跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 01:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭伯儒
研究生(外文):Po-Ju Hsiao
論文名稱:檳榔及其他口腔危險因子極化之巨噬細胞對於口腔纖維母細胞活化的影響
論文名稱(外文):Effects of areca nut and other oral risk factors-polarized macrophages on the activation of oral fibroblasts
指導教授:張蓮鈺
指導教授(外文):Lien-Yu Chang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:口腔生物研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:84
中文關鍵詞:口腔癌檳榔萃取物脂多醣尼古丁巨噬細胞口腔纖維母細胞膠原蛋白精胺酸酶分化群163阿法平滑肌肌動蛋白細胞激素
外文關鍵詞:Oral cancerareca nut extractLipopolysaccharidesNicotinemacrophageoral fibroblastsArginase-1CD163α-SMAcollagencytokines
相關次數:
  • 被引用被引用:0
  • 點閱點閱:425
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
口腔癌目前是台灣癌症致死率較高的癌症之一,與食用檳榔、抽菸以及微生物感染等口腔危險因子有密切關係。纖維母細胞(Fibroblasts)為結締組織的主要細胞,可產生與代謝膠原纖維蛋白,在傷口癒合上扮演重要角色,不正常激活的纖維母細胞可表現較高的膠原蛋白(collagen)、阿法平滑肌肌動蛋白 (α-smooth muscle actin, α-SMA)以及CXCL12,可能與癌化有關。巨噬細胞極化分兩大類,M1 type的標誌蛋白為CD86、IL-12以及TNF-α等,可以促進發炎反應;而M2 type的標誌蛋白為精氨酸酶(Arginase-1)、分化群163 (CD163)、IL-10以及TGF-β等,會抑制發炎反應並可能會促進腫瘤細胞的生成。大腸直腸癌研究發現M2巨噬細胞可能會促使纖維母細胞活化表現出α-SMA等因子,可能與癌化有關,然而,在口腔癌中巨噬細胞極化的情形對口腔纖維母細胞的影響仍未明確。實驗室先前研究發現檳榔萃取物可能使巨噬細胞往M2 type極化,因此本研究想進一步探討此M2-like極化之巨噬細胞對於口腔纖維母細胞活化的影響,也探討口腔癌組織中巨噬細胞以及纖維母細胞的表現。本實驗所使用的巨噬細胞為THP-1細胞(人類單核球細胞株)以phorbol 12-myrsitate 13-acetate (PMA) 分化而成,再以Porphyromonas gingivalis 脂多醣(LPS)、尼古丁(Nicotine, NT)及/或檳榔萃取物(ANE)處理24小時,以西方墨點法和酵素連結免疫吸附法發現,M1 type巨噬細胞的標誌: CD86及細胞激素IL-12在所有組別間沒有太大差異; M2 type巨噬細胞標誌: Arginase-1及CD163的表現,在所有實驗組中都比對照組高,尤其是有加ANE的組別; M2細胞激素TGF-β則是對照組與各實驗組產量都差不多;有趣的是,LPS會使TNF-α及IL-10產量提高,但NT及ANE則不會。接下來以不同處理之巨噬細胞上清液作為條件培養液(CM-Mac)來處理口腔纖維母細胞,發現有ANE處理過的CM-Mac可使口腔纖維母細胞collagen及IL-6有明顯上升,α-SMA也有上升的趨勢;而有LPS處理的條件培養液也會使口腔纖維母細胞IL-6明顯上升;意外發現經LPS或ANE處理的CM-Mac使CXCL12明顯降低。若以ANE、LPS及/或NT直接處理口腔纖維母細胞,發現所有實驗組別與對照組相比其collagen與α-SMA的表現都比較高。臨床檢體方面:口腔癌旁正常組織、口腔癌症組織和口腔正常組織是經台北榮民總醫院IRB通過和受試者同意,從牙科臨床所取得的,以免疫組織化學染色方法發現,在結締組織中,CD68、CD163以及Arginase-1的表現在口腔癌組織高於口腔癌旁正常組織(成對樣本分析),CD86表現僅在癌旁正常組織有微弱表現;此外,結締組織中α-SMA的表現亦在口腔癌組織較高。以上結果顯示: M2-like巨噬細胞和活化的口腔纖維母細胞在口腔癌結締組織中表現較高;另一方面,在細胞實驗中,除了ANE、LPS及/或NT等之直接促進纖維母細胞活化效應外,無論有無其他危險因子,ANE都可能會促使巨噬細胞往M2方向極化(M2-like),而這種M2-like巨噬細胞條件培養液會使口腔纖維母細胞產生較多的膠原蛋白及IL-6,但不會提高 CXCL12表現。結論:在長期嚼食檳榔者口腔微環境中,除了ANE等口腔危險因子之直接效應外,被危險因子影響的免疫細胞例如M2-like的巨噬細胞,也會繼而影響結構細胞之功能,譬如造成纖維母細胞產生較多的膠原蛋白,此可能在口腔癌化中扮演重要角色。
Oral cancer, one of the leading causes of cancer death in Taiwan, is closely related to risk factors such as areca nut chewing habit, smoking and microbial infection. Activation of fibroblasts showing higher expression of collagen, α-smooth muscle actin (α-SMA) and CXCL12 is observed in carcinogenesis. Macrophage polarization can be classified into two types: M1 and M2. M1 type markers like CD86, IL-12 and TNF- may enhance inflammation, while M2 type markers like arginase-1, CD163, IL-10 and TGF- may promote tumor growth. M2 macrophages could promote the stroma expression of -SMA in colorectal cancer, however, little is known about the influence of macrophage polarization on fibroblast activation during oral carcinogenesis. Previous studies showed that areca nut extract (ANE) may polarize macrophages into M2-like phenotype. The study further examined the effects of these M2-like macrophages on the activation of oral fibroblasts. Phenotypes of macrophages and fibroblasts in oral cancer specimens were also evaluated. Specific protein expression was detected by western blotting, enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC). Macrophages differentiated from THP-1 cells by phorbol 12-myrsitate 13-acetate (PMA) were further treated with Porphyromonas gingivalis LPS, nicotine (NT) and/or areca nut extract (ANE) for 24 hours. As compared to control group, expression of M1 markers: CD86 and IL-12 showed no significant change, while expression of M2 markers: Arginase-1 and CD163 was higher in macrophages treated with ANE with/without LPS and NT. However, the expression of TGF-β showed no significant change between groups. Production of IL-10 and TNF-α was significantly increased by LPS, but not by NT and ANE. The supernatants collected from treated macrophages were used as conditioned media (CM-Mac) for the treatment of fibroblasts. Significantly increased expression of collagen and IL-6 by fibroblasts was found in cells treated with CM-Mac from ANE-related groups, and α-SMA was also increased in ANE-related groups though without statistically significance. CM-Mac from LPS-related groups also increased the production of IL-6 by fibroblasts. However, both CM-Mac from LPS-related and ANE-related groups decreased the production of CXCL12 by fibroblasts. On the other hand, oral fibroblasts directly treated with ANE, NT and/or LPS, also increased the production of collagen and α-SMA. Tissue specimens were obtained from routine dental surgery at the department of stomatology in Taipei Veterans General Hospital after IRB approval and informed consent. Using IHC, levels of positive staining for CD68、CD163、arginase-1 and α-SMA, but not CD86, in stromal connective tissues were significantly higher in oral cancer than in adjacent normal tissues. Taken together, the results showed that the expression of M2 macrophages and activated fibroblasts were higher in connective tissue stroma of OSCC. In in vitro cell experiments, ANE with/without NT and LPS might polarize macrophages into M2-like phenotype. CM-Mac from these ANE-related groups in turn could increase collagen production and IL-6 secretion, but not CXCL12 secretion, by fibroblasts. In conclusion, besides the direct effects of oral risk factors, the immune cells altered by risk factors, the M2 or M2-like macrophages, could in turn modify the resident cell function resulting in abnormal collagen production by fibroblasts, which might play an important role in oral carcinogenesis.
目錄 I
表目錄 III
圖目錄 IV
中文摘要 V
Abstract VIII
緒論 1
一、口腔癌 1
二、檳榔 2
三、尼古丁(Nicotine) 3
四、脂多醣(Lipopolysaccharides, LPS) 3
五、纖維母細胞 4
六、巨噬細胞 7
七、巨噬細胞與纖維母細胞之關係 8
研究動機與假說 9
材料與方法 10
檳榔萃取物製備 10
Lipopolysaccharides、Nicotine製備 10
THP-1細胞培養 11
巨噬細胞分化 12
巨噬細胞之處理 12
巨噬細胞條件培養液製備 13
口腔組織檢體收集 13
口腔黏膜纖維母細胞培養 13
口腔纖維母細胞之處理 14
蛋白質萃取物製備及定量 14
西方墨點法(Western blotting assay) 16
酵素結合免疫吸附定量法(Enzyme-linked immunosorbent assay, ELISA) 19
口腔組織玻片製備 21
免疫組織化學染色法(Immunohistochemistry, IHC) 21
口腔組織染色結果影像擷取及定量 24
統計方法(Statistical analysis) 24
結果 26
一、PMA誘導之人類單核球細胞(THP-1)分化成巨噬細胞 26
二、LPS、NT及/或ANE對巨噬細胞極化之影響 26
巨噬細胞之M1型態極化標誌CD86以及M2型態極化標誌arginase-1與CD163之表現 26
巨噬細胞細胞激素之分泌 28
各口腔危險因子與其對照組之兩組樣本分析 29
三、巨噬細胞條件培養液對口腔纖維母細胞活化的影響 31
口腔纖維母細胞collagen之表現 31
口腔纖維母細胞α-SMA之表現 31
口腔纖維母細胞細胞激素之分泌 31
不同巨噬細胞條件培養液與其對照組之兩組樣本分析 33
四、口腔危險因子對於口腔纖維母細胞collagen及α-SMA表現之直接作用 34
各口腔危險因子與其對照組之兩組樣本分析 35
五、口腔癌症組織(OSCC)、口腔癌旁正常組織(ANT)以及口腔正常組織(Normal)其巨噬細胞標誌蛋白及口腔纖維母細胞活化標誌蛋白的表現 36
巨噬細胞分化標誌CD14和CD68的表現 36
M1巨噬細胞極化相關標誌CD86的表現 37
M2巨噬細胞極化相關標誌Arginase-1及CD163的表現 37
纖維母細胞活化標誌α-SMA的表現 38
口腔癌症組織與口腔癌旁正常組織之配對分析 38
討論 40
結論 45
表 46
圖 50
附圖 67
附表 75
附表一、一級抗體 75
附表二、西方墨點法相關溶液配製 75
參考文獻 80


表目錄
表一、 ANE或LPS對巨噬細胞M2極化之分析 46
表二、經ANE或LPS處理之巨噬細胞條件培養液對於口腔纖維母細胞活化之分析 47
表三、ANE或LPS處理對於口腔纖維母細胞活化之分析 48
表四、M1、M2 巨噬細胞標誌蛋白與活化的纖維母細胞標誌蛋白α-SMA在口腔癌結締組織中表現之分析 49


圖目錄
圖一、THP-1細胞以不同濃度之PMA誘導成巨噬細胞之型態 50
圖二、口腔危險因子對於M1巨噬細胞極化標誌CD86的影響 51
圖三、口腔危險因子對於M2巨噬細胞極化標誌arginase-1的影響 52
圖四、口腔危險因子對於M2巨噬細胞極化標誌CD163的影響 53
圖五、口腔危險因子對於巨噬細胞分泌細胞激素之影響 54
圖六、巨噬細胞條件培養液對於口腔纖維母細胞collagen表現的影響 55
圖七、巨噬細胞條件培養液對於口腔纖維母細胞α-SMA表現的影響 56
圖八、巨噬細胞條件培養液對於口腔纖維母細胞分泌 CXCL12、TGF-β以IL-6 之影響 58
圖九、口腔危險因子對於口腔纖維母細胞collagen表現的影響 59
圖十、口腔危險因子對於口腔纖維母細胞α-SMA表現的影響 60
圖十一、口腔癌症組織、癌旁正常組織以及正常組織中CD14表現 61
圖十二、口腔癌症組織、癌旁正常組織以及正常組織中CD68表現 62
圖十三、口腔癌症組織、癌旁正常組織以及正常組織中CD86表現 63
圖十四、口腔癌症組織、癌旁正常組織以及正常組織中Arginase-1表現 64
圖十五、口腔癌症組織、癌旁正常組織以及正常組織中CD163表現 65
圖十六、口腔癌症組織、癌旁正常組織以及正常組織中α-SMA 表現 66

附圖一、陽性細胞表現強度標準 67
附圖二、口腔危險因子對於M1巨噬細胞極化標誌CD86的影響 69
附圖三、口腔危險因子對於M2巨噬細胞極化標誌arginase-1的影響 71
附圖四、M1、M2 巨噬細胞標誌蛋白與活化的纖維母細胞標誌蛋白α-SMA在口腔癌結締組織中表現之分析 73
附圖五、口腔癌症組織、癌旁正常組織以及正常組織中CXCL12 表現 74
參考文獻
1. Kao SY, Lim E. An overview of detection and screening of oral cancer in Taiwan. The Chinese journal of dental research : the official journal of the Scientific Section of the Chinese Stomatological Association 2015;18:7-12
2. Neville BW, Day TA. Oral cancer and precancerous lesions. CA: a cancer journal for clinicians 2002;52:195-215
3. Mashberg A, Boffetta P, Winkelman R, Garfinkel L. Tobacco smoking, alcohol drinking, and cancer of the oral cavity and oropharynx among U.S. veterans. Cancer 1993;72:1369-75
4. Murti PR, Bhonsle RB, Gupta PC, Daftary DK, Pindborg JJ, Mehta FS. Etiology of oral submucous fibrosis with special reference to the role of areca nut chewing. Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology 1995;24:145-52
5. Ko YC, Huang YL, Lee CH, Chen MJ, Lin LM, Tsai CC. Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology 1995;24:450-3
6. Garg A, Chaturvedi P, Gupta PC. A review of the systemic adverse effects of areca nut or betel nut. Indian journal of medical and paediatric oncology : official journal of Indian Society of Medical & Paediatric Oncology 2014;35:3-9
7. Ko YC, Chiang TA, Chang SJ, Hsieh SF. Prevalence of betel quid chewing habit in Taiwan and related sociodemographic factors. Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology 1992;21:261-4
8. Hu S, Chen WC, Hwang GS, Chen ST, Kuo SB, Chen Y, et al. Changes in plasma steroids and cytokines levels in betel chewing patients in Taiwan. Steroids 2016;111:134-8
9. Tsai YS, Lee KW, Huang JL, Liu YS, Juo SH, Kuo WR, et al. Arecoline, a major alkaloid of areca nut, inhibits p53, represses DNA repair, and triggers DNA damage response in human epithelial cells. Toxicology 2008;249:230-7
10. Tseng YH, Yang CC, Lin SC, Cheng CC, Lin SH, Liu CJ, et al. Areca nut extract upregulates vimentin by activating PI3K/AKT signaling in oral carcinoma. Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology 2011;40:160-6
11. Trivedy CR, Craig G, Warnakulasuriya S. The oral health consequences of chewing areca nut. Addiction biology 2002;7:115-25
12. Hung SL, Chen YL, Wan HC, Liu TY, Chen YT, Ling LJ. Effects of areca nut extracts on the functions of human neutrophils in vitro. Journal of periodontal research 2000;35:186-93
13. Albuquerque EX, Pereira EF, Alkondon M, Rogers SW. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiological reviews 2009;89:73-120
14. Charlton A. Medicinal uses of tobacco in history. Journal of the Royal Society of Medicine 2004;97:292-6
15. Rehman M, Shekunov BY, York P, Colthorpe P. Solubility and precipitation of nicotinic acid in supercritical carbon dioxide. Journal of pharmaceutical sciences 2001;90:1570-82
16. Sopori M. Effects of cigarette smoke on the immune system. Nature reviews Immunology 2002;2:372-7
17. Hadden JW. Immunopharmacology and immunotoxicology. Advances in experimental medicine and biology 1991;288:1-11
18. McCrea KA, Ensor JE, Nall K, Bleecker ER, Hasday JD. Altered cytokine regulation in the lungs of cigarette smokers. American journal of respiratory and critical care medicine 1994;150:696-703
19. Nishioka T, Guo J, Yamamoto D, Chen L, Huppi P, Chen CY. Nicotine, through upregulating pro-survival signaling, cooperates with NNK to promote transformation. Journal of cellular biochemistry 2010;109:152-61
20. Wong HP, Yu L, Lam EK, Tai EK, Wu WK, Cho CH. Nicotine promotes colon tumor growth and angiogenesis through beta-adrenergic activation. Toxicological sciences : an official journal of the Society of Toxicology 2007;97:279-87
21. Sanner T, Grimsrud TK. Nicotine: Carcinogenicity and Effects on Response to Cancer Treatment - A Review. Frontiers in oncology 2015;5:196
22. Alexander C, Rietschel ET. Bacterial lipopolysaccharides and innate immunity. Journal of endotoxin research 2001;7:167-202
23. Hsu RY, Chan CH, Spicer JD, Rousseau MC, Giannias B, Rousseau S, et al. LPS-induced TLR4 signaling in human colorectal cancer cells increases beta1 integrin-mediated cell adhesion and liver metastasis. Cancer research 2011;71:1989-98
24. Shuyi Y, Feng W, Jing T, Hongzhang H, Haiyan W, Pingping M, et al. Human beta-defensin-3 (hBD-3) upregulated by LPS via epidermal growth factor receptor (EGFR) signaling pathways to enhance lymphatic invasion of oral squamous cell carcinoma. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics 2011;112:616-25
25. Slots J. Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in periodontal disease: introduction. Periodontology 2000 1999;20:7-13
26. Naito M, Hirakawa H, Yamashita A, Ohara N, Shoji M, Yukitake H, et al. Determination of the genome sequence of Porphyromonas gingivalis strain ATCC 33277 and genomic comparison with strain W83 revealed extensive genome rearrangements in P. gingivalis. DNA research : an international journal for rapid publication of reports on genes and genomes 2008;15:215-25
27. Midwood KS, Williams LV, Schwarzbauer JE. Tissue repair and the dynamics of the extracellular matrix. The international journal of biochemistry & cell biology 2004;36:1031-7
28. Singer AJ, Clark RA. Cutaneous wound healing. The New England journal of medicine 1999;341:738-46
29. Tilakaratne WM, Klinikowski MF, Saku T, Peters TJ, Warnakulasuriya S. Oral submucous fibrosis: review on aetiology and pathogenesis. Oral oncology 2006;42:561-8
30. Pant I, Kumar N, Khan I, Rao SG, Kondaiah P. Role of Areca Nut Induced TGF-beta and Epithelial-Mesenchymal Interaction in the Pathogenesis of Oral Submucous Fibrosis. PloS one 2015;10:e0129252
31. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nature reviews Molecular cell biology 2002;3:349-63
32. Li H, Fan X, Houghton J. Tumor microenvironment: the role of the tumor stroma in cancer. Journal of cellular biochemistry 2007;101:805-15
33. Hinz B, Celetta G, Tomasek JJ, Gabbiani G, Chaponnier C. Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Molecular biology of the cell 2001;12:2730-41
34. Kawasaki Y, Imaizumi T, Matsuura H, Ohara S, Takano K, Suyama K, et al. Renal expression of alpha-smooth muscle actin and c-Met in children with Henoch-Schonlein purpura nephritis. Pediatric nephrology 2008;23:913-9
35. Yu Y, Xiao CH, Tan LD, Wang QS, Li XQ, Feng YM. Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-beta signalling. British journal of cancer 2014;110:724-32
36. Sappino AP, Skalli O, Jackson B, Schurch W, Gabbiani G. Smooth-muscle differentiation in stromal cells of malignant and non-malignant breast tissues. International journal of cancer 1988;41:707-12
37. Wang S, Ma N, Kawanishi S, Hiraku Y, Oikawa S, Xie Y, et al. Relationships of alpha-SMA-positive fibroblasts and SDF-1-positive tumor cells with neoangiogenesis in nasopharyngeal carcinoma. BioMed research international 2014;2014:507353
38. Madar S, Goldstein I, Rotter V. 'Cancer associated fibroblasts'--more than meets the eye. Trends in molecular medicine 2013;19:447-53
39. De Veirman K, Rao L, De Bruyne E, Menu E, Van Valckenborgh E, Van Riet I, et al. Cancer associated fibroblasts and tumor growth: focus on multiple myeloma. Cancers 2014;6:1363-81
40. Schrader AJ, Lechner O, Templin M, Dittmar KE, Machtens S, Mengel M, et al. CXCR4/CXCL12 expression and signalling in kidney cancer. British journal of cancer 2002;86:1250-6
41. Pavlasova G, Borsky M, Seda V, Cerna K, Osickova J, Doubek M, et al. Ibrutinib inhibits CD20 upregulation on CLL B cells mediated by the CXCR4/SDF-1 axis. Blood 2016;128:1609-13
42. Zheng H, Fu G, Dai T, Huang H. Migration of endothelial progenitor cells mediated by stromal cell-derived factor-1alpha/CXCR4 via PI3K/Akt/eNOS signal transduction pathway. Journal of cardiovascular pharmacology 2007;50:274-80
43. Guo JC, Li J, Zhou L, Yang JY, Zhang ZG, Liang ZY, et al. CXCL12-CXCR7 axis contributes to the invasive phenotype of pancreatic cancer. Oncotarget 2016;7:62006-18
44. Izumi D, Ishimoto T, Miyake K, Sugihara H, Eto K, Sawayama H, et al. CXCL12/CXCR4 activation by cancer-associated fibroblasts promotes integrin beta1 clustering and invasiveness in gastric cancer. International journal of cancer 2016;138:1207-19
45. Letterio JJ, Roberts AB. Regulation of immune responses by TGF-beta. Annual review of immunology 1998;16:137-61
46. Li MO, Flavell RA. TGF-beta: a master of all T cell trades. Cell 2008;134:392-404
47. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. The New England journal of medicine 2000;342:1350-8
48. van der Poll T, Keogh CV, Guirao X, Buurman WA, Kopf M, Lowry SF. Interleukin-6 gene-deficient mice show impaired defense against pneumococcal pneumonia. The Journal of infectious diseases 1997;176:439-44
49. Shiga K, Hara M, Nagasaki T, Sato T, Takahashi H, Takeyama H. Cancer-Associated Fibroblasts: Their Characteristics and Their Roles in Tumor Growth. Cancers 2015;7:2443-58
50. Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. The Journal of investigative dermatology 2007;127:514-25
51. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998;392:245-52
52. Ovchinnikov DA. Macrophages in the embryo and beyond: much more than just giant phagocytes. Genesis 2008;46:447-62
53. Schmid MC, Varner JA. Myeloid cells in the tumor microenvironment: modulation of tumor angiogenesis and tumor inflammation. Journal of oncology 2010;2010:201026
54. Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG, et al. Macrophage polarization in tumour progression. Seminars in cancer biology 2008;18:349-55
55. Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. Journal of leukocyte biology 2009;86:1065-73
56. Ploeger DT, Hosper NA, Schipper M, Koerts JA, de Rond S, Bank RA. Cell plasticity in wound healing: paracrine factors of M1/ M2 polarized macrophages influence the phenotypical state of dermal fibroblasts. Cell communication and signaling : CCS 2013;11:29
57. Stahl M, Schupp J, Jager B, Schmid M, Zissel G, Muller-Quernheim J, et al. Lung collagens perpetuate pulmonary fibrosis via CD204 and M2 macrophage activation. PloS one 2013;8:e81382
58. Glim JE, Niessen FB, Everts V, van Egmond M, Beelen RH. Platelet derived growth factor-CC secreted by M2 macrophages induces alpha-smooth muscle actin expression by dermal and gingival fibroblasts. Immunobiology 2013;218:924-9
59. Herrera M, Herrera A, Dominguez G, Silva J, Garcia V, Garcia JM, et al. Cancer-associated fibroblast and M2 macrophage markers together predict outcome in colorectal cancer patients. Cancer science 2013;104:437-44
60. McKnight R, Nassar A, Cohen C, Siddiqui MT. Arginase-1: a novel immunohistochemical marker of hepatocellular differentiation in fine needle aspiration cytology. Cancer cytopathology 2012;120:223-9
61. Sridhara SU, Choudaha N, Kasetty S, Joshi PS, Kallianpur S, Tijare M. Stromal myofibroblasts in nonmetastatic and metastatic oral squamous cell carcinoma: An immunohistochemical study. Journal of oral and maxillofacial pathology : JOMFP 2013;17:190-4
62. Huang PL, Chi CW, Liu TY. Effects of Areca catechu L. containing procyanidins on cyclooxygenase-2 expression in vitro and in vivo. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 2010;48:306-13
63. Liu TY, Chen CL, Chi CW. Oxidative damage to DNA induced by areca nut extract. Mutation research 1996;367:25-31
64. Alexopoulos A, Bravou V, Peroukides S, Kaklamanis L, Varakis J, Alexopoulos D, et al. Bone regulatory factors NFATc1 and Osterix in human calcific aortic valves. International journal of cardiology 2010;139:142-9
65. Conroy H, Mawhinney L, Donnelly SC. Inflammation and cancer: macrophage migration inhibitory factor (MIF)--the potential missing link. QJM : monthly journal of the Association of Physicians 2010;103:831-6
66. Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Frontiers in immunology 2014;5:491
67. Brightbill HD, Plevy SE, Modlin RL, Smale ST. A prominent role for Sp1 during lipopolysaccharide-mediated induction of the IL-10 promoter in macrophages. Journal of immunology 2000;164:1940-51
68. Kuwata H, Watanabe Y, Miyoshi H, Yamamoto M, Kaisho T, Takeda K, et al. IL-10-inducible Bcl-3 negatively regulates LPS-induced TNF-alpha production in macrophages. Blood 2003;102:4123-9
69. Yanagita M, Kobayashi R, Murakami S. Nicotine can skew the characterization of the macrophage type-1 (MPhi1) phenotype differentiated with granulocyte-macrophage colony-stimulating factor to the MPhi2 phenotype. Biochemical and biophysical research communications 2009;388:91-5
70. Chang LY, Wan HC, Lai YL, Liu TY, Hung SL. Enhancing effects of areca nut extracts on the production of interleukin-6 and interleukin-8 by peripheral blood mononuclear cells. Journal of periodontology 2006;77:1969-77
71. Hirohashi N, Morrison DC. Low-dose lipopolysaccharide (LPS) pretreatment of mouse macrophages modulates LPS-dependent interleukin-6 production in vitro. Infection and immunity 1996;64:1011-5
72. Friedman SL. A deer in the headlights: BAMBI meets liver fibrosis. Nature medicine 2007;13:1281-2
73. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005;121:335-48
74. Chang MC, Lin LD, Wu HL, Ho YS, Hsien HC, Wang TM, et al. Areca nut-induced buccal mucosa fibroblast contraction and its signaling: a potential role in oral submucous fibrosis--a precancer condition. Carcinogenesis 2013;34:1096-104
75. He Z, Zhu Y, Jiang H. Toll-like receptor 4 mediates lipopolysaccharide-induced collagen secretion by phosphoinositide3-kinase-Akt pathway in fibroblasts during acute lung injury. Journal of receptor and signal transduction research 2009;29:119-25
76. Costa NL, Valadares MC, Souza PP, Mendonca EF, Oliveira JC, Silva TA, et al. Tumor-associated macrophages and the profile of inflammatory cytokines in oral squamous cell carcinoma. Oral oncology 2013;49:216-23
77. Fujii N, Shomori K, Shiomi T, Nakabayashi M, Takeda C, Ryoke K, et al. Cancer-associated fibroblasts and CD163-positive macrophages in oral squamous cell carcinoma: their clinicopathological and prognostic significance. Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology 2012;41:444-51
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊