|
1. Pihlstrom, B.L., B.S. Michalowicz, and N.W. Johnson, Periodontal diseases. Lancet, 2005. 366(9499): p. 1809-20. 2. Paster, B.J., et al., The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol 2000, 2006. 42: p. 80-7. 3. Aas, J.A., et al., Defining the normal bacterial flora of the oral cavity. J Clin Microbiol, 2005. 43(11): p. 5721-32. 4. Krzyściak, W., et al., The virulence of Streptococcus mutans and the ability to form biofilms. Eur J Clin Microbiol Infect Dis, 2014. 33(4): p. 499-515. 5. Ji, S., Y.S. Choi, and Y. Choi, Bacterial invasion and persistence: critical events in the pathogenesis of periodontitis? J Periodontal Res, 2015. 50(5): p. 570-85. 6. Jiao, Y., M. Hasegawa, and N. Inohara, Emerging roles of immunostimulatory oral bacteria in periodontitis development. Trends Microbiol, 2014. 22(3): p. 157-63. 7. Kreth, J., J. Merritt, and F. Qi, Bacterial and host interactions of oral streptococci. DNA Cell Biol, 2009. 28(8): p. 397-403. 8. Liljemark, W.F. and R.J. Gibbons, Proportional distribution and relative adherence of Streptococcus miteor (mitis) on various surfaces in the human oral cavity. Infect Immun, 1972. 6(5): p. 852-9. 9. Weerkamp, A.H. and B.C. McBride, Characterization of the adherence properties of Streptococcus salivarius. Infect Immun, 1980. 29(2): p. 459-68. 10. Li, Y.H., Y.Y. Chen, and R.A. Burne, Regulation of urease gene expression by Streptococcus salivarius growing in biofilms. Environ Microbiol, 2000. 2(2): p. 169-77. 11. Pearce, C., et al., Identification of pioneer viridans streptococci in the oral cavity of human neonates. J Med Microbiol, 1995. 42(1): p. 67-72. 12. Cosseau, C., et al., The commensal Streptococcus salivarius K12 downregulates the innate immune responses of human epithelial cells and promotes host-microbe homeostasis. Infect Immun, 2008. 76(9): p. 4163-75. 13. Kaci, G., et al., Inhibition of the NF-kappaB pathway in human intestinal epithelial cells by commensal Streptococcus salivarius. Appl Environ Microbiol, 2011. 77(13): p. 4681-4. 14. Fan, J., et al., Ecto-5'-nucleotidase: a candidate virulence factor in Streptococcus sanguinis experimental endocarditis. PLoS One, 2012. 7(6): p. e38059. 15. Kreth, J., et al., Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm. J Bacteriol, 2005. 187(21): p. 7193-203. 16. Peyret-Lacombe, A., et al., TLR2 sensing of F. nucleatum and S. sanguinis distinctly triggered gingival innate response. Cytokine, 2009. 46(2): p. 201-10. 17. Teughels, W., et al., Bacteria interfere with A. actinomycetemcomitans colonization. J Dent Res, 2007. 86(7): p. 611-7. 18. Hutomo, S., H. Susilowati, and D. Agustina, Cell Morphological Change and Caspase-3 Protein Expression on Epithelial Cells under Stimulation of Oral Bacterium Streptococcus sanguinis. Vol. 22. 2015. 19. Sumioka, R., et al., Streptococcus sanguinis induces neutrophil cell death by production of hydrogen peroxide. PLoS One, 2017. 12(2): p. e0172223. 20. Kolenbrander, P.E., et al., Intergeneric coaggregation of oral Treponema spp. with Fusobacterium spp. and intrageneric coaggregation among Fusobacterium spp. Infect Immun, 1995. 63(12): p. 4584-8. 21. Han, Y.W., et al., Identification and characterization of a novel adhesin unique to oral fusobacteria. J Bacteriol, 2005. 187(15): p. 5330-40. 22. Weiss, E.I., et al., Attachment of Fusobacterium nucleatum PK1594 to mammalian cells and its coaggregation with periodontopathogenic bacteria are mediated by the same galactose-binding adhesin. Oral Microbiol Immunol, 2000. 15(6): p. 371-7. 23. Quah, S.Y., G. Bergenholtz, and K.S. Tan, Fusobacterium nucleatum induces cytokine production through Toll-like-receptor-independent mechanism. Int Endod J, 2014. 47(6): p. 550-9. 24. Zhang, G., R. Chen, and J.D. Rudney, Streptococcus cristatus modulates the Fusobacterium nucleatum-induced epithelial interleukin-8 response through the nuclear factor-kappa B pathway. J Periodontal Res, 2011. 46(5): p. 558-67. 25. Krisanaprakornkit, S., et al., Inducible expression of human beta-defensin 2 by Fusobacterium nucleatum in oral epithelial cells: multiple signaling pathways and role of commensal bacteria in innate immunity and the epithelial barrier. Infect Immun, 2000. 68(5): p. 2907-15. 26. Kikkert, R., et al., Activation of toll-like receptors 2 and 4 by gram-negative periodontal bacteria. Oral Microbiol Immunol, 2007. 22(3): p. 145-51. 27. Dale, B.A., Periodontal epithelium: a newly recognized role in health and disease. Periodontol 2000, 2002. 30: p. 70-8. 28. Mantovani, A., et al., Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol, 2011. 11(8): p. 519-31. 29. Kolaczkowska, E. and P. Kubes, Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol, 2013. 13(3): p. 159-75. 30. Rock, F.L., et al., A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci U S A, 1998. 95(2): p. 588-93. 31. Yarovinsky, F., Innate immunity to Toxoplasma gondii infection. Nat Rev Immunol, 2014. 14(2): p. 109-21. 32. Medzhitov, R., Toll-like receptors and innate immunity. Nat Rev Immunol, 2001. 1(2): p. 135-45. 33. Tomlinson, G., et al., TLR-mediated inflammatory responses to Streptococcus pneumoniae are highly dependent on surface expression of bacterial lipoproteins. J Immunol, 2014. 193(7): p. 3736-45. 34. Takeuchi, O., et al., Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity, 1999. 11(4): p. 443-51. 35. Elson, G., et al., Contribution of Toll-like receptors to the innate immune response to Gram-negative and Gram-positive bacteria. Blood, 2007. 109(4): p. 1574-83. 36. Oeckinghaus, A. and S. Ghosh, The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol, 2009. 1(4): p. a000034. 37. Tak, P.P. and G.S. Firestein, NF-kappaB: a key role in inflammatory diseases. J Clin Invest, 2001. 107(1): p. 7-11. 38. McGuckin, M.A., et al., Mucin dynamics and enteric pathogens. Nat Rev Microbiol, 2011. 9(4): p. 265-78. 39. Niv, Y. and R. Fass, The role of mucin in GERD and its complications. Nat Rev Gastroenterol Hepatol, 2011. 9(1): p. 55-9. 40. Apostolopoulos, V., L. Stojanovska, and S.E. Gargosky, MUC1 (CD227): a multi-tasked molecule. Cell Mol Life Sci, 2015. 72(23): p. 4475-500. 41. Zhang, L., et al., Human mucin MUC1 RNA undergoes different types of alternative splicing resulting in multiple isoforms. Cancer Immunol Immunother, 2013. 62(3): p. 423-35. 42. Herbert, L.M., et al., A unique mucin immunoenhancing peptide with antitumor properties. Cancer Res, 2004. 64(21): p. 8077-84. 43. Grosso, J.F., et al., MUC1/sec-expressing tumors are rejected in vivo by a T cell-dependent mechanism and secrete high levels of CCL2. J Immunol, 2004. 173(3): p. 1721-30. 44. Baruch, A., et al., The breast cancer-associated MUC1 gene generates both a receptor and its cognate binding protein. Cancer Res, 1999. 59(7): p. 1552-61. 45. Hossain, M.K. and K.A. Wall, Immunological Evaluation of Recent MUC1 Glycopeptide Cancer Vaccines. Vaccines (Basel), 2016. 4(3). 46. Cascio, S., L. Zhang, and O.J. Finn, MUC1 protein expression in tumor cells regulates transcription of proinflammatory cytokines by forming a complex with nuclear factor-kappaB p65 and binding to cytokine promoters: importance of extracellular domain. J Biol Chem, 2011. 286(49): p. 42248-56. 47. Ilver, D., et al., Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science, 1998. 279(5349): p. 373-7. 48. Mahdavi, J., et al., Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science, 2002. 297(5581): p. 573-8. 49. Linden, S.K., et al., MUC1 limits Helicobacter pylori infection both by steric hindrance and by acting as a releasable decoy. PLoS Pathog, 2009. 5(10): p. e1000617. 50. Guang, W., et al., Muc1 cell surface mucin attenuates epithelial inflammation in response to a common mucosal pathogen. J Biol Chem, 2010. 285(27): p. 20547-57. 51. Kato, K., E.P. Lillehoj, and K.C. Kim, Pseudomonas aeruginosa stimulates tyrosine phosphorylation of and TLR5 association with the MUC1 cytoplasmic tail through EGFR activation. Inflamm Res, 2016. 65(3): p. 225-33. 52. Kato, K., et al., Membrane-tethered MUC1 mucin is phosphorylated by epidermal growth factor receptor in airway epithelial cells and associates with TLR5 to inhibit recruitment of MyD88. J Immunol, 2012. 188(4): p. 2014-22. 53. Li, X., et al., Pro-inflammatory cytokines up-regulate MUC1 gene expression in oral epithelial cells. J Dent Res, 2003. 82(11): p. 883-7. 54. Jiang, L., et al., Cell line cross-contamination: KB is not an oral squamous cell carcinoma cell line. Eur J Oral Sci, 2009. 117(1): p. 90-1. 55. Lin, S.C., et al., Establishment of OC3 oral carcinoma cell line and identification of NF-kappa B activation responses to areca nut extract. J Oral Pathol Med, 2004. 33(2): p. 79-86. 56. Al-Qutub, M.N., et al., Hemin-dependent modulation of the lipid A structure of Porphyromonas gingivalis lipopolysaccharide. Infect Immun, 2006. 74(8): p. 4474-85. 57. Raval, N.C., et al., The Interaction of Implant Luting Cements and Oral Bacteria Linked to Peri-Implant Disease: An In Vitro Analysis of Planktonic and Biofilm Growth--A Preliminary Study. Clin Implant Dent Relat Res, 2015. 17(6): p. 1029-35. 58. Obermair, A., et al., Expression of MUC1 splice variants in benign and malignant ovarian tumours. Int J Cancer, 2002. 100(2): p. 166-71. 59. Wang, P., J.A. Julian, and D.D. Carson, The MUC1 HMFG1 glycoform is a precursor to the 214D4 glycoform in the human uterine epithelial cell line, HES. Biol Reprod, 2008. 78(2): p. 290-8. 60. Hey, N.A., et al., Transmembrane and truncated (SEC) isoforms of MUC1 in the human endometrium and Fallopian tube. Reprod Biol Endocrinol, 2003. 1: p. 2. 61. Baruch, A., et al., Preferential expression of novel MUC1 tumor antigen isoforms in human epithelial tumors and their tumor-potentiating function. Int J Cancer, 1997. 71(5): p. 741-9. 62. Nicolaou, G., A.H. Goodall, and C. Erridge, Diverse bacteria promote macrophage foam cell formation via Toll-like receptor-dependent lipid body biosynthesis. J Atheroscler Thromb, 2012. 19(2): p. 137-48. 63. Lappin, D.F., S. Sherrabeh, and C. Erridge, Stimulants of Toll-like receptors 2 and 4 are elevated in saliva of periodontitis patients compared with healthy subjects. J Clin Periodontol, 2011. 38(4): p. 318-25. 64. Hoffmann, E., et al., Multiple control of interleukin-8 gene expression. Journal of Leukocyte Biology, 2002. 72(5): p. 847-855. 65. Dharmani, P., et al., Fusobacterium nucleatum infection of colonic cells stimulates MUC2 mucin and tumor necrosis factor alpha. Infect Immun, 2011. 79(7): p. 2597-607. 66. Karlsen, T.A., et al., microRNA-140 Inhibits Inflammation and Stimulates Chondrogenesis in a Model of Interleukin 1beta-induced Osteoarthritis. Mol Ther Nucleic Acids, 2016. 5(10): p. e373.
|