跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/13 06:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳玫芳
研究生(外文):Mei-fang Chen
論文名稱:PICK1在細胞適應能量代謝中所扮演的角色
論文名稱(外文):The role of PICK1 in cellular responses to metabolic changes
指導教授:林蔚靖
指導教授(外文):Wey-Jinq Lin
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物藥學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:61
中文關鍵詞:PICK1粒線體能量代謝
外文關鍵詞:PICK1mitochondriaenergy Metabolism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
PICK1 (Protein that interacts with C kinase 1) 是一個支架蛋白。實驗室過去研究在血癌細胞中位於粒線體上,並穩定膜電位,提高細胞對抗療藥物的抗性。而在小鼠纖維母細胞NIH3T3中,PICK1缺失的細胞其ATP產量降低、活性氧分子 (ROS) 含量上升且乳酸也較多,推測PICK1缺失影響粒線體功能。在低葡萄糖培養環境下會使其粒線體斷裂 (fission) 比例增加,並產生OPA1切割的現象;並引發自噬作用 (autophagy) 導致細胞死亡。本研究進一步探討在低濃度葡萄糖情況下補充葡萄糖 (glucose) 及麩醯胺酸 (glutamine) 對細胞死亡及OPA1切割的影響,我的結果顯示補充葡萄糖 (glucose) 能阻遏細胞死亡及OPA1的切割,顯示葡萄糖對於PICK1缺失細胞的存活是一個重要的因素。但在低濃度葡萄糖情況下外加麩醯胺酸 (glutamine) 卻無法阻遏細胞死亡及OPA1的切割,顯示麩醯胺酸雖然為主要細胞氮來源以及能量來源,但無法取代葡萄糖的必要性,而使細胞存活。另外,也發現在低濃度葡萄糖情況下,PICK1缺失的細胞株有AMPK蛋白表現較少的現象,而AMPK是一個調控能量代謝的蛋白,參與許多調控路徑,包含可能影響細胞自噬、能量代謝或粒線體更新等路徑。接著在葡萄糖缺乏的壓力下,以JC-1偵測粒線體膜電位的變化,實驗結果發現在低葡萄糖培養下,PICK1 缺失細胞其膜電位明顯低於NIH3T3,推測 PICK1蛋白的確對粒線體膜電位有其影響性,並推測於低葡萄糖培養下其能量供給本來就比正常狀態下不足,然而PICK1缺失細胞 (S8) 卻無法獲取更多能量,進而導致細胞死亡。
PICK1 (protein that interacts with C kinase 1) is a scaffold protein. Previous studies in this group have shown that PICK1 is localized to mitochondria, stabilizes the membrane potential and increases resistance to chemotherapeutic agents in leukemia cells. In NIH3T3 cells, we have shown that PICK1 deficiency caused a reduced ATP and an increased ROS and lactate. In addition, under a low glucose culturing condition, PICK1 deficiency significantly induced mitochondria fission, OPA1 processing and autophagic cell death. These results indicate an important role of PICK1 in mitochondrial functions. This study further investigated how supplements of glucose and glutamine might affect cell death and OPA1 processing. My results showed that supplement of glucose was sufficient to prevent low glucose-induced cell death and OPA1 processing, however glutamine, as a major nitrogen source and alternative energy source, was unable to rescue cell death and OPA1 processing. In addition, the levels of AMPK, an important protein involved in energy metabolism, were reduced in PICK1 deficient cells under low glucose culturing conditions as compared to NIH3T3 parental cells. I then investigated changes of mitochondrial membrane potential by JC-1 staining. My results showed that PICK1 deficient cells exhibited a significant lower mitochondrial membrane potential than NIH3T3 parental cells suggesting a role of PICK1 in maintaining mitochondrial membrane potential and PICK1 deficient cells failed to extract more energy under low glucose conditions which then led to cell death.
目錄 i
縮寫表 ii
圖次目錄 iv
附圖目錄 v
中文摘要 vi
英文摘要 vii
緒論 1
研究目標 12
實驗材料 13
實驗方法 17
結果 24
第一部分 探討不同養分對PICK1降低之NIH3T3細胞在葡萄糖缺乏環境下的影響 24
(一) 補充葡萄糖可以防止低葡萄糖誘導的細胞死亡現象 24
(二) PICK1降低會使得細胞在低濃度葡萄糖環境下引發OPA1切割
25
(三) 補充葡萄糖可以防止低葡萄糖誘導的OPA1切割現象 26
(四) 補充麩醯胺酸無法阻止低葡萄糖誘導的細胞死亡現象 26
(五) 補充麩醯胺酸無法阻止低葡萄糖誘導的OPA1切割現象 27
第二部分 探討PICK1降低之NIH3T3細胞在葡萄糖缺乏環境下對粒線體膜勢及能量代謝的影響 28
(一) PICK1降低之細胞AMPK蛋白表現量較NIH3T3少 29
(二) PICK1降低之細胞粒線體膜勢的變化 29
討論 32
參考文獻 37
圖次 46
附圖 61

圖次目錄
Figure 1. Knockdown of PICK1 promoted processing of OPA1 proteins under low glucose culture conditions. . 46
Figure 2. Glucose supplement was sufficient to prevent glucose deficiency-induced death. 48
Figure 3. Glucose supplement was sufficient to prevent glucose deficiency- induced OPA1 processing in PICK1-KD cells. 49
Figure 4. Glucose supplement at late stage was sufficient to prevent glucose deficiency- induced OPA1 processing in PICK1-KD cells. 50
Figure 5. Glutamine supplement could not prevent glucose deficiency- induced death. 52
Figure 6. Glutamine supplement could not prevent glucose deficiency- induced OPA1 processing in PICK1-KD cells. ... 54
Figure 7. High dose glutamine supplement could not to prevent glucose deficiency- induced death. 56
Figure 8. High dose glutamine supplement could not prevent glucose deficiency- induced OPA1 processing in PICK1-KD cells. 57
Figure 9. The protein levels of AMPK in PICK1 knockdown cells were reduced. ...... 58
Figure 10. Mitotracker Red fluorescence images of PICK1 knockdown cells. 59
Figure 11. The effect of low glucose condition on mitochondrial membrane potential of NIH3T3 and S8 cells. 60

附圖目錄
Figure S1. Aspects of glucose and glutamine metabolism. 61
參考文獻
1. Staudinger, J., Zhou, J., Burgess, R., Elledge, S.J. & Olson, E.N. PICK1: a perinuclear binding protein and substrate for protein kinase C isolated by the yeast two-hybrid system. J Cell Biol 128, 263-271 (1995).
2. Sheng, M. Molecular organization of the postsynaptic specialization. Proc Natl Acad Sci U S A 98, 7058-7061 (2001).
3. Xu, J. & Xia, J. Structure and function of PICK1. Neurosignals 15, 190-201 (2006).
4. Li, Y.H., Zhang, N., Wang, Y.N., Shen, Y. & Wang, Y. Multiple faces of protein interacting with C kinase 1 (PICK1): Structure, function, and diseases. Neurochem Int 98, 115-121 (2016).
5. Xia, J., Zhang, X., Staudinger, J. & Huganir, R.L. Clustering of AMPA receptors by the synaptic PDZ domain-containing protein PICK1. Neuron 22, 179-187 (1999).
6. Perez, J.L., Khatri, L., Chang, C., Srivastava, S., Osten, P. & Ziff, E.B. PICK1 targets activated protein kinase Calpha to AMPA receptor clusters in spines of hippocampal neurons and reduces surface levels of the AMPA-type glutamate receptor subunit 2. J Neurosci 21, 5417-5428 (2001).
7. Steinberg, J.P., Takamiya, K., Shen, Y., Xia, J., Rubio, M.E., Yu, S., Jin, W., Thomas, G.M., Linden, D.J. & Huganir, R.L. Targeted in vivo mutations of the AMPA receptor subunit GluR2 and its interacting protein PICK1 eliminate cerebellar long-term depression. Neuron 49, 845-860 (2006).
8. Cao, M., Xu, J., Shen, C., Kam, C., Huganir, R.L. & Xia, J. PICK1-ICA69 heteromeric BAR domain complex regulates synaptic targeting and surface expression of AMPA receptors. J Neurosci 27, 12945-12956 (2007).
9. Zhang, B., Cao, W., Zhang, F., Zhang, L., Niu, R., Niu, Y., Fu, L., Hao, X. & Cao, X. Protein interacting with C alpha kinase 1 (PICK1) is involved in promoting tumor growth and correlates with poor prognosis of human breast cancer. Cancer Sci 101, 1536-1542 (2010).
10. Cockbill, L.M., Murk, K., Love, S. & Hanley, J.G. Protein interacting with C kinase 1 suppresses invasion and anchorage-independent growth of astrocytic tumor cells. Mol Biol Cell 26, 4552-4561 (2015).
11. Alfonso, S., Kessels, H.W., Banos, C.C., Chan, T.R., Lin, E.T., Kumaravel, G., Scannevin, R.H., Rhodes, K.J., Huganir, R., Guckian, K.M., Dunah, A.W. & Malinow, R. Synapto-depressive effects of amyloid beta require PICK1. Eur J Neurosci 39, 1225-1233 (2014).
12. Yagishita, S., Murayama, M., Ebihara, T., Maruyama, K. & Takashima, A. Glycogen Synthase Kinase 3beta-mediated Phosphorylation in the Most C-terminal Region of Protein Interacting with C Kinase 1 (PICK1) Regulates the Binding of PICK1 to Glutamate Receptor Subunit GluA2. J Biol Chem 290, 29438-29448 (2015).
13. Xiao, N., Kam, C., Shen, C., Jin, W., Wang, J., Lee, K.M., Jiang, L. & Xia, J. PICK1 deficiency causes male infertility in mice by disrupting acrosome formation. J Clin Invest 119, 802-812 (2009).
14. Wang, W.L., Yeh, S.F., Chang, Y.I., Hsiao, S.F., Lian, W.N., Lin, C.H., Huang, C.Y. & Lin, W.J. PICK1, an anchoring protein that specifically targets protein kinase Calpha to mitochondria selectively upon serum stimulation in NIH 3T3 cells. J Biol Chem 278, 37705-37712 (2003).
15. Wang, W.L., Yeh, S.F., Huang, E.Y., Lu, Y.L., Wang, C.F., Huang, C.Y. & Lin, W.J. Mitochondrial anchoring of PKCalpha by PICK1 confers resistance to etoposide-induced apoptosis. Apoptosis 12, 1857-1871 (2007).
16. McBride, H.M., Neuspiel, M. & Wasiak, S. Mitochondria: more than just a powerhouse. Curr Biol 16, R551-560 (2006).
17. Kuznetsov, A.V. & Margreiter, R. Heterogeneity of mitochondria and mitochondrial function within cells as another level of mitochondrial complexity. Int J Mol Sci 10, 1911-1929 (2009).
18. Osellame, L.D., Blacker, T.S. & Duchen, M.R. Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab 26, 711-723 (2012).
19. Bereiter-Hahn, J. & Voth, M. Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech 27, 198-219 (1994).
20. Ni, H.M., Williams, J.A. & Ding, W.X. Mitochondrial dynamics and mitochondrial quality control. Redox Biol 4, 6-13 (2015).
21. Twig, G. & Shirihai, O.S. The interplay between mitochondrial dynamics and mitophagy. Antioxid Redox Signal 14, 1939-1951 (2011).
22. Chen, H., McCaffery, J.M. & Chan, D.C. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 130, 548-562 (2007).
23. Chen, H. & Chan, D.C. Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Hum Mol Genet 18, R169-176 (2009).
24. Gomes, L.C., Di Benedetto, G. & Scorrano, L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 13, 589-598 (2011).
25. van der Bliek, A.M. Fussy mitochondria fuse in response to stress. EMBO J 28, 1533-1534 (2009).
26. van der Bliek, A.M., Shen, Q. & Kawajiri, S. Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol 5(2013).
27. Zorzano, A., Liesa, M., Sebastian, D., Segales, J. & Palacin, M. Mitochondrial fusion proteins: dual regulators of morphology and metabolism. Semin Cell Dev Biol 21, 566-574 (2010).
28. Ong, S.B. & Hausenloy, D.J. Mitochondrial morphology and cardiovascular disease. Cardiovasc Res 88, 16-29 (2010).
29. Ishihara, N., Eura, Y. & Mihara, K. Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J Cell Sci 117, 6535-6546 (2004).
30. Santel, A. & Fuller, M.T. Control of mitochondrial morphology by a human mitofusin. J Cell Sci 114, 867-874 (2001).
31. Hailey, D.W., Rambold, A.S., Satpute-Krishnan, P., Mitra, K., Sougrat, R., Kim, P.K. & Lippincott-Schwartz, J. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141, 656-667 (2010).
32. Santel, A. Get the balance right: mitofusins roles in health and disease. Biochim Biophys Acta 1763, 490-499 (2006).
33. Mishra, P. & Chan, D.C. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol 15, 634-646 (2014).
34. Bach, D., Naon, D., Pich, S., Soriano, F.X., Vega, N., Rieusset, J., Laville, M., Guillet, C., Boirie, Y., Wallberg-Henriksson, H., Manco, M., Calvani, M., Castagneto, M., Palacin, M., Mingrone, G., Zierath, J.R., Vidal, H. & Zorzano, A. Expression of Mfn2, the Charcot-Marie-Tooth neuropathy type 2A gene, in human skeletal muscle: effects of type 2 diabetes, obesity, weight loss, and the regulatory role of tumor necrosis factor alpha and interleukin-6. Diabetes 54, 2685-2693 (2005).
35. Akepati, V.R., Muller, E.C., Otto, A., Strauss, H.M., Portwich, M. & Alexander, C. Characterization of OPA1 isoforms isolated from mouse tissues. J Neurochem 106, 372-383 (2008).
36. Head, B., Griparic, L., Amiri, M., Gandre-Babbe, S. & van der Bliek, A.M. Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J Cell Biol 187, 959-966 (2009).
37. Song, Z., Chen, H., Fiket, M., Alexander, C. & Chan, D.C. OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol 178, 749-755 (2007).
38. Anand, R., Wai, T., Baker, M.J., Kladt, N., Schauss, A.C., Rugarli, E. & Langer, T. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J Cell Biol 204, 919-929 (2014).
39. Cipolat, S., Martins de Brito, O., Dal Zilio, B. & Scorrano, L. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci U S A 101, 15927-15932 (2004).
40. Cogliati, S., Frezza, C., Soriano, M.E., Varanita, T., Quintana-Cabrera, R., Corrado, M., Cipolat, S., Costa, V., Casarin, A., Gomes, L.C., Perales-Clemente, E., Salviati, L., Fernandez-Silva, P., Enriquez, J.A. & Scorrano, L. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155, 160-171 (2013).
41. Duchen, M.R. Roles of mitochondria in health and disease. Diabetes 53 Suppl 1, S96-102 (2004).
42. Pieczenik, S.R. & Neustadt, J. Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol 83, 84-92 (2007).
43. Tardito, S., Oudin, A., Ahmed, S.U., Fack, F., Keunen, O., Zheng, L., Miletic, H., Sakariassen, P.O., Weinstock, A., Wagner, A., Lindsay, S.L., Hock, A.K., Barnett, S.C., Ruppin, E., Morkve, S.H., Lund-Johansen, M., Chalmers, A.J., Bjerkvig, R., Niclou, S.P. & Gottlieb, E. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat Cell Biol 17, 1556-1568 (2015).
44. Wu, G. Functional amino acids in nutrition and health. Amino Acids 45, 407-411 (2013).
45. Albrecht, J., Sidoryk-Wegrzynowicz, M., Zielinska, M. & Aschner, M. Roles of glutamine in neurotransmission. Neuron Glia Biol 6, 263-276 (2010).
46. Wang, J., Chen, L., Li, P., Li, X., Zhou, H., Wang, F., Li, D., Yin, Y. & Wu, G. Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr 138, 1025-1032 (2008).
47. Wu, G., Bazer, F.W., Dai, Z., Li, D., Wang, J. & Wu, Z. Amino acid nutrition in animals: protein synthesis and beyond. Annu Rev Anim Biosci 2, 387-417 (2014).
48. Kim, J., Song, G., Wu, G., Gao, H., Johnson, G.A. & Bazer, F.W. Arginine, leucine, and glutamine stimulate proliferation of porcine trophectoderm cells through the MTOR-RPS6K-RPS6-EIF4EBP1 signal transduction pathway. Biol Reprod 88, 113 (2013).
49. Hensley, C.T., Wasti, A.T. & DeBerardinis, R.J. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest 123, 3678-3684 (2013).
50. Brand, M.D., Affourtit, C., Esteves, T.C., Green, K., Lambert, A.J., Miwa, S., Pakay, J.L. & Parker, N. Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 37, 755-767 (2004).
51. Zorov, D.B., Juhaszova, M. & Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94, 909-950 (2014).
52. Wu, C.A., Chao, Y., Shiah, S.G. & Lin, W.W. Nutrient deprivation induces the Warburg effect through ROS/AMPK-dependent activation of pyruvate dehydrogenase kinase. Biochim Biophys Acta 1833, 1147-1156 (2013).
53. Lemasters, J.J. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 8, 3-5 (2005).
54. Kujoth, G.C., Hiona, A., Pugh, T.D., Someya, S., Panzer, K., Wohlgemuth, S.E., Hofer, T., Seo, A.Y., Sullivan, R., Jobling, W.A., Morrow, J.D., Van Remmen, H., Sedivy, J.M., Yamasoba, T., Tanokura, M., Weindruch, R., Leeuwenburgh, C. & Prolla, T.A. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309, 481-484 (2005).
55. Jeong, D.W., Kim, T.S., Cho, I.T. & Kim, I.Y. Modification of glycolysis affects cell sensitivity to apoptosis induced by oxidative stress and mediated by mitochondria. Biochem Biophys Res Commun 313, 984-991 (2004).
56. Mizuno, Y., Ohta, S., Tanaka, M., Takamiya, S., Suzuki, K., Sato, T., Oya, H., Ozawa, T. & Kagawa, Y. Deficiencies in complex I subunits of the respiratory chain in Parkinson's disease. Biochem Biophys Res Commun 163, 1450-1455 (1989).
57. Tait, S.W. & Green, D.R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11, 621-632 (2010).
58. Ishihara, N., Jofuku, A., Eura, Y. & Mihara, K. Regulation of mitochondrial morphology by membrane potential, and DRP1-dependent division and FZO1-dependent fusion reaction in mammalian cells. Biochem Biophys Res Commun 301, 891-898 (2003).
59. Nelson, D.L.C., M.M.,. Lehninger Principles of Biochemistry. Fourth ed (1993).
60. Manoli, I., Alesci, S., Blackman, M.R., Su, Y.A., Rennert, O.M. & Chrousos, G.P. Mitochondria as key components of the stress response. Trends Endocrinol Metab 18, 190-198 (2007).
61. James, A.M., Wei, Y.H., Pang, C.Y. & Murphy, M.P. Altered mitochondrial function in fibroblasts containing MELAS or MERRF mitochondrial DNA mutations. Biochem J 318 ( Pt 2), 401-407 (1996).
62. Fischer, B. & Bavister, B.D. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil 99, 673-679 (1993).
63. Leese, H.J. & Barton, A.M. Pyruvate and glucose uptake by mouse ova and preimplantation embryos. J Reprod Fertil 72, 9-13 (1984).
64. Ezashi, T., Das, P. & Roberts, R.M. Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci U S A 102, 4783-4788 (2005).
65. DeBerardinis, R.J., Lum, J.J., Hatzivassiliou, G. & Thompson, C.B. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7, 11-20 (2008).
66. Balaban, R.S., Nemoto, S. & Finkel, T. Mitochondria, oxidants, and aging. Cell 120, 483-495 (2005).
67. Hardie, D.G., Ross, F.A. & Hawley, S.A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13, 251-262 (2012).
68. Ha, J., Guan, K.L. & Kim, J. AMPK and autophagy in glucose/glycogen metabolism. Mol Aspects Med 46, 46-62 (2015).
69. Grahame Hardie, D. AMP-activated protein kinase: a key regulator of energy balance with many roles in human disease. J Intern Med 276, 543-559 (2014).
70. Kim, J., Yang, G., Kim, Y., Kim, J. & Ha, J. AMPK activators: mechanisms of action and physiological activities. Exp Mol Med 48, e224 (2016).
71. Pineda, C.T., Ramanathan, S., Fon Tacer, K., Weon, J.L., Potts, M.B., Ou, Y.H., White, M.A. & Potts, P.R. Degradation of AMPK by a cancer-specific ubiquitin ligase. Cell 160, 715-728 (2015).
72. Toyama, E.Q., Herzig, S., Courchet, J., Lewis, T.L., Jr., Loson, O.C., Hellberg, K., Young, N.P., Chen, H., Polleux, F., Chan, D.C. & Shaw, R.J. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351, 275-281 (2016).
73. Lemasters, J.J., Nieminen, A.L., Qian, T., Trost, L.C., Elmore, S.P., Nishimura, Y., Crowe, R.A., Cascio, W.E., Bradham, C.A., Brenner, D.A. & Herman, B. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta 1366, 177-196 (1998).
74. Lemasters, J.J., Qian, T., He, L., Kim, J.S., Elmore, S.P., Cascio, W.E. & Brenner, D.A. Role of mitochondrial inner membrane permeabilization in necrotic cell death, apoptosis, and autophagy. Antioxid Redox Signal 4, 769-781 (2002).
75. Westermann, B. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11, 872-884 (2010).
76. Galluzzi, L., Vicencio, J.M., Kepp, O., Tasdemir, E., Maiuri, M.C. & Kroemer, G. To die or not to die: that is the autophagic question. Curr Mol Med 8, 78-91 (2008).
77. Oltvai, Z.N., Milliman, C.L. & Korsmeyer, S.J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74, 609-619 (1993).
78. Rubinsztein, D.C., DiFiglia, M., Heintz, N., Nixon, R.A., Qin, Z.H., Ravikumar, B., Stefanis, L. & Tolkovsky, A. Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy 1, 11-22 (2005).
79. Kroemer, G. & Jaattela, M. Lysosomes and autophagy in cell death control. Nat Rev Cancer 5, 886-897 (2005).
80. Levine, B. Unraveling the role of autophagy in cancer. Autophagy 2, 65-66 (2006).
81. Mizushima, N. & Levine, B. Autophagy in mammalian development and differentiation. Nat Cell Biol 12, 823-830 (2010).
82. Levine, B. & Yuan, J. Autophagy in cell death: an innocent convict? J Clin Invest 115, 2679-2688 (2005).
83. Ravikumar, B., Sarkar, S., Davies, J.E., Futter, M., Garcia-Arencibia, M., Green-Thompson, Z.W., Jimenez-Sanchez, M., Korolchuk, V.I., Lichtenberg, M., Luo, S., Massey, D.C., Menzies, F.M., Moreau, K., Narayanan, U., Renna, M., Siddiqi, F.H., Underwood, B.R., Winslow, A.R. & Rubinsztein, D.C. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90, 1383-1435 (2010).
84. Tanida, I., Ueno, T. & Kominami, E. LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol 36, 2503-2518 (2004).
85. Kane, L.A., Lazarou, M., Fogel, A.I., Li, Y., Yamano, K., Sarraf, S.A., Banerjee, S. & Youle, R.J. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol 205, 143-153 (2014).
86. Hristova, V.A., Beasley, S.A., Rylett, R.J. & Shaw, G.S. Identification of a novel Zn2+-binding domain in the autosomal recessive juvenile Parkinson-related E3 ligase parkin. J Biol Chem 284, 14978-14986 (2009).
87. Fallon, L., Moreau, F., Croft, B.G., Labib, N., Gu, W.J. & Fon, E.A. Parkin and CASK/LIN-2 associate via a PDZ-mediated interaction and are co-localized in lipid rafts and postsynaptic densities in brain. J Biol Chem 277, 486-491 (2002).
88. Joch, M., Ase, A.R., Chen, C.X., MacDonald, P.A., Kontogiannea, M., Corera, A.T., Brice, A., Seguela, P. & Fon, E.A. Parkin-mediated monoubiquitination of the PDZ protein PICK1 regulates the activity of acid-sensing ion channels. Mol Biol Cell 18, 3105-3118 (2007).
89. Hicke, L. & Dunn, R. Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol 19, 141-172 (2003).
90. Wu, C.Y. To investigate cell death events and mitochondrial morphology changes promoted by knockdown of PICK1. National Yang-Ming University Master thesis (2011).
91. Alavi, M.V. & Fuhrmann, N. Dominant optic atrophy, OPA1, and mitochondrial quality control: understanding mitochondrial network dynamics. Mol Neurodegener 8, 32 (2013).
92. Lin, K.J. Investigation of PICK1 function in NIH3T3 cells by RNA interference. National Yang-Ming University Master thesis (2008).
93. Marsin, A.S., Bertrand, L., Rider, M.H., Deprez, J., Beauloye, C., Vincent, M.F., Van den Berghe, G., Carling, D. & Hue, L. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr Biol 10, 1247-1255 (2000).
94. Ishihara, N., Fujita, Y., Oka, T. & Mihara, K. Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J 25, 2966-2977 (2006).
95. Zhang, Y. & Chan, D.C. New insights into mitochondrial fusion. FEBS Lett 581, 2168-2173 (2007).
96. Frezza, C., Cipolat, S., Martins de Brito, O., Micaroni, M., Beznoussenko, G.V., Rudka, T., Bartoli, D., Polishuck, R.S., Danial, N.N., De Strooper, B. & Scorrano, L. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126, 177-189 (2006).
97. Kane, M.S., Alban, J., Desquiret-Dumas, V., Gueguen, N., Ishak, L., Ferre, M., Amati-Bonneau, P., Procaccio, V., Bonneau, D., Lenaers, G., Reynier, P. & Chevrollier, A. Autophagy controls the pathogenicity of OPA1 mutations in dominant optic atrophy. J Cell Mol Med (2017).
98. Lin, K.J. Investigation of PICK1 function in NIH3T3 cells by RNA interference. National Yang-Ming University Master thesis (2009).
99. Hsu, S.H. Investigating the role of PICK1 in regulating mitochondrial fusion/fission. National Yang-Ming University Master thesis (2015).
100. Al-Maghrabi, J. AMPK expression patterns are significantly associated with poor prognosis in breast cancer patients. Annals of Diagnostic Pathology 29, 62-67 (2017).
101. Martinez-Reyes, I., Diebold, L.P., Kong, H., Schieber, M., Huang, H., Hensley, C.T., Mehta, M.M., Wang, T., Santos, J.H., Woychik, R., Dufour, E., Spelbrink, J.N., Weinberg, S.E., Zhao, Y., DeBerardinis, R.J. & Chandel, N.S. TCA Cycle and Mitochondrial Membrane Potential Are Necessary for Diverse Biological Functions. Mol Cell 61, 199-209 (2016).
102. Chen, L.B. Mitochondrial membrane potential in living cells. Annu Rev Cell Biol 4, 155-181 (1988).
103. Ikeda, Y., Shirakabe, A., Brady, C., Zablocki, D., Ohishi, M. & Sadoshima, J. Molecular mechanisms mediating mitochondrial dynamics and mitophagy and their functional roles in the cardiovascular system. J Mol Cell Cardiol 78, 116-122 (2015).
104. Lim, G.G. & Lim, K.L. Parkin-independent mitophagy-FKBP8 takes the stage. EMBO Rep 18, 864-865 (2017).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊