|
1. Bencherif SA, Braschler TM, Renaud P. Advances in the design of macroporous polymer scaffolds for potential applications in dentistry. Journal of periodontal & implant science 2013;43(6):251-61. 2. Ruel-Gariepy E, Leroux J-C. In situ-forming hydrogels—review of temperature-sensitive systems. European Journal of Pharmaceutics and Biopharmaceutics 2004;58(2):409-26. 3. Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003;24(24):4337-51. 4. Tibbitt MW, Anseth KS. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnology and bioengineering 2009;103(4):655-63. 5. Kopecek J. Hydrogel biomaterials: a smart future? Biomaterials 2007;28(34):5185-92. 6. Long RG, Torre OM, Hom WW, Assael DJ, Iatridis JC. Design Requirements for Annulus Fibrosus Repair: Review of Forces, Displacements, and Material Properties of the Intervertebral Disk and a Summary of Candidate Hydrogels for Repair. Journal of biomechanical engineering 2016;138(2):021007. 7. Shively M, Coonts B, Renner W, Southard J, Bennett A. Physico-chemical characterization of a polymeric injectable implant delivery system. Journal of controlled release 1995;33(2):237-43. 8. Eliaz RE, Kost J. Characterization of a polymeric PLGA‐injectable implant delivery system for the controlled release of proteins. Journal of Biomedical Materials Research Part A 2000;50(3):388-96. 9. Srividya B, Cardoza RM, Amin P. Sustained ophthalmic delivery of ofloxacin from a pH triggered in situ gelling system. Journal of controlled release 2001;73(2):205-11. 10. Yang XB, Bhatnagar RS, Li S, Oreffo RO. Biomimetic collagen scaffolds for human bone cell growth and differentiation. Tissue engineering 2004;10(7-8):1148-59. 11. Szpak P. Fish bone chemistry and ultrastructure: implications for taphonomy and stable isotope analysis. Journal of Archaeological Science 2011;38(12):3358-72. 12. Friess W. Collagen–biomaterial for drug delivery. European Journal of Pharmaceutics and Biopharmaceutics 1998;45(2):113-36. 13. Chen G, Ushida T, Tateishi T. Development of biodegradable porous scaffolds for tissue engineering. Materials Science and Engineering: C 2001;17(1):63-69. 14. Rocha LB, Goissis G, Rossi MA. Biocompatibility of anionic collagen matrix as scaffold for bone healing. Biomaterials 2002;23(2):449-56. 15. Kundu AK, Putnam AJ. Vitronectin and collagen I differentially regulate osteogenesis in mesenchymal stem cells. Biochemical and biophysical research communications 2006;347(1):347-57. 16. Birk DE, Silver FH. Collagen fibrillogenesis in vitro: comparison of types I, II, and III. Archives of biochemistry and biophysics 1984;235(1):178-85. 17. Silver FH, Birk DE. Molecular structure of collagen in solution: comparison of types I, II, III and V. International journal of biological macromolecules 1984;6(3):125-32. 18. Zhu J, Kaufman LJ. Collagen I self-assembly: revealing the developing structures that generate turbidity. Biophysical journal 2014;106(8):1822-31. 19. Wang L, Stegemann JP. Thermogelling chitosan and collagen composite hydrogels initiated with β-glycerophosphate for bone tissue engineering. Biomaterials 2010;31(14):3976-85. 20. Burg KJL, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials 2000;21(23):2347-59. 21. Gough JE, Scotchford CA, Downes S. Cytotoxicity of glutaraldehyde crosslinked collagen/poly (vinyl alcohol) films is by the mechanism of apoptosis. Journal of Biomedical Materials Research Part A 2002;61(1):121-30. 22. Ding K, Yang Z, Zhang YL, Xu JZ. Injectable thermosensitive chitosan/β‐glycerophosphate/collagen hydrogel maintains the plasticity of skeletal muscle satellite cells and supports their in vivo viability. Cell biology international 2013;37(9):977-87. 23. Tahrir FG, Ganji F, Ahooyi TM. Injectable thermosensitive chitosan/glycerophosphate-based hydrogels for tissue engineering and drug delivery applications: a review. Recent patents on drug delivery & formulation 2015;9(2):107-20. 24. Levengood SKL, Zhang M. Chitosan-based scaffolds for bone tissue engineering. Journal of Materials Chemistry B 2014;2(21):3161-84. 25. Dhivya S, Saravanan S, Sastry TP, Selvamurugan N. Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. Journal of nanobiotechnology 2015;13:40. 26. Deng C, Zhang P, Vulesevic B, Kuraitis D, Li F, Yang AF, et al. A collagen–chitosan hydrogel for endothelial differentiation and angiogenesis. Tissue Engineering Part A 2010;16(10):3099-109. 27. Wu X, Black L, Santacana‐Laffitte G, Patrick CW. Preparation and assessment of glutaraldehyde‐crosslinked collagen–chitosan hydrogels for adipose tissue engineering. Journal of Biomedical Materials Research Part A 2007;81(1):59-65. 28. Tan W, Krishnaraj R, Desai TA. Evaluation of nanostructured composite collagen-chitosan matrices for tissue engineering. Tissue engineering 2001;7(2):203-10. 29. Goy RC, Britto Dd, Assis OB. A review of the antimicrobial activity of chitosan. Polímeros 2009;19(3):241-47. 30. Shahidi F, Arachchi JKV, Jeon Y-J. Food applications of chitin and chitosans. Trends in food science & technology 1999;10(2):37-51. 31. Chung Y-C, Chen C-Y. Antibacterial characteristics and activity of acid-soluble chitosan. Bioresource technology 2008;99(8):2806-14. 32. Westhoff M, Serrels B, Fincham V, Frame M, Carragher N. SRC-mediated phosphorylation of focal adhesion kinase couples actin and adhesion dynamics to survival signaling. Molecular and cellular biology 2004;24(18):8113-33. 33. Salasznyk RM, Klees RF, Williams WA, Boskey A, Plopper GE. Focal adhesion kinase signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells. Experimental cell research 2007;313(1):22-37. 34. Salasznyk RM, Klees RF, Hughlock MK, Plopper GE. ERK signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells on collagen I and vitronectin. Cell communication & adhesion 2004;11(5-6):137-53. 35. Akin O, Göl K, Aktürk M, Erkaya S. Evaluation of bone turnover in postmenopausal patients with type 2 diabetes mellitus using biochemical markers and bone mineral density measurements. Gynecological endocrinology 2003;17(1):19-29. 36. Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, et al. Increased bone formation in osteocalcin-deficient mice. 1996. 37. Komori T. Regulation of osteoblast differentiation by transcription factors. Journal of cellular biochemistry 2006;99(5):1233-39. 38. Jung CJ, Zheng QH, Shieh YH, Lin CS, Chia JS. Streptococcus mutans autolysin AtlA is a fibronectin‐binding protein and contributes to bacterial survival in the bloodstream and virulence for infective endocarditis. Molecular microbiology 2009;74(4):888-902. 39. Tan W, Krishnaraj R, Desai TA. Evaluation of nanostructured composite collagen–chitosan matrices for tissue engineering. Tissue engineering 2001;7(2):203-10. 40. Reis LA, Chiu LL, Liang Y, Hyunh K, Momen A, Radisic M. A peptide-modified chitosan-collagen hydrogel for cardiac cell culture and delivery. Acta biomaterialia 2012;8(3):1022-36. 41. Sionkowska A, Wisniewski M, Skopinska J, Kennedy C, Wess T. Molecular interactions in collagen and chitosan blends. Biomaterials 2004;25(5):795-801. 42. Wang X, Sang L, Luo D, Li X. From collagen–chitosan blends to three-dimensional scaffolds: the influences of chitosan on collagen nanofibrillar structure and mechanical property. Colloids and Surfaces B: Biointerfaces 2011;82(1):233-40. 43. Tsai SW, Liu RL, Hsu FY, Chen CC. A study of the influence of polysaccharides on collagen self‐assembly: Nanostructure and kinetics. Biopolymers 2006;83(4):381-88. 44. Tangsadthakun C, Kanokpanont S, Sanchavanakit N, Pichyangkura R, Banaprasert T, Tabata Y, et al. The influence of molecular weight of chitosan on the physical and biological properties of collagen/chitosan scaffolds. Journal of Biomaterials Science, Polymer Edition 2007;18(2):147-63. 45. Smith E, Spatafora G. Gene regulation in S. mutans: complex control in a complex environment. Journal of dental research 2012;91(2):133-41. 46. Switalski L, Butcher W, Caufield P, Lantz M. Collagen mediates adhesion of Streptococcus mutans to human dentin. Infection and immunity 1993;61(10):4119-25. 47. Jou CH, Yuan L, Lin SM, Hwang MC, Chou WL, Yu DG, et al. Biocompatibility and antibacterial activity of chitosan and hyaluronic acid immobilized polyester fibers. Journal of applied polymer science 2007;104(1):220-25. 48. Sudo H, Kodama H-A, Amagai Y, Yamamoto S, Kasai S. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. The Journal of cell biology 1983;96(1):191-98. 49. Buxton P, Bitar M, Gellynck K, Parkar M, Brown R, Young A, et al. Dense collagen matrix accelerates osteogenic differentiation and rescues the apoptotic response to MMP inhibition. Bone 2008;43(2):377-85. 50. Karsdal MA, Larsen L, Engsig MT, Lou H, Ferreras M, Lochter A, et al. Matrix metalloproteinase-dependent activation of latent transforming growth factor-β controls the conversion of osteoblasts into osteocytes by blocking osteoblast apoptosis. Journal of Biological Chemistry 2002;277(46):44061-67. 51. Karsdal M, Andersen T, Bonewald L, Christiansen C. Matrix metalloproteinases (MMPs) safeguard osteoblasts from apoptosis during transdifferentiation into osteocytes: MT1-MMP maintains osteocyte viability. DNA and cell biology 2004;23(3):155-65. 52. Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annual review of cell and developmental biology 2001;17(1):463-516. 53. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nature reviews Molecular cell biology 2007;8(3):221-33. 54. Uchihashi K, Aoki S, Matsunobu A, Toda S. Osteoblast migration into type I collagen gel and differentiation to osteocyte-like cells within a self-produced mineralized matrix: a novel system for analyzing differentiation from osteoblast to osteocyte. Bone 2013;52(1):102-10. 55. Marshall J. Transwell® invasion assays. Cell Migration: Developmental Methods and Protocols 2011:97-110.
|