跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/20 06:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃柏維
研究生(外文):Po-Wei Huang
論文名稱:探討抗精神病藥物對肺癌幹細胞抑制之機制
論文名稱(外文):Characterization of anti-psychotic agents as lung cancer stem cell inhibitors
指導教授:劉俊煌劉俊煌引用關係黃奇英
指導教授(外文):Jin-Hwang LiuChi-Ying Huang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物藥學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:80
中文關鍵詞:抗精神病藥物肺癌幹細胞血管新生
外文關鍵詞:anti-psychotic agentslung cancer stem cellangiogenesis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
肺癌是世界各地癌症造成死亡率最高的主要病因。肺癌有兩種主要類型:小細胞肺癌以及非小細胞肺癌(Non-small lung cancer),而非小細胞肺癌約占85 %。依據不同型型態突變的病患給予不同藥物治療:Cisplatin合併gemcitabine用於治療鱗狀肺癌 (squamous); Cisplatin合併pemetrexed (Alimta)用於治療肺腺癌(adenocarcinoma)。但由於抗藥性和癌症幹細胞的理論,非小細胞肺癌患者對化學治療往往會造成抗藥性。因此,降低耐藥性和尋找潛在藥物來治療癌症幹細胞是治療癌症患者的重要策略。從Connectivity Map生物資訊平台,我們的實驗室發現phenothiazine類的衍生物具有逆轉癌症幹細胞基因表達特徵的潛力。通過這個方法,我們找到了prochlorperazine和thioridazine這兩者藥物,並且與化療藥物合併使用可以有效殺死癌症幹細胞和癌症細胞。在以前的研究中,prochlorperazine可以抑制肺癌幹細胞。但procholperazine的抑制機制尚不清楚。為了找出機制或作用目標,我們通過L1000微陣列使用prochlorperazine和thioridazine的基因特徵來尋找,並且透過CPDB和LINCS生物資訊數據庫。從CPDB數據庫中發現。總之prochlorperazine可以減少VEGF-A和IL-6的分泌減,間接抑制了血管生成和腫瘤生長因子的作用。降低了癌症幹細胞表現蛋白並誘導肺癌細胞凋亡。此外,prochlorperazine具有可在體內抑制腫瘤生長的能力。將來具有潛力進行臨床試驗。
Lung cancer is the leading cause of cancer death around the world. There are two major types of lung cancer: small cell lung cancer and non-small cell lung cancer (NSCLC). Cisplatin plus gemcitabine are used to treat to squamous lung cancer; cisplatin plus pemetrexed (Alimta) are used to treat lung adenocarcinoma. After the front-line treatment, most NSCLC patients develop to drug resistant to chemotherapy due to the existence of cancer stem cells (CSCs). Therefore, to reduce the drug resistance and to find potential drugs to eradicate CSCs are important strategy to treat cancer patients. From connectivity map, our laboratory found that phenothiazine derivatives had potential to reverse CSCs gene expression signatures. Through this project, we repurposed prochlorperazine and thioridazine to combine with chemotherapeutic agents to kill cancer stem cells and parental cells. In previous study, prochlorperazine could inhibit lung cancer sphere cells and decreased CSC markers and induced apoptosis in lung cancer sphere cells. But the mechanism of prochlorperazine was still unclear. Here, we used the gene signatures of prochlorperazine and thioridazine via L1000 microarray to query CPDB and LINCS database, and found prochlorperazine could down-regulate VEGF signal pathway. Biochemical data also supported this prcdiction. In conclusion, prochlorperazine treatment, it can decrease VEGF-A and IL-6 secretions were reduced, representing the inhibition of angiogenesis and tumorigenesis factor.
致謝 i
中文摘要 ii
Abstract iii
Content iv
I. Introduction 1
II. Material and Methods 3
III. Specific Aim 10
Aim 1: To prioritize which gene features would be more sensitive to anti-psychotic agents in lung cancer cells. 10
Aim 2: To characterize the effect of prochlorperazine and its metabolites in non-small cell lung cancer. 10
Aim 3: To investigate the anti-angiogenesis effect of prochlorperazine. 10
Aim 4: To evaluate intracellular calcium concentration of prochlorperazine. 10
IV. Results 11
Comparison between compounds from Clue database with gene expression profiles of anti-psychotic agents 11
Predicted pathway from down-regulated gene signatures of anti-psychotic agents in ConsensusPathDB (CPDB) 11
Cytotoxicity of thioridazine at low dose in non-small cell lung cancer (NSCLC) cell lines 12
The NSCLC cells with KRAS mutation are more sensitive to T2 than other cell lines. 12
IPTG-induced K-RAS expression system at HT-29 cells 13
Cytotoxicity of KRAS mutation sensitive drugs in HT-29 wild-type and KRAS mutant cells 13
Cytotoxicity of procholperazine metabolites in non-small cell lung cancer cell lines 13
Prochlorperazine inhibits angiogenesis in HUVEC cell 14
Prochlorperazine decreases cancer stem cell markers 15
Prochlorperazine inhibits NSCLC for producing VEGF feedback to phosphorylate VEGFR by hypoxia pathway 15
Prochlorperazine affects cell cytoplasmic calcium level and changed mitochondria membrane potential 16
V. Discussion 18
VI. Reference 21
Figure 1. Schematic illustration the analysis of prochlorperazine and thioridazine via vasious on line tools. 24
Figure 2. Comparison of the cytotoxicity of thioridazine at low dose in A549 non-small cell lung cancer (NSCLC) cell line. 26
Figure 3. Comparison of the cytotoxicity of thioridazine at low dose in H441 non-small cell lung cancer (NSCLC) cell line. 28
Figure 4. The NSCLC cells with KRas mutation are more sensitive to T2 than KRas wild-type other cell lines. 29
Figure 5. IPTG-induced KRAS expression system at HT-29 cell. 31
Figure 6. Drug sensitive assay of HT-29 WT and HT-29 KRAS inducible cells 33
Figure 7. Prochlorperazine and N-desmethyl PCP can inhibit clonogenicity in NSCLC cell lines. 35
Figure 8. Prochlorperazine suppresses anti-angiogenesis. 37
Figure 9. Prochlorperazine inhibits VEGF-VEGFR pathway in HUVEC cells. 38
Figure 10. Treatment with prochlorperazine in cancer stem cell-like sphere cells result in reducing cancer stem cell marker expression. 39
Figure 11. Prochlorperazine inhibits NSCLC secretion VEGF by hypoxia pathway. 40
Figure 12. Prochlorperazine inhibits CL141 secretion VEGF feedback to phosphorylate VEGFR. 41
Figure 13. Prochlorperazine suppresses VEGF-A, IL-6, and TNF-α secretion by ELISA assay. 43
Figure 14. Prochlorperazine up-regulates cytoplasmic calcium level and blocks membrane’s calcium channel. 44
Figure 15. The effect of prochlorperazine on mitochondrial membrane potential. 45
Table 1. Comparison of the compounds of thioridazine from Clue database 46
Table 2. Comparison of the gene signature of thioridazine from Clue database 53
Table 4. Comparison of the compounds of prchlorperazine e from Clue database 66
Table 5. Comparison of the gene signature of prchlorperazine e from Clue database 71
Table 6. Predicting pathway from down-regulated gene signature of prchlorperazine in ConsensusPathDB (CPDB) 74
Table 7. IC50 of anti-psychotic agents in NSCLC cell lines 78
Table 8. IC50 of prochlorperazine and metabolism in NSCLC cell lines 78
Table 9. Prochlorperazine suppresses VEGF-A secretion 79
Table 10. Prochlorperazine suppresses IL-6 secretion 79
Supplementary Figure 1. Prochlorperazine inhibits ATP-binding cassette subfamily G member 2 (ABCG2) activation 80
1. Molina, J.R., et al., Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc, 2008. 83(5): p. 584-94.
2. Siegel, R., D. Naishadham, and A. Jemal, Cancer statistics, 2013. CA Cancer J Clin, 2013. 63(1): p. 11-30.
3. Wang, B.Y., et al., Lung cancer and prognosis in taiwan: a population-based cancer registry. J Thorac Oncol, 2013. 8(9): p. 1128-35.
4. Travis, W.D., et al., International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol, 2011. 6(2): p. 244-85.
5. Pfister, D.G., et al., American Society of Clinical Oncology treatment of unresectable non-small-cell lung cancer guideline: update 2003. J Clin Oncol, 2004. 22(2): p. 330-53.
6. Takatori, E., et al., Analysis of the antitumor activity of gemcitabine and carboplatin against ovarian clear-cell carcinoma using the DNA damage marker gammaH2AX. Onco Targets Ther, 2013. 6: p. 901-7.
7. Stinchcombe, T.E. and M.A. Socinski, Current treatments for advanced stage non-small cell lung cancer. Proc Am Thorac Soc, 2009. 6(2): p. 233-41.
8. Lamb, J., et al., The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science, 2006. 313(5795): p. 1929-35.
9. Lamb, J., The Connectivity Map: a new tool for biomedical research. Nat Rev Cancer, 2007. 7(1): p. 54-60.
10. Kang S, Dong SM. Thioridazine induces apoptosis by targeting the PI3K/Akt/mTOR pathway in cervical and endometrial cancer cells. Apoptosis (2012) 17:989–997
11. Eriksson A, Yachnin J, Lewensohn R, et al. DNA-dependent protein kinase is inhibited by trifluoperazine. Biochem Biophys Res Commun, 2001, 283: 726–731
12. Liang W, Yang C Z. Effects of phenothiazine derivatives on protein kinase C and multidrug resistance of tumor cells. Chin Sci Bull, 1998, 43: 1179–1183
13. Pantazaki AA, Lialiaris TS. A combined biochemical and cytogenetic study of thioridazine-induced damage to nucleic acids. Mutagenesis 1999;14: 243–8.
14. Kamiwatari M, Nagata Y, Kikuchi H, Yoshimura A, Sumizawa T, Shudo N, et al.Correlation between reversing of multidrug resistance and inhibiting of [3H] azidopine photolabeling of P-glycoprotein by newly synthesized dihydropyridine analogues in a human cell line. Cancer Res 1989;49:3190–5
15. Rodrigues T, Santos AC, Pigoso AA, Mingatto FE, Uyemura SA, Curti C. thioridazine interacts with the membrane of mitochondria acquiring antioxidant activity 126 S.B. Rho et al. / Gynecologic Oncology 120 (2011) 121–127toward apoptosis—potentially implicated mechanisms. Br J Pharmacol 2002;136:136–42
16. Rosenkilde, H. and W.M. Govier, A comparison of some phenothiazine derivatives in inhibiting apomorphine-induced emesis. J Pharmacol Exp Ther, 1957. 120(3): p. 375-8.
17. Freyhan, F.A., [Psychomotility, extrapyramidal syndrome and mode of action of neuroleptic therapies; chlorpromazine, reserpine and prochlorperazine]. Nervenarzt, 1957. 28(11): p. 504-9.
18. Hedwig Stanisz, Adina Vultur, Meenhard Herlyn, Alexander Roesch, Ivan Bogeski, The role of Orai/STIM calcium channels in melanocytes and melanoma. J Physiol. doi: 10.1113/JP271141.(Feb 2016)
19. Bo-Rim Yi,1 Seung U. Kim, and Kyung-Chul Choi, Synergistic effect of therapeutic stem cells expressing cytosine deaminase and interferon-beta via apoptotic pathway in the metastatic mouse model of breast cancer. Oncotarget. 2016 Feb 2; 7(5): 5985–5999.
20. Weis SM1, Cheresh DA, Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med. 2011 Nov 7;17(11):1359-70. doi: 10.1038/nm.2537.
21. D.G. Warr, Chemotherapy- and cancer-related nausea and vomiting. Curr Oncol. 2008 Jan; 15(Suppl 1): S4–S9.
22. Pond SM, Tozer TN, First-pass elimination. Basic concepts and clinical consequences. Clin Pharmacokinet. 1984 Jan-Feb;9(1):1-25.
23. H-W Cheng, et al., Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data. Cell Death Dis. 2015 May; 6(5): e1753.
24. Djalila Mekahli, et al., Endoplasmic-Reticulum Calcium Depletion and Disease. Cold Spring Harb Perspect Biol. 2011 Jun; 3(6): a004317.
25. Hung-Jen Lin, et al., A Chinese Herbal Decoction, Modified Yi Guan Jian, Induces Apoptosis in Hepatic Stellate Cells through an ROS-Mediated Mitochondrial/Caspase Pathway. Evid Based Complement Alternat Med. 2011; 2011: 459531.
26. Chandran S. Abhinand, et al., VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis. J Cell Commun Signal. 2016 Dec; 10(4): 347–354.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top