1. Kennedy, B.K., et al., Geroscience: linking aging to chronic disease. Cell, 2014. 159(4): p. 709-13.
2. Lopez-Otin, C., et al., The hallmarks of aging. Cell, 2013. 153(6): p. 1194-217.
3. Nakou, E.S., et al., Healthy aging and myocardium: A complicated process with various effects in cardiac structure and physiology. Int J Cardiol, 2016. 209: p. 167-75.
4. Chakravarti, B., et al., Proteomic profiling of aging in the mouse heart: Altered expression of mitochondrial proteins. Arch Biochem Biophys, 2008. 474(1): p. 22-31.
5. Roh, J., et al., The Role of Exercise in Cardiac Aging. Circulation Research, 2016. 118(2): p. 279.
6. Huber, S.J. and G.W. Paulson, Memory impairment associated with progression of Huntington's disease. Cortex, 1987. 23(2): p. 275-83.
7. Walsh, D.M. and D.J. Selkoe, Deciphering the molecular basis of memory failure in Alzheimer's disease. Neuron, 2004. 44(1): p. 181-93.
8. Weintraub, D., et al., Evidence for impaired encoding and retrieval memory profiles in Parkinson disease. Cogn Behav Neurol, 2004. 17(4): p. 195-200.
9. Peters, R., Ageing and the brain. Postgrad Med J, 2006. 82(964): p. 84-8.
10. Burke, S.N. and C.A. Barnes, Neural plasticity in the ageing brain. Nat Rev Neurosci, 2006. 7(1): p. 30-40.
11. Harman, D., Role of free radicals in aging and disease. Ann N Y Acad Sci, 1992. 673: p. 126-41.
12. Musso, C.G. and D.G. Oreopoulos, Aging and physiological changes of the kidneys including changes in glomerular filtration rate. Nephron Physiol, 2011. 119 Suppl 1: p. p1-5.
13. Nitta, K., et al., Aging and chronic kidney disease. Kidney Blood Press Res, 2013. 38(1): p. 109-20.
14. Bolignano, D., et al., The aging kidney revisited: a systematic review. Ageing Res Rev, 2014. 14: p. 65-80.
15. Anantharaju, A., A. Feller, and A. Chedid, Aging Liver. A review. Gerontology, 2002. 48(6): p. 343-53.
16. Schmucker, D.L., Age-related changes in liver structure and function: Implications for disease ? Exp Gerontol, 2005. 40(8-9): p. 650-9.
17. Yuan, Y., et al., Regulation of SIRT1 in aging: Roles in mitochondrial function and biogenesis. Mech Ageing Dev, 2016. 155: p. 10-21.
18. Ou, X., et al., SIRT1 positively regulates autophagy and mitochondria function in embryonic stem cells under oxidative stress. Stem cells (Dayton, Ohio), 2014. 32(5): p. 1183-1194.
19. Hua, F., et al., [Autophagy in ageing and ageing-related diseases]. Yao Xue Xue Bao, 2014. 49(6): p. 764-73.
20. Bordone, L. and L. Guarente, Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol, 2005. 6(4): p. 298-305.
21. Haigis, M.C. and L.P. Guarente, Mammalian sirtuins--emerging roles in physiology, aging, and calorie restriction. Genes Dev, 2006. 20(21): p. 2913-21.
22. Wenz, T., Regulation of mitochondrial biogenesis and PGC-1alpha under cellular stress. Mitochondrion, 2013. 13(2): p. 134-42.
23. Lagouge, M., et al., Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell, 2006. 127(6): p. 1109-22.
24. Baur, J.A., et al., Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 2006. 444(7117): p. 337-42.
25. Meijer, A.J. and P. Codogno, Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol, 2004. 36(12): p. 2445-62.
26. Rubinsztein, D.C., G. Marino, and G. Kroemer, Autophagy and aging. Cell, 2011. 146(5): p. 682-95.
27. Ciechanover, A., Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol, 2005. 6(1): p. 79-87.
28. Linton, P.-J., et al., This old heart: Cardiac aging and autophagy. Journal of Molecular and Cellular Cardiology, 2015. 83: p. 44-54.
29. Rubinsztein, David C., G. Mariño, and G. Kroemer, Autophagy and Aging. Cell, 2011. 146(5): p. 682-695.
30. Lenoir, O., P.L. Tharaux, and T.B. Huber, Autophagy in kidney disease and aging: lessons from rodent models. Kidney Int, 2016. 90(5): p. 950-964.
31. Lesnefsky, E.J., Q. Chen, and C.L. Hoppel, Mitochondrial Metabolism in Aging Heart. Circulation Research, 2016. 118(10): p. 1593.
32. Gustafsson, A.B. and R.A. Gottlieb, Heart mitochondria: gates of life and death. Cardiovasc Res, 2008. 77(2): p. 334-43.
33. Tocchi, A., et al., Mitochondrial dysfunction in cardiac aging. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2015. 1847(11): p. 1424-1433.
34. Saito, T. and J. Sadoshima, The Molecular Mechanisms of Mitochondrial Autophagy/Mitophagy in the Heart. Circulation research, 2015. 116(8): p. 1477-1490.
35. Moreira, P.I., et al., Mitochondrial dysfunction is a trigger of Alzheimer's disease pathophysiology. Biochim Biophys Acta, 2010. 1802(1): p. 2-10.
36. Lin, M.T. and M.F. Beal, Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006. 443(7113): p. 787-95.
37. Yue, Z., et al., The cellular pathways of neuronal autophagy and their implication in neurodegenerative diseases. Biochim Biophys Acta, 2009. 1793(9): p. 1496-507.
38. Nixon, R.A., The role of autophagy in neurodegenerative disease. Nat Med, 2013. 19(8): p. 983-997.
39. Kesidou, E., et al., Autophagy and neurodegenerative disorders. Neural Regen Res, 2013. 8(24): p. 2275-83.
40. Cui, L., et al., Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell, 2006. 127(1): p. 59-69.
41. Manczak, M., et al., Mitochondria are a direct site of A beta accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet, 2006. 15(9): p. 1437-49.
42. Schapira, A.H., Mitochondria in the aetiology and pathogenesis of Parkinson's disease. Lancet Neurol, 2008. 7(1): p. 97-109.
43. Maquet, P., The role of sleep in learning and memory. Science, 2001. 294(5544): p. 1048-52.
44. Chee, M.W. and L.Y. Chuah, Functional neuroimaging insights into how sleep and sleep deprivation affect memory and cognition. Curr Opin Neurol, 2008. 21(4): p. 417-23.
45. Andreazza, A.C., et al., Impairment of the mitochondrial electron transport chain due to sleep deprivation in mice. J Psychiatr Res, 2010. 44(12): p. 775-80.
46. Silva, R.H., et al., Role of hippocampal oxidative stress in memory deficits induced by sleep deprivation in mice. Neuropharmacology, 2004. 46(6): p. 895-903.
47. Brouillet, E., et al., Replicating Huntington's disease phenotype in experimental animals. Prog Neurobiol, 1999. 59(5): p. 427-68.
48. Koroshetz, W.J., et al., Energy metabolism defects in Huntington's disease and effects of coenzyme Q10. Ann Neurol, 1997. 41(2): p. 160-5.
49. Deguchi, Y., et al., Blood-brain barrier transport of 125I-labeled basic fibroblast growth factor. Pharm Res, 2000. 17(1): p. 63-9.
50. Hu, Z., M. Ulfendahl, and N.P. Olivius, NGF stimulates extensive neurite outgrowth from implanted dorsal root ganglion neurons following transplantation into the adult rat inner ear. Neurobiol Dis, 2005. 18(1): p. 184-92.
51. Lapchak, P.A., Nerve growth factor pharmacology: application to the treatment of cholinergic neurodegeneration in Alzheimer's disease. Exp Neurol, 1993. 124(1): p. 16-20.
52. Klein, A.B., et al., Increased serum brain-derived neurotrophic factor (BDNF) levels in patients with narcolepsy. Neurosci Lett, 2013. 544: p. 31-5.
53. Harmancey, R., C.R. Wilson, and H. Taegtmeyer, Adaptation and maladaptation of the heart in obesity. Hypertension, 2008. 52(2): p. 181-7.
54. Alpert, M.A., Obesity cardiomyopathy: pathophysiology and evolution of the clinical syndrome. Am J Med Sci, 2001. 321(4): p. 225-36.
55. Lopaschuk, G.D., et al., Myocardial fatty acid metabolism in health and disease. Physiol Rev, 2010. 90(1): p. 207-58.
56. Mauro, C., et al., Obesity-Induced Metabolic Stress Leads to Biased Effector Memory CD4+ T Cell Differentiation via PI3K p110delta-Akt-Mediated Signals. Cell Metab, 2017. 25(3): p. 593-609.
57. Goldwasser, E., Erythropoietin and the differentiation of red blood cells. Fed Proc, 1975. 34(13): p. 2285-92.
58. Semenza, G.L., et al., Cell-type-specific and hypoxia-inducible expression of the human erythropoietin gene in transgenic mice. Proc Natl Acad Sci U S A, 1991. 88(19): p. 8725-9.
59. Sawada, K., et al., Purification of human erythroid colony-forming units and demonstration of specific binding of erythropoietin. Journal of Clinical Investigation, 1987. 80(2): p. 357-366.
60. Villeval, J.L., et al., Autocrine stimulation by erythropoietin (Epo) requires Epo secretion. Blood, 1994. 84(8): p. 2649-62.
61. Fandrey, J., Oxygen-dependent and tissue-specific regulation of erythropoietin gene expression. Am J Physiol Regul Integr Comp Physiol, 2004. 286(6): p. R977-88.
62. Brezis, M. and S. Rosen, Hypoxia of the renal medulla--its implications for disease. N Engl J Med, 1995. 332(10): p. 647-55.
63. Lin, F.K., et al., Cloning and expression of the human erythropoietin gene. Proc Natl Acad Sci U S A, 1985. 82(22): p. 7580-4.
64. Eschbach, J.W., et al., Correction of the anemia of end-stage renal disease with recombinant human erythropoietin. Results of a combined phase I and II clinical trial. N Engl J Med, 1987. 316(2): p. 73-8.
65. Melnikova, I., Anaemia therapies. Nat Rev Drug Discov, 2006. 5(8): p. 627-8.
66. Arcasoy, M.O., The non-haematopoietic biological effects of erythropoietin. Br J Haematol, 2008. 141(1): p. 14-31.
67. Juneja, V., et al., Continuing reassessment of the risks of erythropoiesis-stimulating agents in patients with cancer. Clin Cancer Res, 2008. 14(11): p. 3242-7.
68. Ogino, A., et al., Erythropoietin receptor signaling mitigates renal dysfunction-associated heart failure by mechanisms unrelated to relief of anemia. J Am Coll Cardiol, 2010. 56(23): p. 1949-58.
69. Parsa, C.J., et al., A novel protective effect of erythropoietin in the infarcted heart. Journal of Clinical Investigation, 2003. 112(7): p. 999-1007.
70. Digicaylioglu, M. and S.A. Lipton, Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kappaB signalling cascades. Nature, 2001. 412(6847): p. 641-7.
71. Lund, A., C. Lundby, and N.V. Olsen, High-dose erythropoietin for tissue protection. Eur J Clin Invest, 2014. 44(12): p. 1230-8.
72. Besarab, A., et al., The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N Engl J Med, 1998. 339(9): p. 584-90.
73. Skali, H., et al., Stroke in patients with type 2 diabetes mellitus, chronic kidney disease, and anemia treated with Darbepoetin Alfa: the trial to reduce cardiovascular events with Aranesp therapy (TREAT) experience. Circulation, 2011. 124(25): p. 2903-8.
74. Ehrenreich, H., et al., Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke, 2009. 40(12): p. e647-56.
75. Carraway, M.S., et al., Erythropoietin activates mitochondrial biogenesis and couples red cell mass to mitochondrial mass in the heart. Circ Res, 2010. 106(11): p. 1722-30.
76. Mehta, J.L., Erythropoietin in cardioprotection: does it have a future or is it all in the past? Cardiovasc Res, 2008. 79(4): p. 549-50.
77. van der Meer, P., et al., Erythropoietin in cardiovascular diseases. Eur Heart J, 2004. 25(4): p. 285-91.
78. Bergmann, M.W., et al., A pilot study of chronic, low-dose epoetin-{beta} following percutaneous coronary intervention suggests safety, feasibility, and efficacy in patients with symptomatic ischaemic heart failure. Eur J Heart Fail, 2011. 13(5): p. 560-8.
79. Najjar, S.S., et al., Intravenous erythropoietin in patients with ST-segment elevation myocardial infarction: REVEAL: a randomized controlled trial. Jama, 2011. 305(18): p. 1863-72.
80. Pickett, J.L., et al., Normalizing hematocrit in dialysis patients improves brain function. Am J Kidney Dis, 1999. 33(6): p. 1122-30.
81. Adamcio, B., et al., Erythropoietin enhances hippocampal long-term potentiation and memory. BMC Biol, 2008. 6: p. 37.
82. Adamcio, B., et al., Hypoxia inducible factor stabilization leads to lasting improvement of hippocampal memory in healthy mice. Behav Brain Res, 2010. 208(1): p. 80-4.
83. van der Kooij, M.A., et al., Neuroprotective properties and mechanisms of erythropoietin in in vitro and in vivo experimental models for hypoxia/ischemia. Brain Res Rev, 2008. 59(1): p. 22-33.
84. Siren, A.L., et al., Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci U S A, 2001. 98(7): p. 4044-9.
85. Ehrenreich, H., et al., Improvement of cognitive functions in chronic schizophrenic patients by recombinant human erythropoietin. Mol Psychiatry, 2006. 12(2): p. 206-220.
86. Lieutaud, T., et al., Characterization of the pharmacokinetics of human recombinant erythropoietin in blood and brain when administered immediately after lateral fluid percussion brain injury and its pharmacodynamic effects on IL-1beta and MIP-2 in rats. J Neurotrauma, 2008. 25(10): p. 1179-85.
87. Syed, R.S., et al., Efficiency of signalling through cytokine receptors depends critically on receptor orientation. Nature, 1998. 395(6701): p. 511-6.
88. Xiao, P.G., S.T. Xing, and L.W. Wang, Immunological aspects of Chinese medicinal plants as antiageing drugs. J Ethnopharmacol, 1993. 38(2-3): p. 167-75.
89. Han, X., et al., 2,3,5,4′-tetrahydroxystilbene-2-O-β-d-glucoside ameliorates vascular senescence and improves blood flow involving a mechanism of p53 deacetylation. Atherosclerosis, 2012. 225(1): p. 76-82.
90. Zhang, W., et al., Effects of 2,3,4',5-tetrahydroxystilbene 2-O-beta-D-glucoside on vascular endothelial dysfunction in atherogenic-diet rats. Planta Med, 2009. 75(11): p. 1209-14.
91. Hou, Y., et al., Changes in hippocampal synapses and learning-memory abilities in a streptozotocin-treated rat model and intervention by using fasudil hydrochloride. Neuroscience, 2012. 200: p. 120-9.
92. Wang, R., et al., Changes in hippocampal synapses and learning-memory abilities in age-increasing rats and effects of tetrahydroxystilbene glucoside in aged rats. Neuroscience, 2007. 149(4): p. 739-746.
93. Hsu, P.L., et al., Activation of mitochondrial function and Hb expression in non-haematopoietic cells by an EPO inducer ameliorates ischaemic diseases in mice. Br J Pharmacol, 2013. 169(7): p. 1461-76.
94. Horng, L.Y., et al., Activating mitochondrial function and haemoglobin expression with EH-201, an inducer of erythropoietin in neuronal cells, reverses memory impairment. Br J Pharmacol, 2015. 172(19): p. 4741-56.
95. Carbone, S., et al., A high-sugar and high-fat diet impairs cardiac systolic and diastolic function in mice. Int J Cardiol, 2015. 198: p. 66-9.
96. Gao, S., et al., Echocardiography in Mice. Curr Protoc Mouse Biol, 2011. 1: p. 71-83.
97. Betts, C.A., et al., Prevention of exercised induced cardiomyopathy following Pip-PMO treatment in dystrophic mdx mice. Scientific Reports, 2015. 5: p. 8986.
98. Ehninger, D., et al., Reversal of learning deficits in a Tsc2+/- mouse model of tuberous sclerosis. Nat Med, 2008. 14(8): p. 843-8.
99. Baarendse, P.J., et al., Differential involvement of the dorsal hippocampus in passive avoidance in C57bl/6J and DBA/2J mice. Hippocampus, 2008. 18(1): p. 11-9.
100. Wang, H., et al., Repetitive transcranial magnetic stimulation applications normalized prefrontal dysfunctions and cognitive-related metabolic profiling in aged mice. PLoS One, 2013. 8(11): p. e81482.
101. Vecsey, C.G., et al., Sleep deprivation impairs cAMP signalling in the hippocampus. Nature, 2009. 461(7267): p. 1122-5.
102. Rechtschaffen, A., et al., Effects of method, duration, and sleep stage on rebounds from sleep deprivation in the rat. Sleep, 1999. 22(1): p. 11-31.
103. Tousoulis, D., et al., The role of nitric oxide on endothelial function. Curr Vasc Pharmacol, 2012. 10(1): p. 4-18.
104. Gano, L.B., et al., The SIRT1 activator SRT1720 reverses vascular endothelial dysfunction, excessive superoxide production, and inflammation with aging in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2014. 307(12): p. H1754-H1763.
105. Rappou, E., et al., Weight Loss Is Associated With Increased NAD(+)/SIRT1 Expression But Reduced PARP Activity in White Adipose Tissue. J Clin Endocrinol Metab, 2016. 101(3): p. 1263-73.
106. Addis, R.C. and J.A. Epstein, Induced regeneration[mdash]the progress and promise of direct reprogramming for heart repair. Nat Med, 2013. 19(7): p. 829-836.
107. Tardiff, J.C., et al., Targets for therapy in sarcomeric cardiomyopathies. Cardiovascular Research, 2015. 105(4): p. 457-470.
108. Miyata, S., et al., Insufficient sleep impairs driving performance and cognitive function. Neurosci Lett, 2010. 469(2): p. 229-33.
109. Kann, O. and R. Kovacs, Mitochondria and neuronal activity. Am J Physiol Cell Physiol, 2007. 292(2): p. C641-57.
110. Swedberg, K., et al., Treatment of anemia with darbepoetin alfa in systolic heart failure. N Engl J Med, 2013. 368(13): p. 1210-9.
111. Najjar, S.S., et al., Intravenous Erythropoietin in Patients with ST-Segment Elevation Myocardial Infarction: Primary Results of the REVEAL Randomized Controlled Trial. JAMA : the journal of the American Medical Association, 2011. 305(18): p. 1863-1872.
112. Fishbane, S. and A. Besarab, Mechanism of increased mortality risk with erythropoietin treatment to higher hemoglobin targets. Clin J Am Soc Nephrol, 2007. 2(6): p. 1274-82.
113. Ben-Dor, I., et al., Repeated Low-dose of Erythropoietin is Associated with Improved Left Ventricular Function in Rat Acute Myocardial Infarction Model. Cardiovascular Drugs and Therapy, 2007. 21(5): p. 339-346.
114. Minamino, T., et al., Design and Rationale of Low-Dose Erythropoietin in Patients with ST-Segment Elevation Myocardial Infarction (EPO-AMI-II Study): A Randomized Controlled Clinical Trial. Cardiovascular Drugs and Therapy, 2012. 26(5): p. 409-416.
115. Asaumi, Y., et al., Protective role of endogenous erythropoietin system in nonhematopoietic cells against pressure overload-induced left ventricular dysfunction in mice. Circulation, 2007. 115(15): p. 2022-32.
116. Juul, S.E., et al., Erytropoietin concentrations in cerebrospinal fluid of nonhuman primates and fetal sheep following high-dose recombinant erythropoietin. Biol Neonate, 2004. 85(2): p. 138-44.
117. Sakanaka, M., et al., In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Natl Acad Sci U S A, 1998. 95(8): p. 4635-40.
118. Morishita, E., et al., Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death. Neuroscience, 1997. 76(1): p. 105-16.
119. Cherian, L., J.C. Goodman, and C. Robertson, Neuroprotection with erythropoietin administration following controlled cortical impact injury in rats. J Pharmacol Exp Ther, 2007. 322(2): p. 789-94.
120. Shaskey, D.J. and G.A. Green, Sports haematology. Sports Med, 2000. 29(1): p. 27-38.
121. 吳佳璇. 細胞自噬在長期記憶與睡眠中扮演的角色. 國立陽明大學生物藥學研究所碩士論文, 2011.122. 邱淳雅. 脂肪代謝藥物研發平台的研究. 國立陽明大學生物藥學研究所碩士論文, 2009.