跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/03 04:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林煥庭
研究生(外文):Huan-Ting Lin
論文名稱:在線蟲中細胞自噬於SAMS-1所調控的長壽路徑中的作用機制
論文名稱(外文):The Function of Autophagy in SAMS-1-Mediated Longevity in C. elegans
指導教授:金翠庭金翠庭引用關係
指導教授(外文):Tsui-Ting Ching
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物藥學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:54
中文關鍵詞:S-腺苷甲硫氨酸合成酶-1細胞自噬飲食限制
外文關鍵詞:SAMS-1AutophagyDietary Restriction
相關次數:
  • 被引用被引用:1
  • 點閱點閱:366
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
細胞自噬(autophagy)會影響老化的速率,在眾多長壽模式生物中,皆可發現細胞自噬能力有上升的現象,且被認為是延長壽命所需的重要因素之一,然而其中的分子調控機制還尚未完全明瞭。
飲食限制為延緩老化最有效的方式之一,過去的研究亦證實,其延長壽命的現象與細胞自噬的參與有關。其中,sams-1(S-adenosyl methionine synthetase-1)為飲食限制調控老化的重要基因,於本研究中,利用sams-1基因剔除的長壽線蟲作為實驗對象,經由觀察帶有螢光的細胞自噬標的蛋白LGG-1,在失去SAMS-1的情形下,會增加細胞自噬的活性。此外,當抑制細胞自噬形成的重要基因時,會縮短sams-1線蟲突變株延長的壽命,由此證實細胞自噬為SAMS-1調節壽命所需的要素。
HLH-30為人類TFEB(transcription factor EB)於線蟲中的同源基因,並被視為調控細胞自噬的重要轉錄因子以及影響老化的關鍵角色。在我們的研究中發現,利用RNAi抑制線蟲中的SAMS-1表現,會大幅提升HLH-30蛋白質表現及促進其進核的比率,而這樣的現象在餵食SAM(S-adenosyl methionine)之後則會明顯降低。同時我們也發現sams-1剔除的線蟲中壽命延長是需要HLH-30這個轉錄因子的作用。我們更進一步證實,HLH-30基因的表現量上升,是由於SAM缺乏引起SET-2活性下降,導致組蛋白甲基化改變所造成的。
Autophagy is an important cytoplasmic recycle process that removes damaged cellular components. It has been suggested that autophagy might be a common downstream effector in lifespan regulation. Indeed, studies have indicated that autophagy is required in dietary restriction (DR)-induced longevity in C. elegans. Previously, we have demonstrated that sams-1, S-adenosyl methionine synthetase-1, is a key regulator in lifespan extension induced by DR. Therefore, we asked whether autophagy might serve as one of the downstream effectors of SAMS-1 to mediate lifespan extension in C. elegans. In this study, we have found that RNAi knockdown or knockout of SAMS-1 significantly activates autophagy. We also observed that mRNA expression levels of autophagy-related genes are increased in sams-1 mutants. Moreover, RNAi knockdowns of autophagy genes, such as bec-1 and vps-34, decrease the lifespan of long-lived sams-1 mutants. Taken together, our findings suggest that elevating autophagy activity might be required for sams-1-mediated lifespan extension and that SAMS-1 might modulate autophagy through transcriptional regulation.
The TFEB orthologue, HLH-30, has shown to be an important transcription factor in regulating multiple autophagy-related genes in C. elegans. We found that RNAi knockdown of sams-1 largely increases the expression level and nucleus localization rate of HLH-30. However, nucleus localization rate of HLH-30 was diminished after extra supplementing of SAM(S-adenosyl methionine) in sams-1 RNAi mutants. We also demonstrate that HLH-30 is essential for the long lifespan of sams-1 mutants. Furthermore, our data indicate that SET-2 might regulate the transcriptional activity of HLH-30 through histone methylation.
目錄 Table of Contents

摘要 I
Abstract II
目錄 Table of Contents III
圖目錄 List of Figures IV
表目錄 List of Tables V
緒論 Introduction 1
研究目標 Aim 4
研究方法與材料 Methods and Materials 5
1. 線蟲(C. elegans)品系及培養 5
2. 線蟲壽命追蹤實驗 Lifespan Assay 6
3. GFP::LGG-1螢光點定量 Quantification of Puncta 8
4. 西方點墨法 Western Blot 8
5. 定量即時PCR Quantitative Real-Time PCR 9
6. 染色質免疫沉澱 Chromatin Immunoprecipitation 10
結果 Results 13
1. SAMS-1所調控的壽命延長現象需要細胞自噬的參與 13
2. HLH-30為SAMS-1影響老化的下游轉錄因子 14
3. SET-2藉由組蛋白的甲基化影響hlh-30的表現 15
討論 Discussion 18
圖表 Figures and Tables 20
參考文獻 References 52

圖目錄 List of Figures

圖 1. WT線蟲中表現GFP::LGG-1的螢光顯微鏡圖 20
圖 2. sams-1突變線蟲株中表現GFP::LGG-1的螢光顯微鏡圖 21
圖 3. sams-1突變線蟲株中表現GFP::LGG-1,經bec-1 RNAi處理後的螢光顯 微鏡圖 22
圖 4. 失去sams-1會促進細胞自噬的表現 23
圖 5. mCherry::GFP::LGG-1線蟲突變株的螢光顯微鏡圖 24
圖 6. sams-1 RNAi會增進autophagolysosome的表現量 25
圖 7. 抑制bec-1基因表現會縮短eat-2線蟲的壽命 26
圖 8. 抑制bec-1基因表現會縮短sams-1線蟲的壽命 27
圖 9. 抑制vps-34基因表現會縮短eat-2線蟲的壽命 28
圖 10. 抑制vps-34基因表現會縮短sams-1線蟲的壽命 29
圖 11. HLH-30::GFP線蟲突變株經sams-1 RNAi處理過後的螢光顯微鏡圖 30
圖 12. 抑制SAMS-1表現會導致HLH-30進核 31
圖 13. HLH-30::GFP線蟲突變株經sams-1 RNAi處理後,再餵食SAM的螢光顯微鏡圖 32
圖 14. SAM會影響HLH-30的進出核 33
圖 15. 抑制hlh-30基因表現會縮短sams-1線蟲的壽命 34
圖 16. SAMS-1減少會增加HLH-30的表現量 35
圖 17. 失去SAMS-1會促使hlh-30及其下游基因的mRNA表現量上升 36
圖 18. RNAi篩選結果量化圖 37
圖 19. GFP::LGG-1線蟲突變株餵食set-2 RNAi後的螢光顯微鏡圖 38
圖 20. set-2 RNAi會增進autophagosome的表現量 39
圖 21. SET-2減少會增加HLH-30的表現量 40
圖 22. 失去SET-2會促使hlh-30及lgg-1的mRNA表現量上升 41
圖 23. hlh-30基因序列位置圖 42
圖 24. 失去SET-2及SAMS-1會導致hlh-30啟動子上H3K4me3的甲基化減少 43
圖 25. sams-1及set-2線蟲突變株中W02C12.4片段的表現量呈現上升趨勢 44
圖 26. sams-1及set-2線蟲突變株中長鏈hlh-30 isoform的表現量呈現上升趨勢 45
圖 27. 抑制set-2基因表現並不會更加延長eat-2及sams-1線蟲的壽命 46
圖 28. 抑制hlh-30基因表現會縮短set-2線蟲的壽命 47

表目錄 List of Tables

表 1. 壽命追蹤分析及統計結果總表 48
表 2. HLH-30::GFP突變線蟲株經sams-1 RNAi處理後的進核比率表 50
表 3. HLH-30::GFP突變線蟲株經sams-1 RNAi處理後,再餵食SAM的進核比率表 51
[1] D.J. Klionsky, Autophagy: fom phenomenology to molecular understanding in less than a decade, Nature Reviews Molecular Cell Biology 8 (2007) 931-937.
[2] T Vellai, Autophagy genes and ageing, Cell Death & Differentiation 16 (2009) 94-102.
[3] J. Zhang, Teaching the basics of autophagy and mitophagy to redox biologists—Mechanisms and experimental approaches, Redox Biology 4 (2015) 242-259
[4] X.H. Liang, S. Jackson, M. Seaman, K. Brown, B. Kempkes, H. Hibshoosh, B. Levine, Induction of autophagy and inhibition of tumorigenesis by beclin 1, Nature 402 (1999) 672-676.
[5] R.A. Nixon, The role of autophagy in neurodegenerative disease, Nature Medicine 19 (2013) 983-997.
[6] D.E. Harrison, R. Strong, Z.D. Sharp, J.F. Nelson, C.M. Astle, K. Flurkey, N.L. Nadon, J.E. Wilkinson, K. Frenkel, C.S. Carter, M. Pahor, M.A. Javors, E. Fernandez, R.A. Miller, Rapamycin fed late in life extends lifespan in genetically heterogeneous mice, Nature 460 (2009) 392–395.
[7] A. Meléndez, Z. Tallóczy, M. Seaman, E.L. Eskelinen, D.H. Hall, B. Levine, Autophagy genes are essential for dauer development and life-span extension in C. elegans, Science 301 (2003) 1387–1391.
[8] M.L. Florez-McClure, L.A. Hohsfield, G. Fonte, M.T. Bealor, C.D. Link, Decreased insulin-receptor signaling promotes the autophagic degradation of beta-amyloid peptide in C. elegans, Autophagy 3 (2007) 93-95.
[9] B. Lakowski, S. Hekimi, The genetics of caloric restriction in Caenorhabditis elegans, Proc. Natl. Acad. Sci. USA 95 (1998) 13091-13096.
[10] M. Zhao, D.J. Klionsky, AMPK-dependent phosphorylation of ULK1 induces autophagy, Cell Metabolism 13 (2011) 119–120.
[11] P. Kapahi, D. Chen, A.N. Rogers, S.D. Katewa, P.W. Li, E.L. Thomas, L. Kockel, With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging, Cell Metabolism 11 (2010) 453–465.
[12] M. Hansen, A.L. Hsu, A. Dillin, C. Kenyon, New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen, PLoS Genet 1 (2005) 119-128.
[13] Chiang P K, Gordon R K, Tal J, Zeng G C, Doctor B P, Pardhasaradhi K, McCann P P, S-Adenosylmethionine and methylation, FASEB J 10 (1996) 471-480.
[14] K. Jia, B. Levine, Autophagy is required for dietary restriction-mediated lifespan extension in C. elegans, Autophagy 3 (2007) 597-599.
[15] M. Hansen, A. Chandra, L.L. Mitic, B. Onken, M. Driscoll, C. Kenyon, A role for autophagy in the extension of lifespan by dietary restriction in C. elegans, PLoS Genet 4 (2008) e24
[16] Settembre, C. et al, TFEB links autophagy to lysosomal biogenesis, Science 332 (2011) 1429–1433.
[17] Martina, J. A., Chen, Y., Gucek, M. & Puertollano, R., MTORC1 functions as a
transcriptional regulator of autophagy by preventing nuclear transport of TFEB, Autophagy 8 (2012) 903–914.
[18] L.R. Lapierre, C.D.D. Magalhaes Filho, P.R. McQuary, C.C. Chu, O. Visvikis, J.T. Chang, S. Gelino, B. Ong, A.E. Davis, J.E. Irazoqui, A. Dillin, Malene Hansen, The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans, Nature Communications 4 (2013) 2267.
[19] CSH Protocols; 2006; doi: 10.1101/pdb.prot4540
[20] N.J. Palmisano, A. Meléndez, Detection of autophagy in Caenorhabditis elegans using GFP::LGG-1 as an autophagy marker, Cold Spring Harb Protoc (2016) doi: 10.1101/pdb.prot086496
[21] C. Zhou, W. Zhong, J. Zhou, F. Sheng, Z. Fang, Y. Wei, Y. Chen, X. Deng, B. Xia & J. Lin, Monitoring autophagic flux by an improved tandem fluorescent-tagged LC3 (mTagRFPmWasabi-LC3) reveals that high-dose rapamycin impairs autophagic flux in cancer cells, Autophagy 8 (2012) 1215-1226.
[22] Greer E.L., Maures T.J., Hauswirth A.G., Green E.M., Leeman D.S., Maro G.S., Han S., Banko M.R., Gozani O., Brunet A., Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans, Nature 466 (2010) 383-7.
[23] Assaf Weiner, Hsiuyi V. Chen, Chih Long Liu, Ayelet Rahat, Avital Klien, Luis Soares, Mohanram Gudipati, Jenna Pfeffner, Aviv Regev, Stephen Buratowski, Jeffrey A. Pleiss, Nir Friedman, Oliver J. Rando, Systematic Dissection of Roles for Chromatin Regulators in a Yeast Stress Response, PLoS Biol 10 (2012) e1001369
[24] Saravanan Ramakrishnan, Srijana Pokhrel, Sowmiya Palani, Christian Pflueger, Timothy J. Parnell, Bradley R. Cairns, Srividya Bhaskara, Mahesh B. Chandrasekharan, Counteracting H3K4 methylation modulators Set1 and Jhd2 co-regulate chromatin dynamics and gene transcription, Nature Communications 7 (2015) 11949
[25] Wei Ding, Lorissa J. Smulan, Nicole S. Hou, Stefan Taubert, Jennifer L. Watts, Amy K. Walker, s-Adenosylmethionine Levels Govern Innate Immunity through Distinct Methylation-Dependent Pathways, Cell Metabolism 22 (2015) 633-645
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top