跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/15 10:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭怡惠
研究生(外文):Yi-Hue Kuo
論文名稱:探討PRMT1/p38α干擾作用對於白血病細胞藥物反應的影響
論文名稱(外文):To examine the effect of PRMT1/p38α perturbation on the drug responses of leukemia cells
指導教授:林蔚靖
指導教授(外文):Wey-Jinq Lin
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物藥學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:61
中文關鍵詞:蛋白質精氨酸甲基轉移酶1白血病細胞
外文關鍵詞:PRMT1p38αleukemia cells
相關次數:
  • 被引用被引用:1
  • 點閱點閱:147
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
白血病為常見的孩童及老年人癌症,目前以化療、促分化療法及標靶治療為主要治療方針。90%以上的慢性骨髓性白血病 (chronic myeloid leukemia,CML)病患帶有BCR-ABL致癌基因。BCR-ABL融合蛋白俱持續性酪胺酸激酶的活性,因而導致細胞異常增生、分化或存活。Imatinib (商品名: Glivec;中文名:基利克) 為針對帶有BCR-ABL融合蛋白的CML所採用具特異性的酪胺酸激酶抑制劑,是目前第一線治療藥物並有良好的緩解作用。然而,仍有CML病患面臨Imatinib治療反應不佳、產生抗藥性及副作用等挑戰。因此,尋找新的合併治療標靶以增加Imatinib的成效是目前需要的新治療策略。p38 MAPK活性受上游磷酸化cascade的嚴謹調控,實驗室過去的研究中證實蛋白質精氨酸甲基轉移酶 (PRMT1) 會藉由甲基化作用促進 p38α的活化,進而影響紅血球及巨核球的分化。本研究想進一步探討PRMT1/p38α軸線能否影響Imatinib的作用路徑。本研究中,以基因工程的方式改變具BCR-ABL致癌基因的人類CML細胞株K562中p38α或PRMT1的表現程度,並探討對Imatinib藥效的影響。結果指出,下調p38α或其上游磷酸激酶MKK3的表現量,均能顯著增加細胞對Imatinib誘導的抑制細胞總數及促進紅血球分化。此外,下調p38α的表現量能進一步增加 Imatinib誘導的細胞死亡。這些現象均進一步以西方墨點法或流式細胞分析法驗證。然而下調p38β的表現量則無法明顯影響Imatinib的藥效反應,顯現p38 MAPK的異形體在Imatinib的藥效反應扮演不同的角色。此外,以p38α的小分子抑制劑 (VX702) 併用Imatinib後確實能增加Imatinib對K562細胞株的抑制作用。這也證實p38α有潛力成為CML合併療法上的新標靶。此外,若上調PRMT1的表現量能增加細胞對Imatinib誘導的抑制細胞總數及促進紅血球分化,而其中PRMT1的精胺酸甲基轉移酶活性是必要的。此部份的結果亦為過去文獻未提及過的成效,提供未來白血病治療上併用藥物的新策略。
Chronic myeloid leukemia (CML) is caused mainly, in > 90% of patients, by the formation of BCR-ABL oncogene, which possesses unregulated active tyrosine kinase activity leading to abnormal cell proliferating, differentiation and survival. Imatinib is effective for BCR-ABL positive CML, however, patients (20% to 30%) still face the challenges of non-responsiveness, resistance and drug-related side effects. New targets which provide a combined effect with Imatinib is a promising strategy. p38MAPKs, particularly p38α, play a crucial role in hematopoiesis. Our previous studies have unveiled, as a novel regulatory mechanism, that protein methylation via PRMT1 (protein arginine methyltransferases 1) regulates p38α activity and thus participates in regulation of erythroid and megakaryocyte differentiation. Human K562 leukemia cells carrying a characteristic BCR-ABL fusion oncogene are used in this study to examine whether p38α and/or PRMT1 sensitizes cell responses to Imatinib as a proof of concept for a potential combined therapy for CML. In this study, the expression level of p38α or PRMT1 in K562 cells was elevated or reduced. I found that knockdown of p38α and its upstream kinase MKK3 not only enhanced Imatinib-induced cell death/growth, growth inhibition, but also promoted erythroid differentiation, however, knockdown of p38β did not significantly affect the response to Imatinib. These indicated that p38 MAPK isoforms play unique roles upon Imatinib treatment.VX702 is a selective inhibitor of p38. When combined with VX702, Imatinib suppressed cell growth to a significantly higher extent in K562 cells. Overexpression of PRMT1 significantly enhanced Imatinib-induced growth inhibition and erythroid differentiation and the methyltransferase activity of PRMT1 was required for this effect. This study demonstrates that the PRMT1/p38α axis is a potential target for sensitizing CML cells to Imatinib treatment and provides evidence suggesting a novel strategy of combined therapy for CML treatment.
目錄
目錄 i
縮寫表 iii
中英文對照表 v
圖次目錄 vi
中文摘要 viii
英文摘要 ix
研究目標 x
緒論 1
實驗材料 10
實驗方法 14
結果 19
一、探討K562細胞株中p38α的表現量對Imatinib藥效的影響 19
1. 下調p38α的表現量能增加細胞對Imatinib的藥效反應 19
2.下調p38α的表現量可以增加Imatinib誘導的DNA片斷化 20
3.下調p38α的表現量可以增加Imatinib誘導的Caspase 3活性 21
4.下調p38α的表現量可以增加Imatinib誘導的紅血球分化 21
5.以VX702合併Imatinib能增加藥物對細胞的抑制作用 22
二、探討K562細胞株中MKK3的表現量對Imatinib藥效的影響 22
1.下調MKK3的表現量能增加細胞對Imatinib的藥效反應 22
2.下調MKK3的表現量可以增加Imatinib誘導的紅血球分化 23
三、探討K562細胞株中p38β的表現量對Imatinib藥效的影響 24
1. 下調p38β的表現量僅能些微影響細胞對Imatinib的藥效反應 24
2.下調p38β的表現量些微影響Imatinib誘導的紅血球分化 25
四、K562細胞株中改變PRMT1的表現量對Imatinib藥效的影響 25
1.上調PRMT1的表現量能增加細胞對Imatinib的藥效反應 25
2.上調PRMT1的表現量可以增加Imatinib誘導的紅血球分化 26
3.PRMT1的甲基轉移酶活性在Imatinib誘導的紅血球分化中是必要的 26
4.下調PRMT1的表現量能些微影響細胞對Imatinib的藥效反應 27
5.下調PRMT1的表現量些微影響Imatinib誘導的紅血球分化 28
討論 29
參考文獻 34
圖次 40

圖次目錄
Figure 1. Cellular responses of K562 cells to Imatinib 40
Figure 2. Knockdown of p38α enhanced cellular responses to Imatinib. 41
Figure 3. shRNA control had no effect on cellular responses to Imatinib…………....43
Figure 4. Analysis of cell size and granularity in K562 and P2B6 upon Imatinib……... treatment……………………………………………………………...……….…44
Figure 5. Knockdown of p38α enhanced DNA fragmentation of cells treated with
Imatinib……………………………………………………………..…………... 45
Figure 6. Knockdown of p38α enhanced activation of Caspase 3 in cells treated with Imatinib…………………………………………………………………………. 47
Figure 7. Knockdown of p38α enhanced Imatinib-induced erythroid differentiation..48
Figure 8. Pharmacological inhibition of p38α enhanced cellular responses to Imatinib. 49
Figure 9. Knockdown of MKK3 enhanced cellular responses to Imatinib. 51
Figure 10. Knockdown of MKK3 enhanced Imatinib-induced erythroid differentiation 52
Figure 11. Knockdown of p38β slightly affected cellular responses to Imatinib 53
Figure 12. Knockdown of p38β slightly affected Imatinib-induced erythroid differentiation………………………………….....……………………………...55
Figure 13. Overexpression of PRMT1 enhanced cellular responses to Imatinib 56
Figure 14. Overexpression of PRMT1 enhanced Imatinib-induced erythroid differentiation………………………………………………….……………….. 57
Figure 15. The methyltransferase activity of PRMT1 is required for Imatinib-induced erythroid differentiation…………………………………………..…………….58
Figure 16. Knockdown of PRMT1 slightly affected cellular responses to Imatinib. 59

Figure 17. Knockdown of PRMT1 slightly affected Imatinib-induced erythroid differentiation………………………………………...…………………………60
Figure S1. Knockdown of p38α in K562 cells by shRNA…………………………...61
參考文獻

1. Orkin, S.H. & Zon, L.I. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631-644 (2008).
2. Zon, L.I. Developmental biology of hematopoiesis. Blood 86, 2876-2891 (1995).
3. An, X., Tiwari, A.K., Sun, Y., Ding, P.R., Ashby, C.R., Jr. & Chen, Z.S. BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia: a review. Leuk Res 34, 1255-1268 (2010).
4. Kadia, T.M., Ravandi, F., O'Brien, S., Cortes, J. & Kantarjian, H.M. Progress in acute myeloid leukemia. Clin Lymphoma Myeloma Leuk 15, 139-151 (2015).
5. Ferdinand, R., Mitchell, S.A., Batson, S. & Tumur, I. Treatments for chronic myeloid leukemia: a qualitative systematic review. J Blood Med 3, 51-76 (2012).
6. Tefferi, A. Classification, diagnosis and management of myeloproliferative disorders in the JAK2V617F era. Hematology Am Soc Hematol Educ Program, 240-245 (2006).
7. Cilloni, D. & Saglio, G. Molecular pathways: BCR-ABL. Clin Cancer Res 18, 930-937 (2012).
8. Freireich, E.J., Wiernik, P.H. & Steensma, D.P. The leukemias: a half-century of discovery. J Clin Oncol 32, 3463-3469 (2014).
9. Thiele, J., Kvasnicka, H.M., Schmitt-Graeff, A., Bundschuh, S., Biermann, T., Roessler, G., Wasmus, M., Diehl, V., Zankovich, R. & Schaefer, H.E. Effects of chemotherapy (busulfan-hydroxyurea) and interferon-alfa on bone marrow morphologic features in chronic myelogenous leukemia. Histochemical and morphometric study on sequential trephine biopsy specimens with special emphasis on dynamic features. Am J Clin Pathol 114, 57-65 (2000).
10. Fausel, C. Targeted chronic myeloid leukemia therapy: seeking a cure. J Manag Care Pharm 13, 8-12 (2007).
11. Mauro, M.J. & Druker, B.J. STI571: targeting BCR-ABL as therapy for CML. Oncologist 6, 233-238 (2001).
12. Druker, B.J., Tamura, S., Buchdunger, E., Ohno, S., Segal, G.M., Fanning, S., Zimmermann, J. & Lydon, N.B. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2, 561-566 (1996).
13. Ren, R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 5, 172-183 (2005).
14. Jacquel, A., Colosetti, P., Grosso, S., Belhacene, N., Puissant, A., Marchetti, S., Breittmayer, J.P. & Auberger, P. Apoptosis and erythroid differentiation triggered by Bcr-Abl inhibitors in CML cell lines are fully distinguishable processes that exhibit different sensitivity to caspase inhibition. Oncogene 26, 2445-2458 (2007).
15. Mughal, T.I. & Schrieber, A. Principal long-term adverse effects of imatinib in patients with chronic myeloid leukemia in chronic phase. Biologics 4, 315-323 (2010).
16. Bixby, D. & Talpaz, M. Mechanisms of resistance to tyrosine kinase inhibitors in chronic myeloid leukemia and recent therapeutic strategies to overcome resistance. Hematology Am Soc Hematol Educ Program, 461-476 (2009).
17. Redig, A.J., Vakana, E. & Platanias, L.C. Regulation of mammalian target of rapamycin and mitogen activated protein kinase pathways by BCR-ABL. Leuk Lymphoma 52 Suppl 1, 45-53 (2011).
18. Henkes, M., van der Kuip, H. & Aulitzky, W.E. Therapeutic options for chronic myeloid leukemia: focus on imatinib (Glivec, Gleevectrade mark). Ther Clin Risk Manag 4, 163-187 (2008).
19. Parmar, S., Katsoulidis, E., Verma, A., Li, Y., Sassano, A., Lal, L., Majchrzak, B., Ravandi, F., Tallman, M.S., Fish, E.N. & Platanias, L.C. Role of the p38 mitogen-activated protein kinase pathway in the generation of the effects of imatinib mesylate (STI571) in BCR-ABL-expressing cells. J Biol Chem 279, 25345-25352 (2004).
20. Kohmura, K., Miyakawa, Y., Kawai, Y., Ikeda, Y. & Kizaki, M. Different roles of p38 MAPK and ERK in STI571-induced multi-lineage differentiation of K562 cells. J Cell Physiol 198, 370-376 (2004).
21. Liu, J.H., Liu, C.C., Yen, C.C., Gau, J.P., Wang, W.S. & Tzeng, C.H. Pml and TAp73 interacting at nuclear body mediate imatinib-induced p53-independent apoptosis of chronic myeloid leukemia cells. Int J Cancer 125, 71-77 (2009).
22. Dong, Y., Xiong, M., Duan, L., Liu, Z., Niu, T., Luo, Y., Wu, X., Xu, C. & Lu, C. H2AX phosphorylation regulated by p38 is involved in Bim expression and apoptosis in chronic myelogenous leukemia cells induced by imatinib. Apoptosis 19, 1281-1292 (2014).
23. Bixby, D. & Talpaz, M. Seeking the causes and solutions to imatinib-resistance in chronic myeloid leukemia. Leukemia 25, 7-22 (2011).
24. Bozic, I., Reiter, J.G., Allen, B., Antal, T., Chatterjee, K., Shah, P., Moon, Y.S., Yaqubie, A., Kelly, N., Le, D.T., Lipson, E.J., Chapman, P.B., Diaz, L.A., Jr., Vogelstein, B. & Nowak, M.A. Evolutionary dynamics of cancer in response to targeted combination therapy. Elife 2, e00747 (2013).
25. Bayat Mokhtari, R., Homayouni, T.S., Baluch, N., Morgatskaya, E., Kumar, S., Das, B. & Yeger, H. Combination therapy in combating cancer. Oncotarget 8, 38022-38043 (2017).
26. Ayoub, B.M. Development and validation of simple spectrophotometric and chemometric methods for simultaneous determination of empagliflozin and metformin: Applied to recently approved pharmaceutical formulation. Spectrochim Acta A Mol Biomol Spectrosc 168, 118-122 (2016).
27. Cano, E. & Mahadevan, L.C. Parallel signal processing among mammalian MAPKs. Trends Biochem Sci 20, 117-122 (1995).
28. Seger, R. & Krebs, E.G. The MAPK signaling cascade. FASEB J 9, 726-735 (1995).
29. Geest, C.R. & Coffer, P.J. MAPK signaling pathways in the regulation of hematopoiesis. J Leukoc Biol 86, 237-250 (2009).
30. Hua, W.K., Chang, Y.I., Yao, C.L., Hwang, S.M., Chang, C.Y. & Lin, W.J. Protein arginine methyltransferase 1 interacts with and activates p38alpha to facilitate erythroid differentiation. PLoS One 8, e56715 (2013).
31. Alsadeq, A., Strube, S., Krause, S., Carlet, M., Jeremias, I., Vokuhl, C., Loges, S., Aguirre-Ghiso, J.A., Trauzold, A., Cario, G., Stanulla, M., Schrappe, M. & Schewe, D.M. Effects of p38alpha/beta inhibition on acute lymphoblastic leukemia proliferation and survival in vivo. Leukemia 29, 2307-2316 (2015).
32. Mayer, I.A., Verma, A., Grumbach, I.M., Uddin, S., Lekmine, F., Ravandi, F., Majchrzak, B., Fujita, S., Fish, E.N. & Platanias, L.C. The p38 MAPK pathway mediates the growth inhibitory effects of interferon-alpha in BCR-ABL-expressing cells. J Biol Chem 276, 28570-28577 (2001).
33. Damjanov, N., Kauffman, R.S. & Spencer-Green, G.T. Efficacy, pharmacodynamics, and safety of VX-702, a novel p38 MAPK inhibitor, in rheumatoid arthritis: results of two randomized, double-blind, placebo-controlled clinical studies. Arthritis Rheum 60, 1232-1241 (2009).
34. Arthur, J.S. & Ley, S.C. Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol 13, 679-692 (2013).
35. Singh, D., Smyth, L., Borrill, Z., Sweeney, L. & Tal-Singer, R. A randomized, placebo-controlled study of the effects of the p38 MAPK inhibitor SB-681323 on blood biomarkers of inflammation in COPD patients. J Clin Pharmacol 50, 94-100 (2010).
36. Cuenda, A. & Rousseau, S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta 1773, 1358-1375 (2007).
37. Zou, X. & Blank, M. Targeting p38 MAP kinase signaling in cancer through post-translational modifications. Cancer Lett 384, 19-26 (2017).
38. Morales, Y., Caceres, T., May, K. & Hevel, J.M. Biochemistry and regulation of the protein arginine methyltransferases (PRMTs). Arch Biochem Biophys 590, 138-152 (2016).
39. Bedford, M.T. & Clarke, S.G. Protein arginine methylation in mammals: who, what, and why. Mol Cell 33, 1-13 (2009).
40. Lee, Y.H. & Stallcup, M.R. Minireview: protein arginine methylation of nonhistone proteins in transcriptional regulation. Mol Endocrinol 23, 425-433 (2009).
41. Lee, Y.H. & Stallcup, M.R. Roles of protein arginine methylation in DNA damage signaling pathways is CARM1 a life-or-death decision point? Cell Cycle 10, 1343-1344 (2011).
42. Blackwell, E. & Ceman, S. Arginine methylation of RNA-binding proteins regulates cell function and differentiation. Mol Reprod Dev 79, 163-175 (2012).
43. Carr, S.M., Poppy Roworth, A., Chan, C. & La Thangue, N.B. Post-translational control of transcription factors: methylation ranks highly. FEBS J 282, 4450-4465 (2015).
44. Yang, Y. & Bedford, M.T. Protein arginine methyltransferases and cancer. Nat Rev Cancer 13, 37-50 (2013).
45. Zhang, X. & Cheng, X. Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides. Structure 11, 509-520 (2003).
46. Wooderchak, W.L., Zang, T., Zhou, Z.S., Acuna, M., Tahara, S.M. & Hevel, J.M. Substrate profiling of PRMT1 reveals amino acid sequences that extend beyond the "RGG" paradigm. Biochemistry 47, 9456-9466 (2008).
47. Obianyo, O., Osborne, T.C. & Thompson, P.R. Kinetic mechanism of protein arginine methyltransferase 1. Biochemistry 47, 10420-10427 (2008).
48. Cheung, N., Fung, T.K., Zeisig, B.B., Holmes, K., Rane, J.K., Mowen, K.A., Finn, M.G., Lenhard, B., Chan, L.C. & So, C.W. Targeting Aberrant Epigenetic Networks Mediated by PRMT1 and KDM4C in Acute Myeloid Leukemia. Cancer Cell 29, 32-48 (2016).
49. Sakamaki, J., Daitoku, H., Ueno, K., Hagiwara, A., Yamagata, K. & Fukamizu, A. Arginine methylation of BCL-2 antagonist of cell death (BAD) counteracts its phosphorylation and inactivation by Akt. Proc Natl Acad Sci U S A 108, 6085-6090 (2011).
50. Eberhardt, A., Hansen, J.N., Koster, J., Lotta, L.T., Jr., Wang, S., Livingstone, E., Qian, K., Valentijn, L.J., Zheng, Y.G., Schor, N.F. & Li, X. Protein arginine methyltransferase 1 is a novel regulator of MYCN in neuroblastoma. Oncotarget 7, 63629-63639 (2016).
51. Altan, B., Yokobori, T., Ide, M., Mochiki, E., Toyomasu, Y., Kogure, N., Kimura, A., Hara, K., Bai, T., Bao, P., Suzuki, M., Ogata, K., Asao, T., Nishiyama, M., Oyama, T. & Kuwano, H. Nuclear PRMT1 expression is associated with poor prognosis and chemosensitivity in gastric cancer patients. Gastric Cancer 19, 789-797 (2016).
52. Greenblatt, S.M., Liu, F. & Nimer, S.D. Arginine methyltransferases in normal and malignant hematopoiesis. Exp Hematol 44, 435-441 (2016).
53. Kuzelova, K., Grebenova, D., Marinov, I. & Hrkal, Z. Fast apoptosis and erythroid differentiation induced by imatinib mesylate in JURL-MK1 cells. J Cell Biochem 95, 268-280 (2005).
54. Jacquel, A., Herrant, M., Legros, L., Belhacene, N., Luciano, F., Pages, G., Hofman, P. & Auberger, P. Imatinib induces mitochondria-dependent apoptosis of the Bcr-Abl-positive K562 cell line and its differentiation toward the erythroid lineage. FASEB J 17, 2160-2162 (2003).
55. Gao, F. & Liu, W.J. Advance in the study on p38 MAPK mediated drug resistance in leukemia. Eur Rev Med Pharmacol Sci 20, 1064-1070 (2016).
56. Feng, Y., Wen, J. & Chang, C.C. p38 Mitogen-activated protein kinase and hematologic malignancies. Arch Pathol Lab Med 133, 1850-1856 (2009).
57. Gupta, J. & Nebreda, A.R. Roles of p38alpha mitogen-activated protein kinase in mouse models of inflammatory diseases and cancer. FEBS J 282, 1841-1857 (2015).
58. Cuadrado, A. & Nebreda, A.R. Mechanisms and functions of p38 MAPK signalling. Biochem J 429, 403-417 (2010).
59. Chen, Y., Zhao, Y., Wang, C., Xiao, X., Zhou, X. & Xu, G. Inhibition of p38 MAPK diminishes doxorubicin-induced drug resistance associated with P-glycoprotein in human leukemia K562 cells. Med Sci Monit 18, BR383-388 (2012).
60. Kyriakis, J.M. & Avruch, J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev 92, 689-737 (2012).
61. Ge, B., Gram, H., Di Padova, F., Huang, B., New, L., Ulevitch, R.J., Luo, Y. & Han, J. MAPKK-independent activation of p38alpha mediated by TAB1-dependent autophosphorylation of p38alpha. Science 295, 1291-1294 (2002).
62. Kang, Y.J., Seit-Nebi, A., Davis, R.J. & Han, J. Multiple activation mechanisms of p38alpha mitogen-activated protein kinase. J Biol Chem 281, 26225-26234 (2006).
63. Salvador, J.M., Mittelstadt, P.R., Guszczynski, T., Copeland, T.D., Yamaguchi, H., Appella, E., Fornace, A.J., Jr. & Ashwell, J.D. Alternative p38 activation pathway mediated by T cell receptor-proximal tyrosine kinases. Nat Immunol 6, 390-395 (2005).
64. Thornton, T.M. & Rincon, M. Non-classical p38 map kinase functions: cell cycle checkpoints and survival. Int J Biol Sci 5, 44-51 (2009).
65. Cheung, N., Chan, L.C., Thompson, A., Cleary, M.L. & So, C.W. Protein arginine-methyltransferase-dependent oncogenesis. Nat Cell Biol 9, 1208-1215 (2007).
66. Mathioudaki, K., Papadokostopoulou, A., Scorilas, A., Xynopoulos, D., Agnanti, N. & Talieri, M. The PRMT1 gene expression pattern in colon cancer. Br J Cancer 99, 2094-2099 (2008).
67. Mathioudaki, K., Scorilas, A., Ardavanis, A., Lymberi, P., Tsiambas, E., Devetzi, M., Apostolaki, A. & Talieri, M. Clinical evaluation of PRMT1 gene expression in breast cancer. Tumour Biol 32, 575-582 (2011).
68. Barancik, M., Bohacova, V., Kvackajova, J., Hudecova, S., Krizanova, O. & Breier, A. SB203580, a specific inhibitor of p38-MAPK pathway, is a new reversal agent of P-glycoprotein-mediated multidrug resistance. Eur J Pharm Sci 14, 29-36 (2001).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top