跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/15 08:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高俐婷
研究生(外文):Li-Ting Kao
論文名稱:紅血球生成素誘導劑的抗老化相關研究
論文名稱(外文):Study on Anti-Aging Effect of Erythropoietin Inducer
指導教授:吳榮燦
指導教授(外文):Rong-Tsun Wu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物藥學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:121
中文關鍵詞:紅血球生成素老化抗老化粒線體記憶心臟
外文關鍵詞:erythropoietinaginganti-agingmitochondriamemoryheartSIRT1PGC1-aEPO
相關次數:
  • 被引用被引用:0
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
科學家歷經數十年鑽研,老化基本上仍是個謎團。隨著高齡社會的來臨,老化相關疾病治療藥物的開發日趨重要。大多數生物體會隨時間變化而造成生理和代謝過程的功能異常,導致器官功能受損及脆弱性增加死亡。老化與一系列病症的產生有關,包括心血管疾病、神經退化疾病、腎臟功能異常、肝臟衰竭等。
從過去的研究紅血球生成素大多應用於改善腎透析貧血的病人,但這些治療通常需要高劑量的注射,會產生過多的紅血球與血紅蛋白,使血液的黏稠度提升,提高了心血管疾病的風險。
由先前實驗室的研究著重在內生性紅血球生成素誘導劑EH-201對化學物質所誘導的動物疾病模型的治療,而老化與許多慢性疾病息息相關。因此,我們想探討內生性紅血球生成素是否扮演關鍵的作用來抵抗我們身體細胞中所受到的各種壓力,尤其是包括老化的壓力。而內生性紅血球生成素誘導劑可以開發作為老化相關慢性疾病的再生藥物,也是我們想探討的重要課題。
首先我們透過實驗證實老化小鼠與年輕小鼠在肝臟AST檢測與腎臟BUN檢測中看到明顯的差異。因此,我們進一步利用17個月的自然老化小鼠給予餵食EH-201三個月後在心臟方面觀察到左心室搏出分率 (EF)、心肌纖維短縮分率 (FS)隨著餵食EH-201劑量增加 (50mg/kg/day、100mg/kg/day、200mg/kg/day)有增加的趨勢,且心跳速度沒有改變,心電圖的分析結果顯示有回復至年輕小鼠的趨勢,顯示EH-201能改善心臟功能。透過穿透式電子顯微鏡觀察到,EH-201也是隨著劑量增加大幅改善老化小鼠的心肌纖維肌節排列,粒線體累積且體型較大,以及細胞內水腫情形。除此之外,EH-201在心臟中隨著劑量增加 (50mg/kg/day、100mg/kg/day、200mg/kg/day)能促進LC3-II的表現,降低p62的表現,顯示心臟有啟動細胞自噬的路徑。
利用17個月的自然老化小鼠給予餵食EH-201三個月後在動物行為學實驗中透過被動迴避實驗觀察到EH-201 100mg/kg/day、200mg/kg/day能拯救睡眠剝奪所誘發的記憶障礙與鞏固記憶的能力;透過開放場域實驗觀察到EH-201 200mg/kg/day能增強其活動能力與運動耐力性能;透過滾輪是跑步機實驗觀察到EH-201 100mg/kg/day、200mg/kg/day能增強其運動耐力性能。除此之外,EH-201能促進神經滋養因子 (BDNF, NGF, GDNF)以及EPO在海馬迴的表現。
同時在自然老化的小鼠的肝臟方面,餵食EH-201三個月後,透過血清生化數值檢測發現天冬氨酸氨基轉移酶 (AST)隨著EH-201 (50mg/kg/day、100mg/kg/day、200mg/kg/day)劑量增加有下降的現象。除此之外,EH-201也能隨劑量增加而促進SIRT1在肝臟的表現。在腎臟方面,血清尿素氮(BUN)與肌肝酸的數值隨著EH-201劑量增加而有下降的現象。除此之外,EH-201也能隨劑量增加而促進EPO/EPOR的表現,促進SIRT1/PGC1-α的表現來活化粒線體的生合成。
2015年 Carbone S. 等人在Int J Cardiol.文獻中提到,在小鼠飲食中餵食富含糖和飽和脂肪的飲食類似於西方飲食 (WD)會誘發心臟收縮和舒張功能障礙。接著我們進一步探討西方飲食對心臟造成的影響,因此我們將16個月的自然老化小鼠餵食西方飲食兩個月後,發現餵食西方飲食相較於標準飲食的小鼠其WBC有下降的現象以及LDL有上升的現象,且在心臟的心電傳導的過程也發現餵食西方飲食相較於標準飲食的小鼠心電傳導有較慢的現象。透過穿透式電子顯微鏡,西方飲食組別在心臟、海馬迴CA1、肝臟及腎臟有油滴生成且改變線粒體形態和排列的超微結構。
將老化小鼠餵食西方飲食兩個月後再給予EH-201 (50mg/kg/day, 100mg/kg/day, 200mg/kg/day)三個月後在小鼠的外觀明顯觀察到餵食EH-201 50mg/kg/day、100mg/kg/day其皮膚上的毛色趨向於標準飲食的毛色,反觀,西方飲食組別的小鼠其皮膚上的毛色較黃且較稀疏。在心臟方面觀察到左心室搏出分率 (EF)、心肌纖維短縮分率 (FS)隨著餵食EH-201劑量增加有增加的趨勢,與標準飲食小鼠結果相似。在心電圖的分析結果顯示,給予EH-201的組別心跳速度有下降的現象,改善西方飲食所導致心跳加速的現象。但從心臟超音波得知左心室搏出分率 (EF) 與心肌纖維短縮分率 (FS)有增加的趨勢,表示心臟較有力,一次能打出去的血液量較多,每分鐘的心跳就算比較慢,也能供應身體所需。透過穿透式電子顯微鏡觀察到,EH-201 50mg/kg/day改善西方飲食老化小鼠的心肌纖維肌節排列,粒線體累積且體型較大,以及細胞內水腫情形。除此之外,EH-201在心臟中有促進PGC1-α的表現,顯示有活化粒線體的生合成。
利用18個月的西方飲食老化小鼠給予餵食EH-201 (50mg/kg/day, 100mg/kg/day, 200mg/kg/day)三個月後在動物行為學實驗中透過被動迴避實驗觀察到EH-201 組別能拯救睡眠剝奪所誘發的記憶障礙與鞏固記憶的能力;透過開放場域與滾輪跑步機實驗觀察到EH-201 組別能增強其活動能力與運動耐力性能。除此之外, EH-201能促進BDNF在海馬迴的表現。
同時在西方飲食的老化小鼠的肝臟方面,透過穿透式電子顯微鏡觀察到EH-201 50mg/kg/day、100mg/kg/day改善西方飲食引起的肝臟功能異常的粒線體形態和排列的超微結構。
總結,在自然老化小鼠實驗中,內生性紅血球生成素誘導劑 (EH-201)在心臟功能有明顯的改善,改善粒線體的型態與排列方式並啟動細胞自噬,在行為學中有觀察到給予EH-201能拯救睡眠剝奪所誘發的記憶障礙以及增強其耐力性能,同時在肝臟與腎臟中,EH-201也改善其功能並活化粒線體的生合成;在西方飲食模型的老化小鼠實驗中,內生性紅血球生成素誘導劑 (EH-201) 有明顯改善西方飲食所誘導的心臟功能異常現象、改善粒線體的型態與排列方式以及促進粒線體生合成的表現,在動物行為學中有觀察到給予EH-201能拯救睡眠剝奪所誘發的記憶障礙以及增強其耐力性能,同時,在肝臟中也觀察到EH-201減少肝臟細胞中油滴的累積,改善粒線體的型態與排列方式,並促進粒線體的生合成。因此,內生性紅血球生成素誘導劑 (EH-201)可以作為治療心臟功能、神經退化性疾病所引起的記憶障礙以及生理衰老。
Scientists after decades of study, aging is basically still a mystery. With the advent of aging society, the development of drugs for aging related diseases is very important. Most organisms will change over time caused by physiological and metabolic processes dysfunction, leading to impaired organ function and increased vulnerability to death. Aging is related to a series of pathologies such as cardiovascular disorders, neurodegenerative diseases, kidney failure, and liver diseases.
Most of the research on erythropoietin in the past has been used to improve patients with renal dialysis induced anemia, but these treatments usually require high doses of injections that produce excessive red blood cells and hemoglobin, increasing blood viscosity and the risk of cardiovascular disease.
Our previous studies focused on the treatment of endogenous erythropoietin inducer (EH-201) on chemical induced chronic diseases animal model. Many chronic diseases are associated with aging. So, can endogenous EPO play a pivotal role to against the aging stress for all the cells in our body? Is endogenous EPO inducer can be developed as regenerative drug for the aging related chronic diseases?
First, we confirmed that aging mice and young mice have significant differences between aspartate aminotransferase (AST) and blood urea nitrogen (BUN). Therefore, we further used 17 months natural aging mice to treat with or without EH-201 for three months. We observed EH-201 (50mg/kg/day, 100mg/kg/day, 200mg/kg/day) increased the ejection fraction (EF), shortening fraction (FS), but without changed of the heart rate. By echocardiography and electrocardiography, we showed EH-201 improved heart function. By using electron transmission microscopy, EH-201 dose dependently significantly changed ultrastructure of mitochondrial morphology, arrangement and the intracellular edema. In addition, EH-201 dose dependently go through autophagy pathways by increasing LC3-II expression and decreasing p62 expression. Besides, EH-201 dose dependently activated PGC1-alpha expression.
Also, EH-201 recovered sleep deprivation-induced memory impairment and enhanced endurance performance in this natural aging mice model. Most importantly, EH-201 increased the neurotrophic factors (BDNF, NGF, GDNF) and EPO expression in the hippocampus slices of natural aging mice.
In the liver, we showed EH-201 (50mg/kg/day, 100mg/kg/day, 200mg/kg/day) dose dependently reduced aspartate aminotransferase (AST) in the liver of natural aging mice. In addition, EH-201 dose dependently activated SIRT1 expression in the liver slices. In the kidney, EH-201 (50mg/kg/day, 100mg/kg/day, 200mg/kg/day) dose dependently decreased blood urea nitrogen (BUN) and creatinine in natural aging mice. In addition, EH-201 also dose dependently increased EPO/EPOR expression, and promoted SIRT1/PGC1-α for mitochondrial biogenesis in the kidney slices.
In 2015, Carbone S. et al. mentioned a diet rich in sugars and saturated fat, resembling the Western Diet (WD), induced cardiac systolic and diastolic dysfunction in the mouse. We further explored the effects of Western diet on the heart. Using 16 months aging mice fed with Western diet two months later, we found WBC decreased, LDL increased, and ECG abnormalities. By using electron transmission microscopy, Western diet had lipid droplets and changes in ultrastructure of mitochondrial morphology and arrangement in the heart, hippocampus CA1 region, liver and kidney.
After Western diet fed aging mice treated with or without EH-201 (50mg/kg/day, 100mg/kg/day, 200mg/kg/day) for three months, the appearance of skin in the Western diet group is sparse and yellow. On the contrary, EH-201 improved the appearance of the mice near the standard diet mice group. As a result, EH-201 increased the ejection fraction (EF), shortening fraction (FS) similar to standard diet. The ECG analysis showed that EH-201 group decreased heart rate to improve the Western diet caused heartbeat acceleration. The ejection fraction (EF), shortening fraction (FS) increased, even if the heartbeat slower, which might offer more blood for supplying body needs. By using electron transmission microscopy, EH-201 50mg/kg/day significantly changed ultrastructure of mitochondrial morphology, arrangement and the intracellular edema. In addition, EH-201 activated PGC1-α expression in the heart slices.
EH-201 rescued sleep deprivation-induced memory impairment and enhanced endurance performance in Western diet fed aging mice. In addition, EH-201 increased the BDNF expression in the hippocampus slices. Also, by using electron transmission microscopy, EH-201 dose dependently changed ultrastructure of mitochondrial morphology and arrangement in Western Diet induced abnormal cardiovascular function and abnormal liver function.
In conclusion, endogenous erythropoietin inducer (EH-201) significantly improved the cardiac function, changed the mitochondrial morphology and arrangement through autophagy pathways. In addition, EH-201 recovered sleep deprivation-induced memory impairment and enhanced endurance performance in natural aging mice. Simultaneously, endogenous erythropoietin inducer (EH-201) not only improved liver and kidney functions, but also promoted the mitochondrial biogenesis in natural aging mouse model; most importantly, endogenous erythropoietin inducer (EH-201) significantly improved the Western diet-induced cardiac dysfunction, changed the mitochondrial morphology and promoted the mitochondrial biogenesis. In addition, EH-201 recovered sleep deprivation-induced memory impairment and enhanced endurance performance in Western Diet fed aging mice. EH-201 reduced the accumulation of lipid droplets in the liver, changed the mitochondrial morphology and arrangement, and promoted the mitochondrial biogenesis. Thus, endogenous erythropoietin inducer (EH-201) might be used as regenerative drugs for cardiac function, memory disorders, neurodegenerative diseases and physiological aging.
中文摘要 i
Abstract iv
目錄 vii
圖目錄 viii
表目錄 xi
壹. 緒論 1
貳. 實驗藥品與器材 9
參. 研究方法 11
肆. 研究結果 18
伍. 研究討論 33
陸. 參考文獻 38
柒. 圖表 50

圖目錄
Figure 1. The change of liver function and kidney fuction between young mice (5 months) and aging mice (15 months). 50
Figure 2. Effects of EH-201 on survival rate in natural aging mice. 51
Figure 3. Effects of EH-201 on survival rate in natural aging mice. 53
Figure 4. Effects of EH-201 on cardiac functionality in natural aging mice. 55
Figure 5. Effects of EH-201 on cardiac functionality in natural aging mice. 56
Figure 6. EH-201 improves cardiac abnormality in natural aging mice. 57
Figure 7. Effects of EH-201 on H&E stain in natural aging mouse liver sections. 58
Figure 8. Effects of EH-201 on H&E stain in renal glomerulus sections of natural aging mouse kidneys. 59
Figure 9. Effects of EH-201 on H&E stain in renal tubule sections of natural aging mouse kidneys. 60
Figure 10. Effects of EH-201 on H&E stain in left ventricular sections of natural aging mouse hearts. 61
Figure 11. Effects of EH-201 on Masson’s Trichrome stain in left ventricular sections of natural aging mouse hearts. 62
Figure 12. Effects of EH-201 on H&E stain in natural aging mouse liver sections. 63
Figure 13. Effects of EH-201 on H&E stain in renal glomerulus sections of natural aging mouse kidneys. 64
Figure 14. Effects of EH-201 on H&E stain in left ventricular sections of natural aging mouse hearts. 65
Figure 15. Effects of EH-201 on ultrastructural changes of cardiomyocytes in natural aging mice. 66
Figure 16. EH-201 activated SIRT1 expression of liver slices in natural aging mice. 67
Figure 17. EH-201 increased EPO, EPO receptor and mitochondrial activity expression of kidney slices in natural aging mice. 68
Figure 18. EH-201 activated autophagy of heart slices in natural aging mice. 69
Figure 19. EH-201 activated mitochondrial activity expression of liver slices in natural aging mice. 70
Figure 20. EH-201 increased EPO receptor, SIRT1 expression and mitochondrial activity expression of kidney slices in natural aging mice. 71
Figure 21. Effects of EH-201 on protein expression of heart slices in natural aging mice. 72
Figure 22. Effects of EH-201 on sleep deprivation-induced memory loss in natural aging mice. 73
Figure 23. Effects of EH-201 on sleep deprivation-induced memory loss in natural aging mice. 74
Figure 24. Effects of EH-201 on sleep deprivation-induced memory loss in natural aging mice. 75
Figure 25. Effects of EH-201 on locomotor activity in natural aging mice. 76
Figure 26. Effects of EH-201 on locomotor activity in natural aging mice. 77
Figure 27. Effects of EH-201 on locomotor activity in natural aging mice. 78
Figure 28. Effects of EH-201 on rotarod in natural aging mice. 79
Figure 29. Effects of EH-201 on rotarod in natural aging mice. 80
Figure 30. EH-201 activated mitochondrial activity expression of brain cortex slices in natural aging mice. 81
Figure 31. EH-201 increased BDNF expression of hippocampus slices in natural aging mice. 82
Figure 32. EH-201 increased BDNF expression of hypothalamus slices in natural aging mice. 83
Figure 33. Effects of EH-201 on protein expression of brain cortex slices in natural aging mice. 84
Figure 34. EH-201 induced neurotrophic fators expression of hippocampus slices in natural aging mice. 85
Figure 35. Effects of Western Diet induced 8 weeks on survival rate in aging mice. 86
Figure 36. Effects of Western Diet on cardiac functionality. 88
Figure 37. Western Diet deteriorated cardiac abnormality. 89
Figure 38. Effects of Western Diet on H&E stain in mouse liver sections. 90
Figure 39. Effects of Western Diet on ultrastructural changes in hepatocytes. 91
Figure 40. Effects of Western Diet on H&E stain in renal tubule sections of mouse kidneys. 92
Figure 41. Effects of Western Diet on ultrastructural changes in renal tubules. 93
Figure 42. Western Diet induced cardiomyocyte hypertrophy. 94
Figure 43. Effects of Western Diet on ultrastructural changes in cardiomyocytes. 95
Figure 44. Effects of Western Diet on H&E stain in hippocampal sections. 96
Figure 45. Effects of Western Diet on ultrastructural changes in hippocampal CA1 region. 97
Figure 46. Effects of EH-201 on survival rate in Western Diet fed aging mice. 98
Figure 47. EH-201 maintained the normal appearance. 99
Figure 48. Effects of EH-201 on cardiac functionality in Western Diet fed aging mice. 102
Figure 49. Effects of EH-201 on cardiac abnormality in Western Diet fed aging mice. 103
Figure 50. Effects of EH-201 on H&E stain of liver sections in Western Diet fed aging mice. 104
Figure 51. Effects of EH-201 on ultrastructural changes of hepatocytes in Western Diet fed aging mice. 105
Figure 52. Effects of EH-201 on ultrastructural changes of hepatocytes in Western Diet fed aging mice. 106
Figure 53. Effects of EH-201 on H&E stain of renal tubule sections in Western Diet fed aging mice. 108
Figure 54. Effects of EH-201 on H&E stain of left ventricular sections in Western Diet fed aging mice. 109
Figure 55. Effects of EH-201 on ultrastructural changes of cardiomyocytes in Western Diet fed aging mice. 110
Figure 56. EH-201 increased SIRT1 expression of liver slices in Western Diet fed aging mice. 111
Figure 57. Effects of EH-201 on protein expression of kidney slice in Western Diet fed aging mice. 112
Figure 58. Effects of EH-201 on protein expression of heart slices in Western Diet fed aging mice. 113
Figure 59. EH-201 recovered the sleep deprivation-induced memory loss in Western Diet fed aging mice. 114
Figure 60. EH-201 enhanced locomotor activity in Western Diet fed aging mice. 115
Figure 61. EH-201 enhanced endurance performance in Western Diet fed aging mice. 116
Figure 62. EH-201 increased EPO expression of brain cortex in Western Diet fed aging mice. 117
Figure 63. EH-201 increased BDNF expression of hippocampus in Western Diet fed aging mice. 118
Figure 64. The effect of EH-201 on oxygen consumption rates (OCR) of hippocampus slices in aging mice. 119
Figure 65. The effect of EH-201 on oxygen consumption rate (OCR) of heart slices in aging mice. 119
Figure 66. Viability of bEnd.3 cells treated with EH-201. 120
Figure 67. The effect of EH-201 on eNOS production in bEnd.3 cell line. 120
Figure 68. EH-201 induced SIRT1 expression of bEnd.3 cell line. 121


表目錄
Table 1. Biochemical parameters of EH-201 treatment for 11 weeks in natural aging mice. 52
Table 2. Biochemical parameters of EH-201 treatment for 11 weeks in natural aging mice. 52
Table 3. Biochemical parameters of EH-201 treatment for 3 months in natural aging mice. 54
Table 4. Biochemical parameters of EH-201 treatment for 3 months in natural aging mice. 54
Table 5. Nutritional facts of Western Diet. 86
Table 6. Biochemical parameters of Western Diet treatment for 8 weeks. 87
Table 7. Biochemical parameters of Western Diet treatment for 8 weeks. 87
Table 8. Biochemical parameters of EH-201 treatment for 12 weeks in Western Diet fed aging mice. 100
Table 9. Biochemical parameters of EH-201 treatment for 12 weeks in Western Diet fed aging mice. 101
1. Kennedy, B.K., et al., Geroscience: linking aging to chronic disease. Cell, 2014. 159(4): p. 709-13.
2. Lopez-Otin, C., et al., The hallmarks of aging. Cell, 2013. 153(6): p. 1194-217.
3. Nakou, E.S., et al., Healthy aging and myocardium: A complicated process with various effects in cardiac structure and physiology. Int J Cardiol, 2016. 209: p. 167-75.
4. Chakravarti, B., et al., Proteomic profiling of aging in the mouse heart: Altered expression of mitochondrial proteins. Arch Biochem Biophys, 2008. 474(1): p. 22-31.
5. Roh, J., et al., The Role of Exercise in Cardiac Aging. Circulation Research, 2016. 118(2): p. 279.
6. Huber, S.J. and G.W. Paulson, Memory impairment associated with progression of Huntington's disease. Cortex, 1987. 23(2): p. 275-83.
7. Walsh, D.M. and D.J. Selkoe, Deciphering the molecular basis of memory failure in Alzheimer's disease. Neuron, 2004. 44(1): p. 181-93.
8. Weintraub, D., et al., Evidence for impaired encoding and retrieval memory profiles in Parkinson disease. Cogn Behav Neurol, 2004. 17(4): p. 195-200.
9. Peters, R., Ageing and the brain. Postgrad Med J, 2006. 82(964): p. 84-8.
10. Burke, S.N. and C.A. Barnes, Neural plasticity in the ageing brain. Nat Rev Neurosci, 2006. 7(1): p. 30-40.
11. Harman, D., Role of free radicals in aging and disease. Ann N Y Acad Sci, 1992. 673: p. 126-41.
12. Musso, C.G. and D.G. Oreopoulos, Aging and physiological changes of the kidneys including changes in glomerular filtration rate. Nephron Physiol, 2011. 119 Suppl 1: p. p1-5.
13. Nitta, K., et al., Aging and chronic kidney disease. Kidney Blood Press Res, 2013. 38(1): p. 109-20.
14. Bolignano, D., et al., The aging kidney revisited: a systematic review. Ageing Res Rev, 2014. 14: p. 65-80.
15. Anantharaju, A., A. Feller, and A. Chedid, Aging Liver. A review. Gerontology, 2002. 48(6): p. 343-53.
16. Schmucker, D.L., Age-related changes in liver structure and function: Implications for disease ? Exp Gerontol, 2005. 40(8-9): p. 650-9.
17. Yuan, Y., et al., Regulation of SIRT1 in aging: Roles in mitochondrial function and biogenesis. Mech Ageing Dev, 2016. 155: p. 10-21.
18. Ou, X., et al., SIRT1 positively regulates autophagy and mitochondria function in embryonic stem cells under oxidative stress. Stem cells (Dayton, Ohio), 2014. 32(5): p. 1183-1194.
19. Hua, F., et al., [Autophagy in ageing and ageing-related diseases]. Yao Xue Xue Bao, 2014. 49(6): p. 764-73.
20. Bordone, L. and L. Guarente, Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol, 2005. 6(4): p. 298-305.
21. Haigis, M.C. and L.P. Guarente, Mammalian sirtuins--emerging roles in physiology, aging, and calorie restriction. Genes Dev, 2006. 20(21): p. 2913-21.
22. Wenz, T., Regulation of mitochondrial biogenesis and PGC-1alpha under cellular stress. Mitochondrion, 2013. 13(2): p. 134-42.
23. Lagouge, M., et al., Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell, 2006. 127(6): p. 1109-22.
24. Baur, J.A., et al., Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 2006. 444(7117): p. 337-42.
25. Meijer, A.J. and P. Codogno, Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol, 2004. 36(12): p. 2445-62.
26. Rubinsztein, D.C., G. Marino, and G. Kroemer, Autophagy and aging. Cell, 2011. 146(5): p. 682-95.
27. Ciechanover, A., Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol, 2005. 6(1): p. 79-87.
28. Linton, P.-J., et al., This old heart: Cardiac aging and autophagy. Journal of Molecular and Cellular Cardiology, 2015. 83: p. 44-54.
29. Rubinsztein, David C., G. Mariño, and G. Kroemer, Autophagy and Aging. Cell, 2011. 146(5): p. 682-695.
30. Lenoir, O., P.L. Tharaux, and T.B. Huber, Autophagy in kidney disease and aging: lessons from rodent models. Kidney Int, 2016. 90(5): p. 950-964.
31. Lesnefsky, E.J., Q. Chen, and C.L. Hoppel, Mitochondrial Metabolism in Aging Heart. Circulation Research, 2016. 118(10): p. 1593.
32. Gustafsson, A.B. and R.A. Gottlieb, Heart mitochondria: gates of life and death. Cardiovasc Res, 2008. 77(2): p. 334-43.
33. Tocchi, A., et al., Mitochondrial dysfunction in cardiac aging. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2015. 1847(11): p. 1424-1433.
34. Saito, T. and J. Sadoshima, The Molecular Mechanisms of Mitochondrial Autophagy/Mitophagy in the Heart. Circulation research, 2015. 116(8): p. 1477-1490.
35. Moreira, P.I., et al., Mitochondrial dysfunction is a trigger of Alzheimer's disease pathophysiology. Biochim Biophys Acta, 2010. 1802(1): p. 2-10.
36. Lin, M.T. and M.F. Beal, Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006. 443(7113): p. 787-95.
37. Yue, Z., et al., The cellular pathways of neuronal autophagy and their implication in neurodegenerative diseases. Biochim Biophys Acta, 2009. 1793(9): p. 1496-507.
38. Nixon, R.A., The role of autophagy in neurodegenerative disease. Nat Med, 2013. 19(8): p. 983-997.
39. Kesidou, E., et al., Autophagy and neurodegenerative disorders. Neural Regen Res, 2013. 8(24): p. 2275-83.
40. Cui, L., et al., Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell, 2006. 127(1): p. 59-69.
41. Manczak, M., et al., Mitochondria are a direct site of A beta accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet, 2006. 15(9): p. 1437-49.
42. Schapira, A.H., Mitochondria in the aetiology and pathogenesis of Parkinson's disease. Lancet Neurol, 2008. 7(1): p. 97-109.
43. Maquet, P., The role of sleep in learning and memory. Science, 2001. 294(5544): p. 1048-52.
44. Chee, M.W. and L.Y. Chuah, Functional neuroimaging insights into how sleep and sleep deprivation affect memory and cognition. Curr Opin Neurol, 2008. 21(4): p. 417-23.
45. Andreazza, A.C., et al., Impairment of the mitochondrial electron transport chain due to sleep deprivation in mice. J Psychiatr Res, 2010. 44(12): p. 775-80.
46. Silva, R.H., et al., Role of hippocampal oxidative stress in memory deficits induced by sleep deprivation in mice. Neuropharmacology, 2004. 46(6): p. 895-903.
47. Brouillet, E., et al., Replicating Huntington's disease phenotype in experimental animals. Prog Neurobiol, 1999. 59(5): p. 427-68.
48. Koroshetz, W.J., et al., Energy metabolism defects in Huntington's disease and effects of coenzyme Q10. Ann Neurol, 1997. 41(2): p. 160-5.
49. Deguchi, Y., et al., Blood-brain barrier transport of 125I-labeled basic fibroblast growth factor. Pharm Res, 2000. 17(1): p. 63-9.
50. Hu, Z., M. Ulfendahl, and N.P. Olivius, NGF stimulates extensive neurite outgrowth from implanted dorsal root ganglion neurons following transplantation into the adult rat inner ear. Neurobiol Dis, 2005. 18(1): p. 184-92.
51. Lapchak, P.A., Nerve growth factor pharmacology: application to the treatment of cholinergic neurodegeneration in Alzheimer's disease. Exp Neurol, 1993. 124(1): p. 16-20.
52. Klein, A.B., et al., Increased serum brain-derived neurotrophic factor (BDNF) levels in patients with narcolepsy. Neurosci Lett, 2013. 544: p. 31-5.
53. Harmancey, R., C.R. Wilson, and H. Taegtmeyer, Adaptation and maladaptation of the heart in obesity. Hypertension, 2008. 52(2): p. 181-7.
54. Alpert, M.A., Obesity cardiomyopathy: pathophysiology and evolution of the clinical syndrome. Am J Med Sci, 2001. 321(4): p. 225-36.
55. Lopaschuk, G.D., et al., Myocardial fatty acid metabolism in health and disease. Physiol Rev, 2010. 90(1): p. 207-58.
56. Mauro, C., et al., Obesity-Induced Metabolic Stress Leads to Biased Effector Memory CD4+ T Cell Differentiation via PI3K p110delta-Akt-Mediated Signals. Cell Metab, 2017. 25(3): p. 593-609.
57. Goldwasser, E., Erythropoietin and the differentiation of red blood cells. Fed Proc, 1975. 34(13): p. 2285-92.
58. Semenza, G.L., et al., Cell-type-specific and hypoxia-inducible expression of the human erythropoietin gene in transgenic mice. Proc Natl Acad Sci U S A, 1991. 88(19): p. 8725-9.
59. Sawada, K., et al., Purification of human erythroid colony-forming units and demonstration of specific binding of erythropoietin. Journal of Clinical Investigation, 1987. 80(2): p. 357-366.
60. Villeval, J.L., et al., Autocrine stimulation by erythropoietin (Epo) requires Epo secretion. Blood, 1994. 84(8): p. 2649-62.
61. Fandrey, J., Oxygen-dependent and tissue-specific regulation of erythropoietin gene expression. Am J Physiol Regul Integr Comp Physiol, 2004. 286(6): p. R977-88.
62. Brezis, M. and S. Rosen, Hypoxia of the renal medulla--its implications for disease. N Engl J Med, 1995. 332(10): p. 647-55.
63. Lin, F.K., et al., Cloning and expression of the human erythropoietin gene. Proc Natl Acad Sci U S A, 1985. 82(22): p. 7580-4.
64. Eschbach, J.W., et al., Correction of the anemia of end-stage renal disease with recombinant human erythropoietin. Results of a combined phase I and II clinical trial. N Engl J Med, 1987. 316(2): p. 73-8.
65. Melnikova, I., Anaemia therapies. Nat Rev Drug Discov, 2006. 5(8): p. 627-8.
66. Arcasoy, M.O., The non-haematopoietic biological effects of erythropoietin. Br J Haematol, 2008. 141(1): p. 14-31.
67. Juneja, V., et al., Continuing reassessment of the risks of erythropoiesis-stimulating agents in patients with cancer. Clin Cancer Res, 2008. 14(11): p. 3242-7.
68. Ogino, A., et al., Erythropoietin receptor signaling mitigates renal dysfunction-associated heart failure by mechanisms unrelated to relief of anemia. J Am Coll Cardiol, 2010. 56(23): p. 1949-58.
69. Parsa, C.J., et al., A novel protective effect of erythropoietin in the infarcted heart. Journal of Clinical Investigation, 2003. 112(7): p. 999-1007.
70. Digicaylioglu, M. and S.A. Lipton, Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kappaB signalling cascades. Nature, 2001. 412(6847): p. 641-7.
71. Lund, A., C. Lundby, and N.V. Olsen, High-dose erythropoietin for tissue protection. Eur J Clin Invest, 2014. 44(12): p. 1230-8.
72. Besarab, A., et al., The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N Engl J Med, 1998. 339(9): p. 584-90.
73. Skali, H., et al., Stroke in patients with type 2 diabetes mellitus, chronic kidney disease, and anemia treated with Darbepoetin Alfa: the trial to reduce cardiovascular events with Aranesp therapy (TREAT) experience. Circulation, 2011. 124(25): p. 2903-8.
74. Ehrenreich, H., et al., Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke, 2009. 40(12): p. e647-56.
75. Carraway, M.S., et al., Erythropoietin activates mitochondrial biogenesis and couples red cell mass to mitochondrial mass in the heart. Circ Res, 2010. 106(11): p. 1722-30.
76. Mehta, J.L., Erythropoietin in cardioprotection: does it have a future or is it all in the past? Cardiovasc Res, 2008. 79(4): p. 549-50.
77. van der Meer, P., et al., Erythropoietin in cardiovascular diseases. Eur Heart J, 2004. 25(4): p. 285-91.
78. Bergmann, M.W., et al., A pilot study of chronic, low-dose epoetin-{beta} following percutaneous coronary intervention suggests safety, feasibility, and efficacy in patients with symptomatic ischaemic heart failure. Eur J Heart Fail, 2011. 13(5): p. 560-8.
79. Najjar, S.S., et al., Intravenous erythropoietin in patients with ST-segment elevation myocardial infarction: REVEAL: a randomized controlled trial. Jama, 2011. 305(18): p. 1863-72.
80. Pickett, J.L., et al., Normalizing hematocrit in dialysis patients improves brain function. Am J Kidney Dis, 1999. 33(6): p. 1122-30.
81. Adamcio, B., et al., Erythropoietin enhances hippocampal long-term potentiation and memory. BMC Biol, 2008. 6: p. 37.
82. Adamcio, B., et al., Hypoxia inducible factor stabilization leads to lasting improvement of hippocampal memory in healthy mice. Behav Brain Res, 2010. 208(1): p. 80-4.
83. van der Kooij, M.A., et al., Neuroprotective properties and mechanisms of erythropoietin in in vitro and in vivo experimental models for hypoxia/ischemia. Brain Res Rev, 2008. 59(1): p. 22-33.
84. Siren, A.L., et al., Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci U S A, 2001. 98(7): p. 4044-9.
85. Ehrenreich, H., et al., Improvement of cognitive functions in chronic schizophrenic patients by recombinant human erythropoietin. Mol Psychiatry, 2006. 12(2): p. 206-220.
86. Lieutaud, T., et al., Characterization of the pharmacokinetics of human recombinant erythropoietin in blood and brain when administered immediately after lateral fluid percussion brain injury and its pharmacodynamic effects on IL-1beta and MIP-2 in rats. J Neurotrauma, 2008. 25(10): p. 1179-85.
87. Syed, R.S., et al., Efficiency of signalling through cytokine receptors depends critically on receptor orientation. Nature, 1998. 395(6701): p. 511-6.
88. Xiao, P.G., S.T. Xing, and L.W. Wang, Immunological aspects of Chinese medicinal plants as antiageing drugs. J Ethnopharmacol, 1993. 38(2-3): p. 167-75.
89. Han, X., et al., 2,3,5,4′-tetrahydroxystilbene-2-O-β-d-glucoside ameliorates vascular senescence and improves blood flow involving a mechanism of p53 deacetylation. Atherosclerosis, 2012. 225(1): p. 76-82.
90. Zhang, W., et al., Effects of 2,3,4',5-tetrahydroxystilbene 2-O-beta-D-glucoside on vascular endothelial dysfunction in atherogenic-diet rats. Planta Med, 2009. 75(11): p. 1209-14.
91. Hou, Y., et al., Changes in hippocampal synapses and learning-memory abilities in a streptozotocin-treated rat model and intervention by using fasudil hydrochloride. Neuroscience, 2012. 200: p. 120-9.
92. Wang, R., et al., Changes in hippocampal synapses and learning-memory abilities in age-increasing rats and effects of tetrahydroxystilbene glucoside in aged rats. Neuroscience, 2007. 149(4): p. 739-746.
93. Hsu, P.L., et al., Activation of mitochondrial function and Hb expression in non-haematopoietic cells by an EPO inducer ameliorates ischaemic diseases in mice. Br J Pharmacol, 2013. 169(7): p. 1461-76.
94. Horng, L.Y., et al., Activating mitochondrial function and haemoglobin expression with EH-201, an inducer of erythropoietin in neuronal cells, reverses memory impairment. Br J Pharmacol, 2015. 172(19): p. 4741-56.
95. Carbone, S., et al., A high-sugar and high-fat diet impairs cardiac systolic and diastolic function in mice. Int J Cardiol, 2015. 198: p. 66-9.
96. Gao, S., et al., Echocardiography in Mice. Curr Protoc Mouse Biol, 2011. 1: p. 71-83.
97. Betts, C.A., et al., Prevention of exercised induced cardiomyopathy following Pip-PMO treatment in dystrophic mdx mice. Scientific Reports, 2015. 5: p. 8986.
98. Ehninger, D., et al., Reversal of learning deficits in a Tsc2+/- mouse model of tuberous sclerosis. Nat Med, 2008. 14(8): p. 843-8.
99. Baarendse, P.J., et al., Differential involvement of the dorsal hippocampus in passive avoidance in C57bl/6J and DBA/2J mice. Hippocampus, 2008. 18(1): p. 11-9.
100. Wang, H., et al., Repetitive transcranial magnetic stimulation applications normalized prefrontal dysfunctions and cognitive-related metabolic profiling in aged mice. PLoS One, 2013. 8(11): p. e81482.
101. Vecsey, C.G., et al., Sleep deprivation impairs cAMP signalling in the hippocampus. Nature, 2009. 461(7267): p. 1122-5.
102. Rechtschaffen, A., et al., Effects of method, duration, and sleep stage on rebounds from sleep deprivation in the rat. Sleep, 1999. 22(1): p. 11-31.
103. Tousoulis, D., et al., The role of nitric oxide on endothelial function. Curr Vasc Pharmacol, 2012. 10(1): p. 4-18.
104. Gano, L.B., et al., The SIRT1 activator SRT1720 reverses vascular endothelial dysfunction, excessive superoxide production, and inflammation with aging in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2014. 307(12): p. H1754-H1763.
105. Rappou, E., et al., Weight Loss Is Associated With Increased NAD(+)/SIRT1 Expression But Reduced PARP Activity in White Adipose Tissue. J Clin Endocrinol Metab, 2016. 101(3): p. 1263-73.
106. Addis, R.C. and J.A. Epstein, Induced regeneration[mdash]the progress and promise of direct reprogramming for heart repair. Nat Med, 2013. 19(7): p. 829-836.
107. Tardiff, J.C., et al., Targets for therapy in sarcomeric cardiomyopathies. Cardiovascular Research, 2015. 105(4): p. 457-470.
108. Miyata, S., et al., Insufficient sleep impairs driving performance and cognitive function. Neurosci Lett, 2010. 469(2): p. 229-33.
109. Kann, O. and R. Kovacs, Mitochondria and neuronal activity. Am J Physiol Cell Physiol, 2007. 292(2): p. C641-57.
110. Swedberg, K., et al., Treatment of anemia with darbepoetin alfa in systolic heart failure. N Engl J Med, 2013. 368(13): p. 1210-9.
111. Najjar, S.S., et al., Intravenous Erythropoietin in Patients with ST-Segment Elevation Myocardial Infarction: Primary Results of the REVEAL Randomized Controlled Trial. JAMA : the journal of the American Medical Association, 2011. 305(18): p. 1863-1872.
112. Fishbane, S. and A. Besarab, Mechanism of increased mortality risk with erythropoietin treatment to higher hemoglobin targets. Clin J Am Soc Nephrol, 2007. 2(6): p. 1274-82.
113. Ben-Dor, I., et al., Repeated Low-dose of Erythropoietin is Associated with Improved Left Ventricular Function in Rat Acute Myocardial Infarction Model. Cardiovascular Drugs and Therapy, 2007. 21(5): p. 339-346.
114. Minamino, T., et al., Design and Rationale of Low-Dose Erythropoietin in Patients with ST-Segment Elevation Myocardial Infarction (EPO-AMI-II Study): A Randomized Controlled Clinical Trial. Cardiovascular Drugs and Therapy, 2012. 26(5): p. 409-416.
115. Asaumi, Y., et al., Protective role of endogenous erythropoietin system in nonhematopoietic cells against pressure overload-induced left ventricular dysfunction in mice. Circulation, 2007. 115(15): p. 2022-32.
116. Juul, S.E., et al., Erytropoietin concentrations in cerebrospinal fluid of nonhuman primates and fetal sheep following high-dose recombinant erythropoietin. Biol Neonate, 2004. 85(2): p. 138-44.
117. Sakanaka, M., et al., In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Natl Acad Sci U S A, 1998. 95(8): p. 4635-40.
118. Morishita, E., et al., Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death. Neuroscience, 1997. 76(1): p. 105-16.
119. Cherian, L., J.C. Goodman, and C. Robertson, Neuroprotection with erythropoietin administration following controlled cortical impact injury in rats. J Pharmacol Exp Ther, 2007. 322(2): p. 789-94.
120. Shaskey, D.J. and G.A. Green, Sports haematology. Sports Med, 2000. 29(1): p. 27-38.
121. 吳佳璇. 細胞自噬在長期記憶與睡眠中扮演的角色. 國立陽明大學生物藥學研究所碩士論文, 2011.
122. 邱淳雅. 脂肪代謝藥物研發平台的研究. 國立陽明大學生物藥學研究所碩士論文, 2009.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊