跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/08 22:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄧光桓
研究生(外文):Kuang-Huan Teng
論文名稱:開發膠原蛋白-幾丁聚醣複合水凝膠應用於骨組織修復
論文名稱(外文):Development of collagen-chitosan hydrogels for bone regeneration
指導教授:陳岱茜
指導教授(外文):Dai-Chian Chen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:口腔生物研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:73
中文關鍵詞:膠原蛋白幾丁聚醣水凝膠前骨母細胞
外文關鍵詞:CollagenChitosanhydrogelMC3T3-E1 cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
牙周炎是一種慢性發炎疾病,常造成齒槽骨破壞,嚴重時甚至造成牙齒脫落。由於口腔環境多細菌的特殊性,以及牙周骨缺損形狀不一,牙根分叉區域骨移植材料不易充填等問題,造成許多治療上的困難與不良的治療結果。近年來,原位形成凝膠系統被廣泛討論,注射型水凝膠,可攜帶藥物、生長因子及細胞,進入細微孔洞中膠凝並固定於患處協助修復,在組織工程領域極具發展潛力。第一型膠原蛋白是細胞外基質的主要成分,近年來膠原蛋白材料是體外培養細胞最常用的材料之一,但其機械性能較脆弱使其在組織工程發展上受到限制。許多研究發現,添加幾丁聚醣可提高膠原蛋白水凝膠的機械穩定性和抗壓強度。
本研究採用第一型膠原蛋白為水凝膠主材料,並於水凝膠中加入幾丁聚醣,用以提高水凝膠的機械穩定性和抗壓強度。本研究設計不同比例的膠原蛋白和幾丁聚醣組成的水凝膠,觀察其機械強度、抗酵素分解能力、吸水性與抗菌能力,並研究前骨母細胞培養於水凝膠表面其貼附、增生、分化及礦化情形,以得到最佳的水凝膠比例,開發出可注射型溫敏性膠原蛋白-幾丁聚醣複合水凝膠,評估作為骨組織再生材料的潛力。
本研究將膠原蛋白和幾丁聚醣以不同比例混合,比例分別為10:0(Col),9:1(Ch-1),8:2(Ch-2)和5:5(Ch-5)。並以FTIR分析水凝膠組成,發現膠原蛋白與幾丁聚醣混合後,其化學結構特徵相較於混合前,沒有顯著的變化。利用掃描式電子顯微鏡觀察水凝膠表面與縱切面形貌,觀察到添加幾丁聚醣會使膠原蛋白纖維聚集,在Ch-5組別中更是出現塊狀的複合結構出現。進一步測試水凝膠之各種物理特性如抗壓強度,抗酵素分解能力與吸水性,結果顯示幾丁聚醣的添加,可增加水凝膠之抗酵素分解能力與吸水性。接著將變形鏈球菌(Streptococcus mutans, SM, strain UA159)培養於水凝膠表面,偵測綠色螢光蛋白(green fluorescent protein),分析細菌貼附於水凝膠表面情形,結果顯示Ch-5組別具有最好的抗細菌貼附能力,掃描式電子顯微鏡也觀察到類似的結果。參照ISO 10993-5規範,分析各組水凝膠之細胞毒性,發現本研究之各組水凝膠對於前骨母細胞無毒性。進一步使用alamarblue試劑,檢測前骨母細胞培養於水凝膠上之增生情形,實驗結果顯示前骨母細胞在Col和Ch-1組別中增生情形較佳。掃描式電子顯微鏡觀察細胞貼附型態,發現細胞於各組水凝膠上培養一天,細胞型態沒有顯著差異;而培養七天後,前骨母細胞在Col與Ch-1組別,形成較明顯的纖維狀型態。西方墨點法分析前骨母細胞貼附在不同水凝膠上,其FAK與p-ERK的表現,發現細胞在Ch-1組中FAK的表現有增加的趨勢,而在Col組中則有較強的磷酸化ERK1/2表現。同時也利用西方墨點法分析水凝膠對前骨母細胞表現Runx2與OCN的影響,結果顯示前骨母細胞培養在水凝膠上,其Runx2的表現有增加的趨勢,其中在Col組中,Runx2的表現顯著高於對照組。與對照組相比,水凝膠組別的OCN表現同樣有上升的趨勢,其中Ch-1組的OCN有較高的表現。接著利用Von Kossa染色法觀察水凝膠對前骨母細胞礦化的影響,結果顯示細胞在Col組中,礦物質沉積的情形較明顯。本研究透過添加幾丁聚醣改善了膠原蛋白水凝膠的物理性質與抗菌能力,在前骨母細胞分化與礦化效果上,則需要進一步的研究與探討。
Periodontitis causes irregular alveolar bony defects that are difficult to compact and stabilize particulate graft materials, resulting in prognosis of poor treatment. In recent years, an increasing number of in situ-polymerized gel systems have been applied to various biomedical engineering. These systems are injectable fluids that can fill a cavity or a defect prior to solidifying or gelling within the desired site. Type I collagen is one of the most commonly used materials of hydrogel in tissue engineering. However, its poor mechanical properties are fragile to limit its application. Previous studies have revealed that the addition of chitosan could improve the mechanical stability of collagen-base hydrogel.
In this study, the type I collagen was used as the backbone of the hydrogel. Different proportions of chitosan were added into the collagen to obtain the optimum conditions of the injectable thermosensitive hydrogel for the osteoblastic adhesion, proliferation as well as bone tissue regeneration.
Collagen and chitosan were mixed in different ratios that collagen to chitosan were 10:0(Col), 9:1(Ch-1), 8:2(Ch-2) and 5:5(Ch-5). The results of Fourier transform infrared spectroscopy (FTIR) showed no significant difference of collagen-chitosan mixed hydrogels compared to the pure ingredients. The results of mechanical properties showed that the hydrogel containing chitosan revealed higher young’s modulus than the Col group. In enzymatic degradation, Ch-5 showed higher enzymatic resistance than the other counter parts. Swelling ratio results showed that the scaffolds could bind more water as the chitosan composition increased. Antimicrobial properties of hydrogels were conducted by using Streptococus mutains with green fluorescent protein. The results of antimicrobial properties showed Ch-5 exhibited highest antibacterial property. The cytotoxicity was analyzed according to the ISO10993-5. It was found that all the hydrogels were non-toxic to cells. Furthermore, the results of proliferation detected by alamarBlue reagent showed more cells on the Col and Ch-1 groups than the other ones. In addition, the cellular morphology observed under SEM showed that good cellular spreading on Col and Ch-1 groups. Western blot analysis showed that cells on Col hydrogel revealed higher ERK phosphorylation, and higher FAK expression on Ch-1. The bone differentiation marker Runx2 and OCN were increased on Col group and Ch-1 group respectively. The Von Kossa staining results showed that the mineralization of preosteoblasts on Col group was more obvious than the other groups. In this study, the addition of chitosan improved the enzymatic resistance and swelling property. Ch-5 exhibited highest antibacterial ability. Col and Ch-1 hydrogels showed higher osteoblastic proliferation. The expression of Runx2 was higher in Col group than the control. Col revealed favorable mineralization accumulation.
誌謝 I
中文摘要 III
Abstract VI
目錄 VIII
圖目錄 XII
表目錄 XIII
一、緒論 - 1 -
1-1牙周炎與骨缺損 - 1 -
1-2原位形成凝膠系統 - 1 -
1-2膠原蛋白 (collagen) - 2 -
1-3幾丁聚醣 (chitosan) - 4 -
1-4 FAK與ERK1/2在細胞中的角色 - 5 -
1-5 Runx2與OCN在細胞分化中的角色 - 6 -
1-6實驗目的 - 7 -
二、研究方法 - 8 -
2-1純化第一型膠原蛋白(type I collagen) - 8 -
2-2膠原蛋白溶液無菌處理 - 9 -
2-3膠原蛋白溶液濃度測定(Hydroxyproline assay) - 9 -
2-4幾丁聚醣溶液製備 - 10 -
2-5膠原蛋白-幾丁聚醣複合水凝膠製備 - 10 -
2-6 水凝膠之傅立葉轉換紅外線光譜儀分析 - 11 -
2-7觀察水凝膠表面及縱切面之形貌 - 11 -
2-8水凝膠之機械性質測試 - 12 -
2-9水凝膠體外降解測試 - 13 -
2-10水凝膠吸水性測試 - 13 -
2-11培養口腔細菌Streptococcus mutans strain UA159 - 14 -
2-12水凝膠抗菌能力測試 - 14 -
2-13觀察水凝膠表面細菌貼附之形態 - 15 -
2-14細胞培養 - 15 -
2-15水凝膠萃取液之前骨母細胞毒性測試 - 16 -
2-16水凝膠對前骨母細胞增生之分析 - 17 -
2-17觀察水凝膠表面細胞之形態 - 18 -
2-18西方點墨法 - 18 -
2-18-1製備細胞蛋白萃取物 - 18 -
2-18-2蛋白濃度測定 - 19 -
2-18-3西方點墨法 - 20 -
2-19水凝膠影響細胞FAK與ERK1/2表現的影響 - 21 -
2-20水凝膠對細胞OCN及Runx2表現的影響 - 22 -
2-21水凝膠對細胞礦化之分析 - 22 -
2-22統計方法 - 24 -
三、結果 - 25 -
3-1 水凝膠之傅立葉轉換紅外線分析光譜 - 25 -
3-2 水凝膠表陎及縱切陎之形貌 - 26 -
3-3 水凝膠之機械強度 - 27 -
3-4 水凝膠之體外降解比率 - 28 -
3-5 水凝膠支架之吸水性測試 - 28 -
3-6 水凝膠對口腔細菌貼附之影響 - 29 -
3-7 口腔細菌(S. mutans)貼附於水凝膠表陎之形貌 - 29 -
3-8 水凝膠萃取液之細胞毒性測試 - 30 -
3-9 水凝膠對前骨母細胞增生之影響 - 31 -
3-10 水凝膠表陎細胞之形態 - 32 -
3-11 水凝膠對細胞 FAK 及磷酸化 ERK1/2 之影響 - 32 -
3-12 水凝膠對細胞表現 Runx2 與 OCN 之影響 - 33 -
3-13 水凝膠對細胞礦化之影響 - 34 -
四、討論 - 35 -
4-1 水凝膠成分與性質探討 - 35 -
4-2 不同水凝膠之抗菌能力與生物相容性之探討 - 36 -
4-3 不同水凝膠對細胞增生與骨分化影響之探討 - 37 -
4-5 水凝膠培養細胞方式之探討 - 40 -
4-6 總結 - 42 -
五、附圖 - 43 -
六、附表 - 63 -
參考文獻 - 69 -

圖一、水凝膠之傅立葉轉換紅外線光譜儀分析圖譜: - 44 -
圖二、水凝膠之表面形貌: - 46 -
圖三、水凝膠之縱切面形貌: - 48 -
圖四、水凝膠之楊氏係數統計圖: - 49 -
圖五、水凝膠體外降解率統計圖: - 50 -
圖六、水凝膠支架之吸水性統計圖: - 51 -
圖七、水凝膠表面貼附細菌之螢光強度統計圖: - 52 -
圖八、細菌貼附於水凝膠表面之形貌: - 54 -
圖九、水凝膠萃取液之細胞毒性測試: - 55 -
圖十、水凝膠對前骨母細胞增生之影響統計圖: - 56 -
圖十一、水凝膠表面細胞型態: - 58 -
圖十二、水凝膠對細胞表現FAK與p-ERK之影響: - 59 -
圖十三、水凝膠對細胞表現Runx2與OCN之影響: - 60 -
圖十四、水凝膠對細胞礦化之影響: - 62 -

表一、羥脯胺酸檢測體外降解速率相關試劑配方 - 63 -
表二、膠原蛋白與膠原蛋白-幾丁聚醣複合水凝膠配方 - 64 -
表三、細胞固定液 - 64 -
表四、西方點墨法相關試劑: - 65 -
表五、抗體資料: - 68 -
1. Bencherif SA, Braschler TM, Renaud P. Advances in the design of macroporous polymer scaffolds for potential applications in dentistry. Journal of periodontal & implant science 2013;43(6):251-61.
2. Ruel-Gariepy E, Leroux J-C. In situ-forming hydrogels—review of temperature-sensitive systems. European Journal of Pharmaceutics and Biopharmaceutics 2004;58(2):409-26.
3. Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003;24(24):4337-51.
4. Tibbitt MW, Anseth KS. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnology and bioengineering 2009;103(4):655-63.
5. Kopecek J. Hydrogel biomaterials: a smart future? Biomaterials 2007;28(34):5185-92.
6. Long RG, Torre OM, Hom WW, Assael DJ, Iatridis JC. Design Requirements for Annulus Fibrosus Repair: Review of Forces, Displacements, and Material Properties of the Intervertebral Disk and a Summary of Candidate Hydrogels for Repair. Journal of biomechanical engineering 2016;138(2):021007.
7. Shively M, Coonts B, Renner W, Southard J, Bennett A. Physico-chemical characterization of a polymeric injectable implant delivery system. Journal of controlled release 1995;33(2):237-43.
8. Eliaz RE, Kost J. Characterization of a polymeric PLGA‐injectable implant delivery system for the controlled release of proteins. Journal of Biomedical Materials Research Part A 2000;50(3):388-96.
9. Srividya B, Cardoza RM, Amin P. Sustained ophthalmic delivery of ofloxacin from a pH triggered in situ gelling system. Journal of controlled release 2001;73(2):205-11.
10. Yang XB, Bhatnagar RS, Li S, Oreffo RO. Biomimetic collagen scaffolds for human bone cell growth and differentiation. Tissue engineering 2004;10(7-8):1148-59.
11. Szpak P. Fish bone chemistry and ultrastructure: implications for taphonomy and stable isotope analysis. Journal of Archaeological Science 2011;38(12):3358-72.
12. Friess W. Collagen–biomaterial for drug delivery. European Journal of Pharmaceutics and Biopharmaceutics 1998;45(2):113-36.
13. Chen G, Ushida T, Tateishi T. Development of biodegradable porous scaffolds for tissue engineering. Materials Science and Engineering: C 2001;17(1):63-69.
14. Rocha LB, Goissis G, Rossi MA. Biocompatibility of anionic collagen matrix as scaffold for bone healing. Biomaterials 2002;23(2):449-56.
15. Kundu AK, Putnam AJ. Vitronectin and collagen I differentially regulate osteogenesis in mesenchymal stem cells. Biochemical and biophysical research communications 2006;347(1):347-57.
16. Birk DE, Silver FH. Collagen fibrillogenesis in vitro: comparison of types I, II, and III. Archives of biochemistry and biophysics 1984;235(1):178-85.
17. Silver FH, Birk DE. Molecular structure of collagen in solution: comparison of types I, II, III and V. International journal of biological macromolecules 1984;6(3):125-32.
18. Zhu J, Kaufman LJ. Collagen I self-assembly: revealing the developing structures that generate turbidity. Biophysical journal 2014;106(8):1822-31.
19. Wang L, Stegemann JP. Thermogelling chitosan and collagen composite hydrogels initiated with β-glycerophosphate for bone tissue engineering. Biomaterials 2010;31(14):3976-85.
20. Burg KJL, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials 2000;21(23):2347-59.
21. Gough JE, Scotchford CA, Downes S. Cytotoxicity of glutaraldehyde crosslinked collagen/poly (vinyl alcohol) films is by the mechanism of apoptosis. Journal of Biomedical Materials Research Part A 2002;61(1):121-30.
22. Ding K, Yang Z, Zhang YL, Xu JZ. Injectable thermosensitive chitosan/β‐glycerophosphate/collagen hydrogel maintains the plasticity of skeletal muscle satellite cells and supports their in vivo viability. Cell biology international 2013;37(9):977-87.
23. Tahrir FG, Ganji F, Ahooyi TM. Injectable thermosensitive chitosan/glycerophosphate-based hydrogels for tissue engineering and drug delivery applications: a review. Recent patents on drug delivery & formulation 2015;9(2):107-20.
24. Levengood SKL, Zhang M. Chitosan-based scaffolds for bone tissue engineering. Journal of Materials Chemistry B 2014;2(21):3161-84.
25. Dhivya S, Saravanan S, Sastry TP, Selvamurugan N. Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. Journal of nanobiotechnology 2015;13:40.
26. Deng C, Zhang P, Vulesevic B, Kuraitis D, Li F, Yang AF, et al. A collagen–chitosan hydrogel for endothelial differentiation and angiogenesis. Tissue Engineering Part A 2010;16(10):3099-109.
27. Wu X, Black L, Santacana‐Laffitte G, Patrick CW. Preparation and assessment of glutaraldehyde‐crosslinked collagen–chitosan hydrogels for adipose tissue engineering. Journal of Biomedical Materials Research Part A 2007;81(1):59-65.
28. Tan W, Krishnaraj R, Desai TA. Evaluation of nanostructured composite collagen-chitosan matrices for tissue engineering. Tissue engineering 2001;7(2):203-10.
29. Goy RC, Britto Dd, Assis OB. A review of the antimicrobial activity of chitosan. Polímeros 2009;19(3):241-47.
30. Shahidi F, Arachchi JKV, Jeon Y-J. Food applications of chitin and chitosans. Trends in food science & technology 1999;10(2):37-51.
31. Chung Y-C, Chen C-Y. Antibacterial characteristics and activity of acid-soluble chitosan. Bioresource technology 2008;99(8):2806-14.
32. Westhoff M, Serrels B, Fincham V, Frame M, Carragher N. SRC-mediated phosphorylation of focal adhesion kinase couples actin and adhesion dynamics to survival signaling. Molecular and cellular biology 2004;24(18):8113-33.
33. Salasznyk RM, Klees RF, Williams WA, Boskey A, Plopper GE. Focal adhesion kinase signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells. Experimental cell research 2007;313(1):22-37.
34. Salasznyk RM, Klees RF, Hughlock MK, Plopper GE. ERK signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells on collagen I and vitronectin. Cell communication & adhesion 2004;11(5-6):137-53.
35. Akin O, Göl K, Aktürk M, Erkaya S. Evaluation of bone turnover in postmenopausal patients with type 2 diabetes mellitus using biochemical markers and bone mineral density measurements. Gynecological endocrinology 2003;17(1):19-29.
36. Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, et al. Increased bone formation in osteocalcin-deficient mice. 1996.
37. Komori T. Regulation of osteoblast differentiation by transcription factors. Journal of cellular biochemistry 2006;99(5):1233-39.
38. Jung CJ, Zheng QH, Shieh YH, Lin CS, Chia JS. Streptococcus mutans autolysin AtlA is a fibronectin‐binding protein and contributes to bacterial survival in the bloodstream and virulence for infective endocarditis. Molecular microbiology 2009;74(4):888-902.
39. Tan W, Krishnaraj R, Desai TA. Evaluation of nanostructured composite collagen–chitosan matrices for tissue engineering. Tissue engineering 2001;7(2):203-10.
40. Reis LA, Chiu LL, Liang Y, Hyunh K, Momen A, Radisic M. A peptide-modified chitosan-collagen hydrogel for cardiac cell culture and delivery. Acta biomaterialia 2012;8(3):1022-36.
41. Sionkowska A, Wisniewski M, Skopinska J, Kennedy C, Wess T. Molecular interactions in collagen and chitosan blends. Biomaterials 2004;25(5):795-801.
42. Wang X, Sang L, Luo D, Li X. From collagen–chitosan blends to three-dimensional scaffolds: the influences of chitosan on collagen nanofibrillar structure and mechanical property. Colloids and Surfaces B: Biointerfaces 2011;82(1):233-40.
43. Tsai SW, Liu RL, Hsu FY, Chen CC. A study of the influence of polysaccharides on collagen self‐assembly: Nanostructure and kinetics. Biopolymers 2006;83(4):381-88.
44. Tangsadthakun C, Kanokpanont S, Sanchavanakit N, Pichyangkura R, Banaprasert T, Tabata Y, et al. The influence of molecular weight of chitosan on the physical and biological properties of collagen/chitosan scaffolds. Journal of Biomaterials Science, Polymer Edition 2007;18(2):147-63.
45. Smith E, Spatafora G. Gene regulation in S. mutans: complex control in a complex environment. Journal of dental research 2012;91(2):133-41.
46. Switalski L, Butcher W, Caufield P, Lantz M. Collagen mediates adhesion of Streptococcus mutans to human dentin. Infection and immunity 1993;61(10):4119-25.
47. Jou CH, Yuan L, Lin SM, Hwang MC, Chou WL, Yu DG, et al. Biocompatibility and antibacterial activity of chitosan and hyaluronic acid immobilized polyester fibers. Journal of applied polymer science 2007;104(1):220-25.
48. Sudo H, Kodama H-A, Amagai Y, Yamamoto S, Kasai S. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. The Journal of cell biology 1983;96(1):191-98.
49. Buxton P, Bitar M, Gellynck K, Parkar M, Brown R, Young A, et al. Dense collagen matrix accelerates osteogenic differentiation and rescues the apoptotic response to MMP inhibition. Bone 2008;43(2):377-85.
50. Karsdal MA, Larsen L, Engsig MT, Lou H, Ferreras M, Lochter A, et al. Matrix metalloproteinase-dependent activation of latent transforming growth factor-β controls the conversion of osteoblasts into osteocytes by blocking osteoblast apoptosis. Journal of Biological Chemistry 2002;277(46):44061-67.
51. Karsdal M, Andersen T, Bonewald L, Christiansen C. Matrix metalloproteinases (MMPs) safeguard osteoblasts from apoptosis during transdifferentiation into osteocytes: MT1-MMP maintains osteocyte viability. DNA and cell biology 2004;23(3):155-65.
52. Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annual review of cell and developmental biology 2001;17(1):463-516.
53. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nature reviews Molecular cell biology 2007;8(3):221-33.
54. Uchihashi K, Aoki S, Matsunobu A, Toda S. Osteoblast migration into type I collagen gel and differentiation to osteocyte-like cells within a self-produced mineralized matrix: a novel system for analyzing differentiation from osteoblast to osteocyte. Bone 2013;52(1):102-10.
55. Marshall J. Transwell® invasion assays. Cell Migration: Developmental Methods and Protocols 2011:97-110.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊