跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/01/14 17:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王懋諭
研究生(外文):Mao-Yu Wang
論文名稱:表沒食子兒茶素沒食子酸酯對轉糖鏈球菌及乾酪乳酸桿菌代田株形成生物膜之影響
論文名稱(外文):Effects of epigallocatechin-3-gallate on properties of the biofilm formed by Streptococcus mutans and Lactobacillus casei strain Shirota
指導教授:吳靜宜吳靜宜引用關係
指導教授(外文):Ching-Yi Wu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:口腔生物研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:52
中文關鍵詞:轉糖鏈球菌表沒食子兒茶素沒食子酸酯
外文關鍵詞:Streptococcus mutansepigallocatechin-3-gallate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
齲齒(caries) 在台灣是盛行率相當高的口腔疾病,先前研究指出轉糖鏈球菌(Streptococcus mutans)為主要病原菌,能貼附於牙齒表面形成生物膜(biofilm),代謝醣類後產生有機酸造成牙齒的去礦化。目前預防齲齒的方法皆有一定效果,但並非每個人都適合,使得開發新的齲齒預防策略,變得十分重要。綠茶與益生菌目前被認為具有預防齲齒的潛力:兒茶素(catechin)在綠茶的含量最高:其中的表沒食子酸沒食子(epigallocatechin-3-gallate, EGCG),已知有抗菌的功效。許多含有乳酸菌的發酵製品,也被發現具有抑制S. mutans的能力。台灣人十分喜愛飲用手搖飲料,部分飲品會將茶跟乳酸菌發酵乳混合,但這兩種對齲齒可能具保護效果的物質混合時,對S. mutans的影響仍不清楚。實驗室之前觀察到EGCG與乾酪乳酸桿代田菌 (Lactobacillus casei strain Shirota, LcS),可影響S. mutans生物膜中死菌與胞外多醣的含量,但如何影響之機制以及是否影響齲齒形成則尚未清楚。本研究假設EGCG及LcS會影響S. mutans生物膜的致齲力,並改變與生物膜形成的毒力因子,希望探討EGCG及LcS同時存在時,對S. mutans生物膜強度、產酸能力、致齲能力及毒力基因表現的影響。研究結果發現,隨著EGCG濃度增加至125 μg/ml,超音波震盪移除S. mutans生物膜的移除率顯著增加,在有LcS時則有增加的趨勢但無統計差異。EGCG濃度增加至250 μg/ml,生物膜在有LcS的組別移除率較無LcS的組別高,但此現象可能與有LcS的組別生物膜質量在移除前較高有關。利用C-SNARF染色觀察生物膜酸鹼值分布,發現,EGCG濃度250 μg/ml時,無論有無LcS,生物膜產酸能力都有被抑制的趨勢。在人類牙塊表面形成生物膜,在沒有LcS的組別,EGCG 250 μg/ml或500 μg/ml組的培養液pH值維持在中性,125 μg/ml組在5.5左右,0 μg/ml或62.5 μg/ml則是4.5左右;有LcS的組別則是僅EGCG 250 μg/ml、500 μg/ml的組別培養液pH值維持中性,其餘EGCG濃度的組別pH值小於5.5。蔗糖間歇性處理,第一日的隔夜培養液,僅EGCG 500 μg/ml可抑制S. mutans生物膜產酸,有LcS的組別,EGCG 500 μg/ml的抑制效果較差,pH值為5.5;經過九天的間歇性蔗糖處理後,所有的組別的隔夜培養液pH值皆低於5.5。利用光學相干斷層掃描觀察牙塊表面,發現S. mutans或S. mutans及LcS生物膜的組別,無論使用何種濃度EGCG,皆出現符合牙塊表面脫鈣的結構改變。抽取生物膜的RNA反轉錄cDNA後進行定量PCR,發現當EGCG為250 μg/ml具有抑制S. mutans生物膜表現gtfB、gtfC及grfD的趨勢,但在有LcS的生物膜中250 μg/ml EGCG抑制gtfB、gtfC表現的效果有變差的趨勢。EGCG可能透過抑制gtf表現,進而影響S. mutans生物膜的質量及強度,使其變得容易被移除,但有LcS時,EGCG 250 μg/ml抑制gtf基因表現的能力較差。無論有無LcS,EGCG會使生物膜的酸化程度較低;但有LcS時,需要較高劑量的EGCG才能避免培養液的酸化。而無論有沒有LcS,EGCG都無法避免牙釉質表面的脫鈣。
Caries is a highly prevalent oral infectious disease in Taiwan. Streptococcus mutans, the cariogenic pathogen, adheres on the tooth surface to form biofilms, metabolizing carbohydrates, producing organic acids and causing tooth demineralization. Current preventive methods against caries are effective but with some limitation. Thus, it is important to develop new preventive strategies against caries. Green tea and probiotics are considered to be potent anti-caries reagents. Catechin is abundant in green tea. Among tea catechin, epigallocatechin-3-gallate (EGCG) is known to inhibit bacterial growth. Several fermented products containing probiotics are known to inhibit S. mutans. Tea cocktails are popular in Taiwan. When green tea and fermented milk are mix to make tea cocktails, the effect of combining these two inhibitors remains to be calrified. Previously, studies conducted in our lab showed that EGCG and Lactobacillus casei strain Shirota (LcS) affected the amount of dead cell and extracellular polysaccharides in biofilms; however, the mechanism and their effect on the cariogenic ability of biofilms are still unclear. Thus, in this study, it was assumed that EGCG and LcS affected the cariogenic ability of S. mutans biofilms and altered the virulence factors associated with biofilm formation. The effects of EGCG and LcS on the biofilm strength, acid production, the cariogenic ability and virulence gene expression by S. mutans were investigated. Data showed that the removal efficiency of S. mutans biofilms by sonication was significantly increased, as the EGCG concentration was increase of to 125 μg/ml. In the presence of LcS, the trend of increases in removal efficiency remained, but without statistical difference. When EGCG was further increased to 250 μg/ml, the removal efficiency for biofilm was higher in the group with LcS, compared to the S. mutans only group. This phenomenon might be related to that more biomass was present in the biofilm with LcS before sonication. In situ acid production in biofilms was also observed, using C-SNARF staining. EGCG of 250 μg/ml inhibited acid production, whether LcS was present or not. Culture medium collected from biofilms, which were formed by S. mutans only on the human enamel slabs, remained neutral when EGCG of 250 or 500 μg/ml were added. pH value of the culture medium was reduced to less than 5.5 when no EGCG or EGCG less than 125 μg/ml was added. After the feast-and-famine cycles began, the pH value of the culture medium collected from the biofilm of S. mutans only treated by 500 μg/ml EGCG after the first over-night incubation was neutral. The pH values of all the other groups were less than 5.5. After 9 days of feast-and-famine cycles, pH values of none of the over-night culture medium were higher than 5.5. Using OCT, in vitro caries formation on the tooth slabs caused by the single-species biofilm or dual-species biofilms grown in the presence of EGCG was observed. The result of QPCR showed the expression of gtfB, gtfC and gtfD in S. mutans biofilms was reduced by EGCG of 250 μg/ml However, the inhibitory ability of EGCG tended to be reduced by LcS. In conclusion, inhibition of gtf expression by EGCG led to the reduction of biomass and strength of biofilms, which tended to be removed by sonication. LcS decreased the inhibitory ability of 250 μg/ml EGCG against gtf gene expression. EGCG reduced the acidification caused by S. mutans; however, more EGCG was required to prevent the acidification of culture medium when LcS was present. Whether LcS was present or not, demineralization of enamel surfaces was not prevented by EGCG.
目錄
誌謝 I
中文摘要 II
Abstract V
目錄 VII
圖目錄 VIII
表目錄 IX
緒論 1
齲齒流行病學 1
齲齒與生物膜 2
轉糖鏈球菌 3
齲齒預防 4
益生菌 5
益生菌對口腔的影響 6
綠茶多酚對口腔的影響 7
光學相干斷層掃描技術(Optical Coherence Tomography, OCT) 9
研究動機 10
材料與方法 11
細菌培養及製備 11
超音波移除生物膜 12
結晶紫染色定量生物質量 12
牙塊製備及唾液貼附 13
齲齒誘導 13
生物膜之pH分布 14
RNA純化 15
反轉錄聚合酶鏈鎖反應 16
結果 18
EGCG對S. mutans或S. mutans及LcS混合生物膜抗外力之影響 18
EGCG對S. mutans或 S. mutans及LcS混合生物膜酸蝕人類牙塊之影響 21
EGCG對人類牙齒上S. mutans單菌或S. mutans及LcS混合生物膜產酸能力之影響 22
EGCG對S. mutans或S. mutans及LcS混合生物膜S. mutans毒力基因表現之影響 23
討論 25
參考文獻 30
附錄 51

圖目錄
圖 一、EGCG對生長中S. mutans生物膜或S. mutans及LcS混合生物膜質量的影響及超音波震盪後S. mutans生物膜或S. mutans及LcS混合生物膜生物質量減少百分比 36
圖 二、EGCG對S. mutans生物膜或S. mutans及LcS混合生物膜產酸能力之影響 38
圖 三、EGCG對S. mutans生物膜或S. mutans及LcS混合生物膜產酸能力之影響之平均、最大或最小pH值 41
圖 四、EGCG對S. mutans生物膜酸蝕人類牙塊之影響 43
圖 五、EGCG對S. mutans及LcS混合生物膜酸蝕人類牙塊之影響 45
圖 六、EGCG對人類牙齒上S. mutans生物膜產酸能力之影響 46
圖 七、 EGCG對人類牙齒上S. mutans及LcS混合生物膜酸蝕產酸能力之影響 47
圖 八、EGCG對S. mutans或S. mutans及LcS混合生物膜基因表現之影響 48

表目錄
表 一 研究使用之專一性引子 50
1. da Silveira Moreira R. Epidemiology of dental caries in the world. 2012.
2. 黃純德, 陳韻婷, 劉秀月, 林怡如, 陳弘森, 嚴雅音, 周振英, 蕭思郁. 台灣中部地區0-6歲兒童齲齒與口腔清潔行為之城鄉差距 Chinese Dental Journal 2007:200-8
3. 劉仁義, 李嫈嫈, 黃純德, 劉秀月, 洪雅欣, 戴怡佳, 蕭思郁, 林雯君. 台灣山地鄉0-6歲幼兒齲齒狀況 Chinese Dental Journal 2007:209-16
4. 蕭思郁, 黃純德, 劉秀月, 胡文嘉, 李信枝, 王乃亭, 林妤姍. 台灣東部地區六歲以下兒童齲齒狀況之探討 Chinese Dental Journal 2007:190-9
5. 蕭思郁, 黃純德, 趙聆惠, 劉秀月, 張綺舫. 台灣南部地區六歲以下兒童齲齒狀況之探討. Chinese Dental Journal 2007:52-60
6. 蔡吉政, 楊奕馨, 謝天渝, 黃純德. 台灣地區成年與老年人口腔健康調查 (第二年). 2005
7. Hobdell M, Petersen PE, Clarkson J, Johnson N. Global goals for oral health 2020. International Dental Journal 2003;53:285-8
8. Rodis OM, Shimono T, Matsumura S, Hatomoto K, Matsuo K, Kariya N, et al. Cariogenic bacteria and caries risk in elderly Japanese aged 80 and older with at least 20 teeth. Journal of the American Geriatrics Society 2006;54:1573-7
9. Ten Cate JM. Biofilms, a new approach to the microbiology of dental plaque. Odontology 2006;94:1-9
10. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nature Reviews Microbiology 2004;2:95-108
11. Krzyściak W, Jurczak A, Kościelniak D, Bystrowska B, Skalniak A. The virulence of Streptococcus mutans and the ability to form biofilms. European Journal of Clinical Microbiology & Infectious Diseases 2013;33:499-515
12. Bowen W, Koo H. Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries research 2011;45:69-86
13. Koo H, Xiao J, Klein M, Jeon J. Exopolysaccharides produced by Streptococcus mutans glucosyltransferases modulate the establishment of microcolonies within multispecies biofilms. Journal of Bacteriology 2010;192:3024-32
14. Bowen WH. The Stephan Curve revisited. Odontology 2013;1:2-8
15. Clarke JK. On the bacterial factor in the aetiology of dental caries. British journal of experimental pathology 1924;5:141
16. Cotter PD, Hill C. Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiology and Molecular Biology Reviews 2003;67:429-53
17. De Soet J, Nyvad B, Kilian M. Strain–Related Acid Production by Oral Streptococci. Caries Research 2000;34:486-90
18. Wilkins JC, Homer KA, Beighton D. Analysis of Streptococcus mutans proteins modulated by culture under acidic conditions. Applied and Environmental Microbiology 2002;68:2382-90
19. Mitchell TJ. The pathogenesis of streptococcal infections: from tooth decay to meningitis. Nature Reviews Microbiology 2003;1:219-30
20. Featherstone JD. Prevention and reversal of dental caries: role of low level fluoride. Community Dentistry and Oral Epidemiology 1999;27:31-40
21. Pizzo G, Piscopo MR, Pizzo I, Giuliana G. Community water fluoridation and caries prevention: a critical review. Clinical Oral Investigations 2007;11:189-93
22. Mascarenhas AK. Risk factors for dental fluorosis: a review of the recent literature. Pediatric Dentistry 2000;22:269-77
23. STEYN DG. Chronic fluorine poisoning caused by the drinking of subterranean waters containing excessive quantities of fluorine. South African Medical Journal 1963;37:465-6
24. 胡尹藍, 王姻麟, 張曉華, 黃桂芬, 郭敏光. 牛奶氟化與齲齒的預防-文獻回顧. 臺灣兒童牙醫學雜誌 2005;5
25. Makinen K, Bennett C, Hujoel P, Isokangas P, Isotupa K, Pape Jr H, et al. Xylitol chewing gums and caries rates: a 40-month cohort study. Journal of Dental Research 1995;74:1904-13
26. Milgrom P, Söderling E, Nelson S, Chi D, Nakai Y. Clinical evidence for polyol efficacy. Advances in Dental Research 2012;24:112-6
27. Ouwehand AC, Derrien M, de Vos W, Tiihonen K, Rautonen N. Prebiotics and other microbial substrates for gut functionality. Current Opinion in Biotechnology 2005;16:212-7
28. Fuller R. History and development of probiotics. Probiotics: Springer; 1992. p 1-8.
29. Paker R. Probiotics, the other half of the antibiotics story. Animal Nutrition and Health 1974;29:4-8
30. Sanders Mary E. Probiotics: Definition, Sources, Selection, and Uses. Clinical Infectious Diseases 2008;46:S58-S61
31. Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. The Journal of Nutrition 1995;125:1401
32. Perdigon G, De Macias M, Alvarez S, Oliver G, de Ruiz Holgado A. Effect of perorally administered lactobacilli on macrophage activation in mice. Infection and Immunity 1986;53:404-10
33. Tuomola EM, Ouwehand AC, Salminen SJ. The effect of probiotic bacteria on the adhesion of pathogens to human intestinal mucus. FEMS Immunology & Medical Microbiology 1999;26:137-42
34. Klaver F, Van Der Meer R. The assumed assimilation of cholesterol by Lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity. Applied and Environmental Microbiology 1993;59:1120-4
35. Ooi L-G, Liong M-T. Cholesterol-Lowering Effects of Probiotics and Prebiotics: A review of in vivo and in vitro findings. International Journal of Molecular Sciences 2010;11:2499-522
36. Hirayama K, Rafter J. The role of probiotic bacteria in cancer prevention. Microbes and Infection 2000;2:681-6
37. Ouwehand AC, Salminen S, Isolauri E. Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek 2002;82:279-89
38. Matsuzaki T. Immunomodulation by treatment with Lactobacillus casei strain Shirota. International journal of food microbiology 1998;41:133-40
39. Asahara T, Nomoto K, Watanuki M, Yokokura T. Antimicrobial activity of intraurethrally administered probiotic Lactobacillus casei in a murine model of Escherichia coli urinary tract infection. Antimicrobial agents and chemotherapy 2001;45:1751-60
40. Kanazawa H, Nagino M, Kamiya S, Komatsu S, Mayumi T, Takagi K, et al. Synbiotics reduce postoperative infectious complications: a randomized controlled trial in biliary cancer patients undergoing hepatectomy. Langenbeck's Archives of Surgery 2005;390:104-13
41. Matsuzaki T, Takagi A, Ikemura H, Matsuguchi T, Yokokura T. Antitumor activity and action mechanisms of Lactobacillus casei through the regulation of immune responses. Biofactors 2004;22:63-6
42. Stamatova I, Meurman JH. Probiotics: health benefits in the mouth. 2009
43. Ashwin D. Effect of probiotic containing ice-cream on salivary mutans streptococci (SMS) levels in lhildren of 6-12 years of age: a randomized controlled double blind study with six-months follow up. Journal of Clinical and Diagnostic Research 2015 9:ZC06-ZC9
44. Lin X, Chen X, Chen Y, Jiang W, Chen H. The effect of five probiotic lactobacilli strains on the growth and biofilm formation of Streptococcus mutans. Oral diseases 2015;21:e128-e34
45. Campus G, Cocco F, Carta G, Cagetti MG, Simark-Mattson C, Strohmenger L, et al. Effect of a daily dose of Lactobacillus brevis CD2 lozenges in high caries risk schoolchildren. Clinical Oral Investigations 2014;18:555-61
46. Jensen M, Wefel J. Effects of processed cheese on human plaque pH and demineralization and remineralization. American Journal of Dentistry 1990;3:217-23
47. Kõll‐Klais P, Mändar R, Leibur E, Marcotte H, Hammarström L, Mikelsaar M. Oral lactobacilli in chronic periodontitis and periodontal health: species composition and antimicrobial activity. Oral Microbiology and Immunology 2005;20:354-61
48. Staab B, Eick S, Knöfler G, Jentsch H. The influence of a probiotic milk drink on the development of gingivitis: a pilot study. Journal of Clinical Periodontology 2009;36:850-6
49. 吳亮宜, 孫璐西. 茶與健康. 科學發展月刊 行政院國家科學委員會 2004;384
50. Zaveri NT. Green tea and its polyphenolic catechins: Medicinal uses in cancer and noncancer applications. Life Sciences 2006;78:2073-80
51. Yang TT, Koo MW. Chinese green tea lowers cholesterol level through an increase in fecal lipid excretion. Life Sciences 1999;66:411-23
52. Mukhtar H, Ahmad N. Tea polyphenols: prevention of cancer and optimizing health. The American Journal of Clinical Nutrition 2000;71:1698s-702s
53. Johnell O, Gullberg B, Kanis JA, Allander E, Elffors L, Dequeker J, et al. Risk factors for hip fracture in European women: the MEDOS study. Journal of Bone and Mineral Research 1995;10:1802-15
54. Cabrera C, Artacho R, Giménez R. Beneficial effects of green tea—a review. Journal of the American College of Nutrition 2006;25:79-99
55. Chacko SM, Thambi PT, Kuttan R, Nishigaki I. Beneficial effects of green tea: a literature review. Chinese medicine 2010;5:13
56. Moghbel A, Farjzadeh A, Aghel N, Agheli H, Raisi N. The effect of green tea on prevention of mouth bacterial infection, halitosis, and plaque formation on teeth. Iranian Journal of Toxicology 2011;5:502-15
57. Xu X, Zhou XD, Wu CD. The tea catechin epigallocatechin gallate suppresses cariogenic virulence factors of Streptococcus mutans. Antimicrobial Agents and Chemotherapy 2010;55:1229-36
58. Xu X, Zhou XD, Wu CD. Tea catechin epigallocatechin gallate inhibits Streptococcus mutans biofilm formation by suppressing gtf genes. Archives of Oral Biology 2012;57:678-83
59. Nakayama M, Shimatani K, Ozawa T, Shigemune N, Tsugukuni T, Tomiyama D, et al. A study of the antibacterial mechanism of catechins: Isolation and identification of Escherichia coli cell surface proteins that interact with epigallocatechin gallate. Food control 2013;33:433-9
60. Dove SB. Radiographic diagnosis of dental caries. Journal of Dental Education 2001;65:985-90
61. Pitts NB. Clinical diagnosis of dental caries: a European perspective. Journal of Dental Education 2001;65:972-8
62. Noval S, Contreras I, Muñoz S, Oreja-Guevara C, Manzano B, Rebolleda G. Optical coherence tomography in multiple sclerosis and neuromyelitis optica: an update. Multiple Sclerosis International 2011 Jun;2011:11
63. Hsieh Y-S, Ho Y-C, Lee S-Y, Chuang C-C, Tsai J-c, Lin K-F, et al. Dental optical coherence tomography. Sensors 2013;13:8928-49
64. 蘇子懿. Effects of epigallocatechin-3-gallate on the inhibition of Streptococcus mutans by Lactobacillus casei strain Shirota. 2015
65. Nishikawa T, Yoshida A, Khanal A, Habu M, Yoshioka I, Toyoshima K, et al. A study of the efficacy of ultrasonic waves in removing biofilms. Gerodontology 2010;27:199-206
66. Hahnel S, Henrich A, Rosentritt M, Handel G, Bürgers R. Influence of artificial ageing on surface properties and Streptococcus mutans adhesion to dental composite materials. Journal of Materials Science: Materials in Medicine 2010;21:823-33
67. Hahnel S, Rosentritt M, Handel G, Bürgers R. Surface characterization of dental ceramics and initial streptococcal adhesion in vitro. dental materials 2009;25:969-75
68. Cavalcanti YW, Bertolini MM, da Silva WJ, Del-Bel-Cury AA, Tenuta LMA, Cury JA. A three-species biofilm model for the evaluation of enamel and dentin demineralization. Biofouling 2014;30:579-88
69. Hsieh Y-S, Ho Y-C, Lee S-Y, Lu C-W, Jiang C-P, Chuang C-C, et al. Subgingival calculus imaging based on swept-source optical coherence tomography. Journal of biomedical optics 2011;16:071409--8
70. Schlafer S, Dige I. Ratiometric imaging of extracellular pH in dental biofilms. JoVE (Journal of Visualized Experiments) 2016:e53622-e
71. Louie T, Lee C, Hsu D, Hirasuna K, Manesh S, Staninec M, et al. Clinical assessment of early tooth demineralization using polarization sensitive optical coherence tomography. Lasers in surgery and medicine 2010;42:898-905
72. Harrel SK, Barnes JB, Rivera-Hidalgo F. Aerosol and splatter contamination from the operative site during ultrasonic scaling. The Journal of the American Dental Association 1998;129:1241-9
73. Tazaki J, Murata M, Yuasa T, Akazawa T, Ito K, Hino J, et al. Autograft of human tooth and demineralized dentin matrices for bone augmentation. Journal of the Ceramic Society of Japan 2010;118:442-5
74. Pérez VC, Cárdenas MEM, Planells US. The possible role of pH changes during EDTA demineralization of teeth. Oral Surgery, Oral Medicine, Oral Pathology 1989;68:220-2
75. Yang CS, Lee M-J, Chen L. Human salivary tea catechin levels and catechin esterase activities: implication in human cancer prevention studies. Cancer Epidemiology and Prevention Biomarkers 1999;8:83-9
76. Li L, Nan J, Li D, Brostromer E, Wang Z, Liu C, et al. Structural genomics studies of human caries pathogen Streptococcus mutans. Journal of Structural and Functional Genomics 2014;15:91-9
77. Wen ZT, Yates D, Ahn S-J, Burne RA. Biofilm formation and virulence expression by Streptococcus mutans are altered when grown in dual-species model. BMC microbiology 2010;10:1-9
78. Sun M, Kang Q, Li T, Huang L, Jiang Y, Xia W. Effect of high‐fructose corn syrup on Streptococcus mutans virulence gene expression and on tooth demineralization. European Journal of Oral Sciences 2014;122:216-22
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top