of β-carotene. Cancer research. 1994;54:4653-9.
113. Tada M, Tada M. Seryl-tRNA synthetase and activation of the carcinogen 4-nitroquinoline 1-oxide. 1975.
114. Kohda K, Kawazoe Y, Minoura Y, Tada M. Separation and identification of N4-(guanosin-7-yl)-4-aminoquinoline 1-oxide, a novel nucleic acid adduct of carcinogen 4-nitroquinoline 1-oxide. Carcinogenesis. 1991;12:1523-5.
115. Arima Y, Nishigori C, Takeuchi T, Oka S, Morimoto K, Utani A, et al. 4-Nitroquinoline 1-oxide forms 8-hydroxydeoxyguanosine in human fibroblasts through reactive oxygen species. Toxicological Sciences. 2006;91:382-92.
116. Jones CJ, Edwards SM, Waters R. The repair of identified large DNA adducts induced by 4-nitroquinoline-1-oxide in normal or xeroderma pigmentosum group A human fibroblasts, and the role of DNA polymerases α or δ. Carcinogenesis. 1989;10:1197-201.
117. Minicucci E, Ribeiro D, Da Silva G, Pardini M, Montovani J, Salvadori DMF. The role of the TP53 gene during rat tongue carcinogenesis induced by 4-nitroquinoline 1-oxide. Experimental and Toxicologic Pathology. 2011;63:483-9.
118. Wang Y, Yao R, Gao S, Wen W, Du Y, Szabo E, et al. Chemopreventive effect of a mixture of Chinese Herbs (antitumor B) on chemically induced oral carcinogenesis. Molecular carcinogenesis. 2013;52:49-56.
119. Kanojia D, Vaidya MM. 4-nitroquinoline-1-oxide induced experimental oral carcinogenesis. Oral oncology. 2006;42:655-67.
120. Tang X-H, Knudsen B, Bemis D, Tickoo S, Gudas LJ. Oral cavity and esophageal carcinogenesis modeled in carcinogen-treated mice. Clinical Cancer Research. 2004;10:301-13.
121. Tseng SH, Yang CC, Yu EH, Chang C, Lee YS, Liu CJ, et al. K14‐EGFP‐miR‐31 transgenic mice have high susceptibility to chemical‐induced squamous cell tumorigenesis that is associating with Ku80 repression. International Journal of Cancer. 2015;136:1263-75.
122. Chu T-H, Yang C-C, Liu C-J, Lui M-T, Lin S-C, Chang K-W. miR-211 promotes the progression of head and neck carcinomas by targeting TGFβRII. Cancer letters. 2013;337:115-24.
123. Hung P-S, Tu H-F, Kao S-Y, Yang C-C, Liu CJ, Huang T-Y, et al. miR-31 is up-regulated in oral premalignant epithelium and contributes to the immortalization of normal oral keratinocytes. Carcinogenesis. 2014:bgu024.
124. Li J, Huang H, Sun L, Yang M, Pan C, Chen W, et al. MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor. Clinical Cancer Research. 2009;15:3998-4008.
125. Hedbäck N, Jensen DH, Specht L, Fiehn A-MK, Therkildsen MH, Friis-Hansen L, et al. MiR-21 expression in the tumor stroma of oral squamous cell carcinoma: an independent biomarker of disease free survival. PloS one. 2014;9:e95193.
126. Hsu C-M, Lin P-M, Wang Y-M, Chen Z-J, Lin S-F, Yang M-Y. Circulating miRNA is a novel marker for head and neck squamous cell carcinoma. Tumor Biology. 2012;33:1933-42.
127. Ren W, Qiang C, Gao L, Li S-M, Zhang L-M, Wang X-L, et al. Circulating microRNA-21 (MIR-21) and phosphatase and tensin homolog (PTEN) are promising novel biomarkers for detection of oral squamous cell carcinoma. Biomarkers. 2014;19:590-6.
128. Alder H, Taccioli C, Chen H, Jiang Y, Smalley KJ, Fadda P, et al. Dysregulation of miR-31 and miR-21 induced by zinc deficiency promotes esophageal cancer. Carcinogenesis. 2012.
129. Yeh L-Y, Liu C-J, Wong Y-K, Chang C, Lin S-C, Chang K-W. miR-372 inhibits p62 in head and neck squamous cell carcinoma in vitro and in vivo. Oncotarget. 2015;6:6062-75.
130. Boldin M, Chang K. NF. NFK, Chang C, Lin S-C, Chang K-W. miR-372 i一 146. an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci US A. 2006;103:12481-6.
131. Chien C-S, Wang M-L, Chu P-Y, Chang Y-L, Liu W-H, Yu C-C, et al. Lin28B/Let-7 Regulates Expression of Oct4 and Sox2 and Reprograms Oral Squamous Cell Carcinoma Cells to a Stem-like State. Cancer research. 2015.
132. Yu C-C, Chen Y-W, Chiou G-Y, Tsai L-L, Huang P-I, Chang C-Y, et al. MicroRNA let-7a represses chemoresistance and tumourigenicity in head and neck cancer via stem-like properties ablation. Oral oncology. 2011;47:202-10.
133. Matse JH, Yoshizawa J, Wang X, Elashoff D, Bolscher JG, Veerman EC, et al. Discovery and prevalidation of salivary extracellular microRNA biomarkers panel for the noninvasive detection of benign and malignant parotid gland tumors. Clinical Cancer Research. 2013;19:3032-8.
134. Momen-Heravi F, Trachtenberg A, Kuo W, Cheng Y. Genomewide study of salivary microRNAs for detection of oral cancer. Journal of dental research. 2014:0022034514531018.
135. Lu W-C, Kao S-Y, Yang C-C, Tu H-F, Wu C-H, Chang K-W, et al. EGF Up-Regulates miR-31 through the C/EBPβ Signal Cascade in Oral Carcinoma. PloS one. 2014;9:e108049.
136. Hung P-S, Chang K-W, Kao S-Y, Chu T-H, Liu C-J, Lin S-C. Association between the rs2910164 polymorphism in pre-mir-146a and oral carcinoma progression. Oral oncology. 2012;48:404-8.
137. Lee H-C, Li S-H, Lin J-C, Wu C-C, Yeh D-C, Wei Y-H. Somatic mutations in the D-loop and decrease in the copy number of mitochondrial DNA in human hepatocellular carcinoma. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2004;547:71-8.
138. Tseng LM, Yin PH, Chi CW, Hsu CY, Wu CW, Lee LM, et al. Mitochondrial DNA mutations and mitochondrial DNA depletion in breast cancer. Genes, Chromosomes and Cancer. 2006;45:629-38.
139. Kabekkodu SP, Bhat S, Mascarenhas R, Mallya S, Bhat M, Pandey D, et al. Mitochondrial DNA variation analysis in cervical cancer. Mitochondrion. 2014;16:73-82.
140. Tang Y, Schon EA, Wilichowski E, Vazquez-Memije ME, Davidson E, King MP. Rearrangements of human mitochondrial DNA (mtDNA): new insights into the regulation of mtDNA copy number and gene expression. Molecular biology of the cell. 2000;11:1471-85.
141. Moraes CT, Shanske S, Tritschler HJ, Aprille JR, Andreetta F, Bonilla E, et al. mtDNA depletion with variable tissue expression: a novel genetic abnormality in mitochondrial diseases. American journal of human genetics. 1991;48:492.
142. Cline SD. Mitochondrial DNA damage and its consequences for mitochondrial gene expression. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2012;1819:979-91.
143. Simonnet H, Alazard N, Pfeiffer K, Gallou C, Béroud C, Demont J, et al. Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma. Carcinogenesis. 2002;23:759-68.
144. Marmo A, Morris D, Schwalke M, Iliev I, Rogers S. Electrical potential measurements in human breast cancer and benign lesions. Tumor biology. 1994;15:147-52.
145. Binggeli R, Cameron IL. Cellular potentials of normal and cancerous fibroblasts and hepatocytes. Cancer research. 1980;40:1830-5.
146. Stevenson D, Binggeli R, Weinstein RC, Keck JG, Lai MC, Tong MJ. Relationship between cell membrane potential and natural killer cell cytolysis in human hepatocellular carcinoma cells. Cancer research. 1989;49:4842-5.
147. Melczer N, Kiss J. Electrical method for detection of early cancerous growth of the skin. Nature. 1957;179:1177-9.
148. Woodrough R, Canti G, Watson B. Electrical potential difference between basal cell carcinoma, benign inflammatory lesions and normal tissue. British Journal of Dermatology. 1975;92:1-.
149. Warburg O. On the origin of cancer cells. Science. 1956;123:309-14.
150. Brizel DM, Schroeder T, Scher RL, Walenta S, Clough RW, Dewhirst MW, et al. Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. International Journal of Radiation Oncology* Biology* Physics. 2001;51:349-53.
151. Schwer B, Bunkenborg J, Verdin RO, Andersen JS, Verdin E. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proceedings of the National Academy of Sciences. 2006;103:10224-9.
152. Hallows WC, Lee S, Denu JM. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proceedings of the National Academy of Sciences. 2006;103:10230-5.
153. Lombard DB, Alt FW, Cheng H-L, Bunkenborg J, Streeper RS, Mostoslavsky R, et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Molecular and cellular biology. 2007;27:8807-14.
154. Someya S, Yu W, Hallows WC, Xu J, Vann JM, Leeuwenburgh C, et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell. 2010;143:802-12.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊