|
參考文獻
1. Palleroni NJ, and Bradbury JF. 1993. Stenotrophomonas, A new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. Int. J. Syst. Bacteriol., 43: p. 606-609. 2. Valerie JW, Grace S, Sunil A, Robert KE, and Prince A. 2007. Immunostimulatory properties of the emerging pathogen Stenotrophomonas maltophilia. Infection and Immunity, 75: p. 1698-703. 3. Hugh RL. 1963. A description of the type strain of Pseudomonas maltophilia. Int Bull Bacteriol Nomencl Taxon 13:133-138. 4. Swings J, De V, Den M, and De LJ. 1983. Transfer of Pseudomonas maltophilia Hugh 1981 to the Genus Xanthomonas as Xanthomonas maltophilia. Int J Syst Bacteriol 43:409-413. 5. Miles D. 1998. Microbiological and Clinical Aspects of Infection Associated with Stenotrophomonas maltophilia. Clinical Microbiology Review 11: p. 57-80. 6. Crossman LC, Dow J , Vernikos GS, Okazaki A, Sebaihia M, Saunders D, Arrowsmith C, Carver T, Peters N, Adlem E, Kerhornou A, Lord A, Lee M, Seeger K, Squares R, Rutter S, Quail MA, Rajandream MA, Harris D, Churcher C, Bentley SD, Parkhill J, Thomson NR and Avison MB. 2008. The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biology 9: p. R74. 7. Nikaido X.Z. 2009. Efflux-mediated drug resistance in bacteria: an update. Drugs 69: p. 1555-1623. 8. Jacek L, Wil N, and Arnold JM. 2007. Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiol Mol Biol Rev. 71: 463–476. 9. Christopher JL, Maloney C, and Wang DN. 2008. Ins and outs of major facilitator superfamily antiporters. Annu Rev Microbiol. 62: 289–305. 10. Moriyama Y, Matsumoto T , Omote H. 2008. Multidrug and toxic compound extrusion (MATE)-type proteins as anchor transporters for the excretion of metabolic waste products and xenobiotics. Xenobiotica 38: p. 1107-1118. 11. Denice CB, Raymond JT. 2008. Small multidrug resistance proteins: A multidrug transporter family that continues to grow. Biochimica et Biophysica Acta 1778: p. 1814-1838. 12. Blanco P, Hernando-Amado S, Antonio Reales-Calderon J, Corona F, Lira F, Alcalde-Rico M, Bernardini A, Sanchez MB and Martinez JL. 2016. Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms. 4: 14. 13. Huang YW. 2013. Role of the pcm-tolCsm operon in the multidrug resistance of Stenotrophomonas maltophilia. J Antimicrob Chemother 68: p. 1987-1993. 14. María B. 2015. Antibiotic resistance in the opportunistic pathogen Stenotrophomonas maltophilia. Front Microbiol. 6: 658. 15. Chen CH, Huang CC, Chung TC, Hu RM, Huang YW, and Yang TC. 2011. Contribution of Resistance-Nodulation-Division Efflux Pump Operon smeU1-V-W-U2-X to Multidrug Resistance of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 55: 5826–5833. 16. Kallberg Y, Oppermann U, Jörnvall H, Persson B. 2002. Short-chain dehydrogenases/reductases (SDRs). Eur J Biochem. 269:4409-17 17. Join L, Michea H, M., Koehler T, Chau F, Faurisson F, Dautrey S, Vissuzaine C, Carbon C, Pechere JC. 2001. Differential selection of multidrug efflux mutants by trovafloxacin and ciprofloxacin in an experimental model of Pseudomonas aeruginosa acute pneumonia in rats. Antimicrob. Agents Chemother. 45: 571–576. 18. Hirakata Y, Srikumar R, Poole K, Gotoh N, Suematsu T, Kohno S, Kamihira S, Hancock R, Speert D. 2002. Multidrug efflux systems play an important role in the invasiveness of Pseudomonas aeruginosa. J. Exp. Med. 196: 109–118 19. Kvist M, Hancock V, Klemm P. 2008. Inactivation of efflux pumps abolishes bacterial biofilm formation. Appl. Environ. Microbiol. 74: 7376–7382. 20. Yang L, Chen L, Shen L, Surette M, Duan K. 2011. Inactivation of MuxABC-OpmB transporter system in Pseudomonas aeruginosa leads to increased ampicillin and carbenicillin resistance and decreased virulence. J. Microbiol. 49: 107–114. 21. Buckner M, Blair J, Ragione R, Newcombe J, Dwyer DJ, Ivens A, Piddock LJV. 2016. Beyond antimicrobial resistance: evidence for a distinct role of the AcrD efflux pump in Salmonella Biology. mBio. 7: e01916-16. 22. Lin YT, Huang YW, Chen SJ, Chang CW, and Yang TC. 2015. The SmeYZ efflux pump of Stenotrophomonas maltophilia contributes to drug resistance, virulence-related characteristics, and virulence in mice. Antimicrob Agents Chemother. 59: 4067–4073. 23. Huang YW, Liou RS, Lin YT, Huang HH, Yang TC. 2014. A linkage between SmeIJK efflux pump, cell envelope integrity, and σE-mediated envelope stress response in Stenotrophomonas maltophilia. PLoS One. 9:e111784 24. White D.G, Goldman JD, Demple B, Levy SB. 1997. Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli. J. Bacteriol. 179: 6122–6126 25. Kehrenberg C, Cloeckaert A, Klein G, Schwarz S. 2009. Decreased fluoroquinolone susceptibility in mutants of Salmonella serovars other than Typhimurium: Detection of novel mutations involved in modulated expression of ramA and soxS. J. Antimicrob. Chemother. 64: 1175–1180 26. Bratu S, Landman D, George A, Salvani J, Quale J. 2009. Correlation of the expression of acrB and the regulatory genes marA, soxS and ramA with antimicrobial resistance in clinical isolates of Klebsiella pneumoniae endemic to New York City. J. Antimicrob. Chemother. 64: 278–283 27. Pérez A, Poza M, Aranda J, Latasa C, Medrano FJ, Tomás M, Romero A, Lasa I, Bou G. 2012. Effect of transcriptional activators SoxS, RobA, and RamA on expression of multidrug efflux pump AcrAB-TolC in Enterobacter cloacae. Antimicrob. Agents Chemother. 56: 6256–6266 28. Fraud S, Poole K. 2011. Oxidative stress induction of the MexXY multidrug efflux genes and promotion of aminoglycoside resistance development in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 5: 1068–1074. 29. Humpries KM, Sweda LI. 1998. Selective inactivation of alpha-ketoglutarate dehydrogenase: reaction of lipoic acid with 4-hydroxy-2-nonenal. Biochemistry 37:15835–15841 30. Valle A, Oliver J, Roca P. 2010. Role of uncoupling proteins in cancer. Cancers (Basel). 16:567-91. 31. Chiang SM, Schellhorn HE. 2012. Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. Arch Biochem Biophys. 525:161-9. 32. Woojun P, Samuel PL, Lee Y, Demple B. 2004. Regulation of superoxide stress in Pseudomonas putida KT2440 is different from the SoxR paradigm in Escherichia coli. J Biochem 136:607–615 33. Wang YL, Scipione MR, Dubrovskaya Y, Papadopoulos J. 2014. Monotherapy with fluoroquinolone or trimethoprim-sulfamethoxazole for treatment of Stenotrophomonas maltophilia infections. Antimicrob Agents Chemother. 58:176-82 34. Imlay JA, Chin SM, Linn S. 1988. Toxic DNA damage by hydrogen peroxide through the fenton reaction in vivo and in vitro. Science. 240:640-2 35. Dinesh MF and Ayush K. 2013. Resistance-nodulation-division multidrug efflux pumps in gram-negative bacteria: role in virulence. Antibiotics (Basel). 2: 163–181 36. Poole K. 2008. Bacterial multidrug efflux pumps serve other functions. Microbe, 3: p. 179-185. 37. Lee C, Lee SM, Mukhopadhyay P, Kim SJ, Lee SC, Ahn WS, Yu MH, Storz G, Ryu SE. 2004. Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path. Nat Struct Mol Biol. 11:1179-85. 38. Hillion M, Antelmann H. 2015. Thiol-based redox switches in prokaryotes. Biol Chem. 396:415-44 39. Chiang SM, Schellhorn HE. 2012. Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. Archives of Biochemistry and Biophysics 525: 161–169 40. Autréaux BD & Toledano MB. 2007. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nature Reviews Molecular Cell Biology 8: 813-824 41. Palma M, Zurita J, Ferreras JA, Worgall S, Larone DH, Shi L, Campagne F, Quadri LE. 2005. Pseudomonas aeruginosa SoxR does not conform to the archetypal paradigm for SoxR-dependent regulation of the bacterial oxidative stress adaptive response. Infect Immun. 73:2958-66 42. Hu RM, Huang KJ, Wu LT, Hsiao YJ, Yang TC. 2008. Induction of L1 and L2 beta-lactamases of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 52:1198-1200. 43. Simon R, O'Connell M, Labes M, Puhler A. 1986. Plasmid vectors for the genetic analysis and manipulation of rhizobia and other gram-negative bacteria. Methods Enzymol 118:640-659. 44. Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP. 1998. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77-86. 45. Lin CW, Lin HC, Huang YW, Chung TC, Yang TC. 2011. Inactivation of mrcA gene derepresses the basal-level expression of L1 and L2 beta-lactamases in Stenotrophomonas maltophilia. J Antimicrob Chemother 66:2033-2037. 46. Schweizer, H. P., and T. T. Hoang. 1995. An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. Gene 158: 15–22. 47. Pizzimenti S, Ciamporcero E, Daga M, Pettazzoni P, Arcaro A, Cetrangolo G, Minelli R, Dianzani C, Lepore A, Gentile F, Barrera G. 2013. Interaction of aldehydes derived from lipid peroxidation and membrane proteins. Front Physiol. 4:242 48. Skarydová L, Wsól V. 2012. Human microsomal carbonyl reducing enzymes in the metabolism of xenobiotics: well-known and promising members of the SDR superfamily. Drug Metab Rev. 44:173-91
|