|
參考文獻 1. Air, G.M., Sequence relationships among the hemagglutinin genes of 12 subtypes of influenza A virus. Proc. Natl Acad. Sci. USA, 1981. 78: p. 7639-7643. 2. Immunologic studies on the influenza A virus nonstructural protein NS1. The Journal of Experimental Medicine, 1982. 156(1): p. 243-254. 3. Wu, Y., et al., Bat-derived influenza-like viruses H17N10 and H18N11. Trends in Microbiology. 22(4): p. 183-191. 4. Das, K., et al., Structures of influenza A proteins and insights into antiviral drug targets. Nat Struct Mol Biol, 2010. 17(5): p. 530-8. 5. Chen, H., Avian flu: H5N1 virus outbreak in migratory waterfowl. Nature, 2005. 436: p. 191-192. 6. Kuiken, T., Host species barriers to influenza virus infections. Science, 2006. 312: p. 394-397. 7. Lin, Y.P., Avian-to-human transmission of H9N2 subtype influenza A viruses: relationship between H9N2 and H5N1 human isolates. Proc. Natl Acad. Sci. USA, 2000. 97: p. 9654-9658. 8. Belser, J.A., et al., Ocular tropism of influenza A viruses: identification of H7 subtype-specific host responses in human respiratory and ocular cells. J Virol, 2011. 85(19): p. 10117-25. 9. Matrosovich, M., et al., The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J. Virol., 1999. 73: p. 1146-1155. 10. Ito, T., Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J. Virol., 1998. 72: p. 7367-7373. 11. Holmes, E.C., Whole-genome analysis of human influenza A virus reveals multiple persistent lineages and reassortment among recent H3N2 viruses. PLoS Biol., 2005. 3: p. e300. 12. Garten, R.J., Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science, 2009. 325: p. 197-201. 13. Johnson, N.P. and J. Mueller, Updating the accounts: global mortality of the 1918–1920 “Spanish” influenza pandemic. Bull. Hist. Med., 2002. 76: p. 105-115. 14. Seo, S.H., E. Hoffmann, and R.G. Webster, Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nature Med., 2002. 8: p. 950-954. 15. Liu, J., Structures of receptor complexes formed by hemagglutinins from the Asian Influenza pandemic of 1957. Proc. Natl Acad. Sci. USA, 2009. 106: p. 17175-17180. 16. WHO Global Alert and Response. 2011. 17. Cowling, B.J., et al., Comparative epidemiology of human infections with avian influenza A H7N9 and H5N1 viruses in China: a population-based study of laboratory-confirmed cases. Lancet, 2013. 382(9887): p. 129-37. 18. Russell, R.J., H1 and H7 influenza haemagglutinin structures extend a structural classification of haemagglutinin subtypes. Virology, 2004. 325: p. 287-296. 19. Yu, H., et al., Human infection with avian influenza A H7N9 virus: an assessment of clinical severity. Lancet, 2013. 382(9887): p. 138-45. 20. Claas, E.C., Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet, 1998. 351: p. 472-477. 21. Hatta, M., Growth of H5N1 influenza A viruses in the upper respiratory tracts of mice. PLoS Pathog., 2007. 3: p. 1374-1379. 22. de Jong, M.D., et al., Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med, 2006. 12(10): p. 1203-7. 23. Koopmans, M., Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. Lancet, 2004. 363: p. 587-593. 24. Davenport, F.M., R. Rott, and W. Schäfer, PHYSICAL AND BIOLOGICAL PROPERTIES OF INFLUENZA VIRUS COMPONENTS OBTAINED AFTER ETHER TREATMENT. The Journal of Experimental Medicine, 1960. 112(5): p. 765-782. 25. Behzadi, M.A., M. Ziyaeyan, and A. Alborzi, A diagnostic one-step real-time reverse transcription polymerase chain reaction method for accurate detection of influenza virus type A. Archives of Medical Science : AMS, 2016. 12(6): p. 1286-1292. 26. Krammer, F. and P. Palese, Advances in the development of influenza virus vaccines. Nat Rev Drug Discov, 2015. 14(3): p. 167-82. 27. Huang, W.-T., et al., Design of a robust infrastructure to monitor the safety of the pandemic A(H1N1) 2009 vaccination program in Taiwan. Vaccine, 2010. 28(44): p. 7161-7166. 28. Sugrue, R.J. and A.J. Hay, Structural characteristics of the M2 protein of influenza a viruses: Evidence that it forms a tetrameric channe. Virology, 1991. 180(2): p. 617-624. 29. Holsinger, L.J. and R. Alams, Influenza virus M2 integral membrane protein is a homotetramer stabilized by formation of disulfide bonds. Virology, 1991. 183(1): p. 32-43. 30. Rossman, J.S., et al., Influenza virus m2 ion channel protein is necessary for filamentous virion formation. J Virol, 2010. 84(10): p. 5078-88. 31. Liu, W., P. Zou, and Y.H. Chen, Monoclonal antibodies recognizing EVETPIRN epitope of influenza A virus M2 protein could protect mice from lethal influenza A virus challenge. Immunol Lett, 2004. 93(2-3): p. 131-6. 32. Hutchinson, E.C., et al., Erratum: Conserved and host-specific features of influenza virion architecture. Nature Communications, 2015. 6: p. 6446. 33. Zou, P., W. Liu, and Y.H. Chen, The epitope recognized by a monoclonal antibody in influenza A virus M2 protein is immunogenic and confers immune protection. Int Immunopharmacol, 2005. 5(4): p. 631-5. 34. Deng, L., et al., M2e-Based Universal Influenza A Vaccines. Vaccines, 2015. 3(1): p. 105-136. 35. Haynes, J.R., Influenza virus-like particle vaccines. Expert Review of Vaccines, 2009. 8(4): p. 435-445. 36. WHO. Pandemic (H1N1) 2009 - update 109. WHO Global Alert and Response, 2009. 37. Xi, J.N., et al., Norwalk virus genome cloning and characterization. Science, 1990. 250(4987): p. 1580. 38. Lambden, P.R., et al., Sequence and genome organization of a human small round-structured (Norwalk-like) virus. Science, 1993. 259(5094): p. 516. 39. Thorne, L.G. and I.G. Goodfellow, Norovirus gene expression and replication. Journal of General Virology, 2014. 95(2): p. 278-291. 40. Karst, S.M., Pathogenesis of Noroviruses, Emerging RNA Viruses. Viruses, 2010. 2(3). 41. Jones, M.K., et al., Human norovirus culture in B cells. Nature protocols, 2015. 10(12): p. 1939-1947. 42. Robilotti, E., S. Deresinski, and B.A. Pinsky, Norovirus. Clinical Microbiology Reviews, 2015. 28(1): p. 134-164. 43. Prasad, B.V.V., M.E. Hardy, and M.K. Estes, Structural Studies of Recombinant Norwalk Capsids. The Journal of Infectious Diseases, 2000. 181(Supplement_2): p. S317-S321. 44. Jiang, X., et al., Expression, self-assembly, and antigenicity of the Norwalk virus capsid protein. Journal of Virology, 1992. 66(11): p. 6527-6532. 45. Green, K.Y., et al., Comparison of the reactivities of baculovirus-expressed recombinant Norwalk virus capsid antigen with those of the native Norwalk virus antigen in serologic assays and some epidemiologic observations. Journal of Clinical Microbiology, 1993. 31(8): p. 2185-2191. 46. Tan, M., et al., Noroviral P particle: structure, function and applications in virus-host interaction. Virology, 2008. 382(1): p. 115-23. 47. Tan, M. and X. Jiang, The P Domain of Norovirus Capsid Protein Forms a Subviral Particle That Binds to Histo-Blood Group Antigen Receptors. Journal of Virology, 2005. 79(22): p. 14017-14030. 48. Tan, M. and X. Jiang, Norovirus P particle: a subviral nanoparticle for vaccine development against norovirus, rotavirus and influenza virus. Nanomedicine (Lond), 2012. 7(6): p. 889-97. 49. Chen, H.W., et al., A novel technology for the production of a heterologous lipoprotein immunogen in high yield has implications for the field of vaccine design. Vaccine, 2009. 27(9): p. 1400-9. 50. Tseng, C.L. and C.H. Leng, Influence of medium components on the expression of recombinant lipoproteins in Escherichia coli. Appl Microbiol Biotechnol, 2012. 93(4): p. 1539-52. 51. Bollati, M., et al., Structure and functionality in flavivirus NS-proteins: Perspectives for drug design. Antiviral Research, 2010. 87(2): p. 125-148. 52. Molinari, N.A., The annual impact of seasonal influenza in the US: measuring disease burden and costs. Vaccine, 2007. 25: p. 5086-5096. 53. Joseph, U., et al., The ecology and adaptive evolution of influenza A interspecies transmission. Influenza and Other Respiratory Viruses, 2017. 11(1): p. 74-84. 54. Kim, Y.-I., et al., Genetic and phylogenetic characterizations of a novel genotype of highly pathogenic avian influenza (HPAI) H5N8 viruses in 2016/2017 in South Korea. Infection, Genetics and Evolution. 55. Onuma, M., et al., Characterizing the temporal patterns of avian influenza virus introduction into Japan by migratory birds. Journal of Veterinary Medical Science, 2017. advpub. 56. Nizolenko, L.P., A.G. Bachinsky, and S.I. Bazhan, Evaluation of Influenza Vaccination Efficacy: A Universal Epidemic Model. BioMed Research International, 2016. 2016: p. 5952890. 57. Worobey, M., G.-Z. Han, and A. Rambaut, A synchronized global sweep of the internal genes of modern avian influenza virus. Nature, 2014. 508(7495): p. 254-257. 58. Cho, K.J., et al., Crystal structure of the conserved amino-terminus of the extracellular domain of matrix protein 2 of influenza A virus gripped by an antibody. J Virol, 2015. 59. Nieva, J.L., V. Madan, and L. Carrasco, Viroporins: structure and biological functions. Nat Rev Micro, 2012. 10(8): p. 563-574. 60. Francis, D.M. and R. Page, Strategies to Optimize Protein Expression inE. coli. 2010: p. 5.24.1-5.24.29. 61. Kwok, Y., et al., Rapid isolation and characterization of bacterial lipopeptides using liquid chromatography and mass spectrometry analysis. Proteomics, 2011. 11(13): p. 2620-2627. 62. Diehl, S. and M. Rincón, The two faces of IL-6 on Th1/Th2 differentiation. Molecular Immunology, 2002. 39(9): p. 531-536. 63. Tailleux, L., et al., Stabilization of Influenza Vaccine Enhances Protection by Microneedle Delivery in the Mouse Skin. PLoS ONE, 2009. 4(9): p. e7152. 64. Kim, M.-C., et al., Microneedle patch delivery to the skin of virus-like particles containing heterologous M2e extracellular domains of influenza virus induces broad heterosubtypic cross-protection. Journal of Controlled Release, 2015. 210: p. 208-216. 65. Ai, W., et al., Optimal Method to Stimulate Cytokine Production and Its Use in Immunotoxicity Assessment. International Journal of Environmental Research and Public Health, 2013. 10(9): p. 3834-3842. 66. Luckheeram, R.V., et al., CD4+T Cells: Differentiation and Functions. Clinical and Developmental Immunology, 2012. 2012: p. 1-12. 67. Gauger, P.C. and A.L. Vincent, Serum Virus Neutralization Assay for Detection and Quantitation of Serum-Neutralizing Antibodies to Influenza A Virus in Swine, in Animal Influenza Virus, E. Spackman, Editor. 2014, Springer New York: New York, NY. p. 313-324. 68. Wingfield, P.T., Overview of the Purification of Recombinant Proteins. 2015: p. 6.1.1-6.1.35. 69. Du, L., Y. Zhou, and S. Jiang, Research and development of universal influenza vaccines. Microbes and Infection, 2010. 12(4): p. 280-286.
|