跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/08 01:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃琴涵
研究生(外文):Chin-Han Huang
論文名稱:探討TGF-β對於白血病細胞躲避NK細胞免疫監控之影響
論文名稱(外文):The effect of TGF-β on escape the NK-mediated immunosurveillance in leukemia models
指導教授:涂玉青
指導教授(外文):Yuh-Ching Twu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學生物技術暨檢驗學系
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:38
中文關鍵詞:轉化生長因子-β自然殺手細胞免疫監控CD48
外文關鍵詞:Transforming Growth Factor-beta (TGF-β)natural killer cell (NK cell)immunesurveillanceCD48
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究證實癌細胞可透過釋放免疫抑制型激素,如TGF-β (transforming growth factor-β),抑制自然殺手細胞 (natural killer cell, NK cell) 毒殺功能,進而躲避宿主免疫監控。TGF-β的大量表現於乳癌、大腸癌、胃癌等疾病的進程、轉移、不良預後皆具高度相關性。近年來的研究更證實在慢性骨髓性白血病中,TGF-β會保有白血病幹細胞之幹性 (stemness) 以維持其癌化能力 (tumorigenic activity)。目前科學家們正積極發展以TGF-β為目標的標靶療法,期望能將之運用於臨床治療上。另一方面,於先天性免疫反應中,NK細胞針對病毒感染和腫瘤細胞的清除有著舉足輕重的地位,其透過細胞表面的受體與目標細胞上之配體結合來執行免疫監控。與其他研究結果相似,我們的實驗亦發現經TGF-β作用後,NK細胞表面上的活化型受體會逐漸減少,且其對於白血病細胞之毒殺能力則大幅降低,指出白血病患者之免疫系統會受TGF-β影響而無法有效進行免疫監控之功能。此外,為了逃脫NK細胞的毒殺,研究證實急性骨髓性白血病患者的白血球芽細胞會藉由改變細胞表面相對應配體的表現量來抑制NK細胞之毒殺作用。基於上述研究發現,我們欲檢測TGF-β於白血病細胞對NK細胞毒殺能力感受性之影響,以驗證TGF-β的表現與白血病細胞躲避NK細胞的免疫監控之相關性。實驗結果發現,經TGF-β處理後,白血病細胞對NK細胞之毒殺感受性大幅降低。此外,TGF-β亦影響白血病細胞表面之醣化作用及其相對應NK活化型受體之配體的表現量,其中以CD48表現量的下降最為顯著。已知CD48可與NK細胞表面上的活化型受體2B4結合,啟動下游的訊息傳遞路徑。故在抑制CD48表現的細胞中亦觀察到NK細胞與之結合能力有顯著的下降,推測白血病細胞可能透過釋放TGF-β調控CD48-2B4訊息傳遞路徑以達到逃脫NK細胞毒殺作用之目的。我們期望能夠透過此研究提供另一訊息傳遞機制作為標靶治療開發之選擇。
Transforming growth factor-β (TGF-β)-mediated signaling has been reported in the regulation of tumor initiation, progression and metastasis in solid tumor. It has been known for decades that TGF-β attracts immune components into the tumor microenvironment to enable the expression of additional tumor-promoting factors. Furthermore, TGF-β has been proved the tumorigenic activity of leukemia-initiating cells in chronic myeloid leukemia (CML). Based on these findings, it would be a great idea to develop TGF-β-associated cancer therapy. On the other side, natural killer cells (NK cells), member of innate immune system, are critical to destroy virus-infected cells and tumor cells. NK cells processed immunesurveillance through recognizing ligand of target cells. With the agreement to other studies, our data showed that the cytotoxicity was impaired upon TGF-β treatment, which indicated that the function of immune cells were suppressed in the tumor microenvironment. Another research demonstrated the escaping NK-mediated cytotoxicity due to the surface ligand changing in acute myeloid leukemia (AML) patient. In combination, our hypothesis is that the TGF-β plays positive role on escaping NK-mediated surveillance of the leukemia cells. Our results showed that the susceptibility of TGF-β-treated leukemia cells to NK-mediated cytotoxicity decreased and the expression of tumor-associated carbohydrate antigens and the amount of corresponding ligands for NK activating receptors also been affected, especially on the expression of CD48. Furthermore, the established CD48-knockdown cells with decreasing levels of CD48 possessed lower NK sensitivity and less conjugation with NK-92MI cells, suggested the TGF-β-mediated signaling affects the susceptibility of leukemia cells through CD48-2B4 signaling pathway to help the escape from the NK-mediated immunosurveillance. Based on these findings, targeting TGF-β signaling may serve as another choice for developing the target therapy.
中文摘要.....i.
Abstract.....ii.
縮寫表.....iv.
目錄.....vi.
第一章 緒論.....1
1. 轉化生長因子 -β ( transforming growth factor-beta, TGF beta).....1
2. 白血病的成因與治療.....2
3. CD48.....4
4. 自然殺手細胞 (natural killer cells, NK cells).....5
第二章 研究動機與目的.....8
第三章 材料和方法.....9
1. 細胞培養.....9
2. 細胞接合力試驗 (conjugate formation assay).....9
3. NK 細胞去顆粒作用試驗 (NK degranulation assay).....10
4. 細胞毒殺試驗(FACS -based cytotoxicity).....10
5. 白血病細胞表面醣抗原和自然殺手受體相對應配體之染色.....11
6. NK 細胞表面受體之染色.....11
7. 非放射線細胞毒殺試驗.....12
8. 即時定量 PCR (real -time time qPCR).....12
9. 慢病毒表現系統 (lentivirus expression system).....13
10. 統計分析.....13
第四章 結果.....14
1. TGF-β 降低自然殺手細胞對目標細胞之毒殺能力.....14
2. TGF-β影響自然殺手細胞表面活化型受體之表現量.....14
3. TGF-β影響人類白血病細胞株對於 NK 細胞毒殺之感受性.....15
4. TGF-β 影響白血病細胞株表面醣抗原的表現量.....16
5. TGF-β 降低白血病細胞上 NK 活化型受體之相對應配體的表現量.....16
6. 抑制 CD48表現量之細胞對 NK 細胞之毒殺感受性顯著下降.....17
第五章 討論.....19
第六章 圖.....22
圖 1 TGF-β 影響 NK -92MI細胞之功能.....22
圖 2 TGF-β 影響 NK 細胞表面上之受體表現量.....24
圖 3 TGF-β 影響血癌細胞對於 NK-92MI 細胞之毒殺感受性.....26
圖 4 TGF-β 影響人類白血病細胞株表面上醣抗原和 NK 活化型受體之 相對應配體之表現.....29
圖 5 抑制 CD48 表現量影響人類白血病細胞株對 NK 細胞之毒殺感受性...31
參考文獻.....33
1. Bierie, B., and Moses, H. L. (2006) Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6, 506-520
2. Ikushima, H., and Miyazono, K. (2010) TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer 10, 415-424
3. Sun, N., Taguchi, A., and Hanash, S. (2016) Switching Roles of TGF-β in Cancer Development: Implications for Therapeutic Target and Biomarker Studies. Journal of clinical medicine 5, 109
4. Ashcroft, G. S. (1999) Bidirectional regulation of macrophage function by TGF-beta. Microbes Infect 1, 1275-1282
5. Lee, J. C., Lee, K. M., Kim, D. W., and Heo, D. S. (2004) Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. Journal of immunology 172, 7335-7340
6. Ghiringhelli, F., Menard, C., Terme, M., Flament, C., Taieb, J., Chaput, N., Puig, P. E., Novault, S., Escudier, B., Vivier, E., Lecesne, A., Robert, C., Blay, J. Y., Bernard, J., Caillat-Zucman, S., Freitas, A., Tursz, T., Wagner-Ballon, O., Capron, C., Vainchencker, W., Martin, F., and Zitvogel, L. (2005) CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. The Journal of experimental medicine 202, 1075-1085
7. Smyth, M. J., Teng, M. W., Swann, J., Kyparissoudis, K., Godfrey, D. I., and Hayakawa, Y. (2006) CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer. Journal of immunology 176, 1582-1587
8. Naka, K., Hoshii, T., Muraguchi, T., Tadokoro, Y., Ooshio, T., Kondo, Y., Nakao, S., Motoyama, N., and Hirao, A. (2010) TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 463, 676-680
9. Neuzillet, C., Tijeras-Raballand, A., Cohen, R., Cros, J., Faivre, S., Raymond, E., and de Gramont, A. (2015) Targeting the TGFbeta pathway for cancer therapy. Pharmacol Ther 147, 22-31
10. Viel, S., Marcais, A., Guimaraes, F. S., Loftus, R., Rabilloud, J., Grau, M., Degouve, S., Djebali, S., Sanlaville, A., Charrier, E., Bienvenu, J., Marie, J. C., Caux, C., Marvel, J., Town, L., Huntington, N. D., Bartholin, L., Finlay, D., Smyth, M. J., and Walzer, T. (2016) TGF-beta inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci Signal 9, ra19
11. Zhang, Q., Yang, X., Pins, M., Javonovic, B., Kuzel, T., Kim, S. J., Parijs, L. V., Greenberg, N. M., Liu, V., Guo, Y., and Lee, C. (2005) Adoptive transfer of tumor-reactive transforming growth factor-beta-insensitive CD8+ T cells: eradication of autologous mouse prostate cancer. Cancer research 65, 1761-1769
12. Arber, D. A., Orazi, A., Hasserjian, R., Thiele, J., Borowitz, M. J., Le Beau, M. M., Bloomfield, C. D., Cazzola, M., and Vardiman, J. W. (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127, 2391-2405
13. Bennett, J. M., Catovsky, D., Daniel, M. T., Flandrin, G., Galton, D. A., Gralnick, H. R., and Sultan, C. (1976) Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol 33, 451-458
14. Kang, Z.-J., Liu, Y.-F., Xu, L.-Z., Long, Z.-J., Huang, D., Yang, Y., Liu, B., Feng, J.-X., Pan, Y.-J., and Yan, J.-S. (2016) The Philadelphia chromosome in leukemogenesis. Chinese journal of cancer 35, 48
15. Mrózek, K., and Bloomfield, C. D. (2008) Clinical significance of the most common chromosome translocations in adult acute myeloid leukemia. Journal of the National Cancer Institute Monographs 2008, 52-57
16. Gratwohl, A., Baldomero, H., Passweg, J., Frassoni, F., Niederwieser, D., Schmitz, N., Urbano-Ispizua, A., Accreditation Committee of the European Group for, B., Marrow, T., Working Parties Acute Chronic, L., and Lymphoma Working, P. (2003) Hematopoietic stem cell transplantation for hematological malignancies in Europe. Leukemia 17, 941-959
17. Jelinek, T., Mihalyova, J., Kascak, M., Duras, J., and Hajek, R. (2017) PD-1/PD-L1 inhibitors in haematological malignancies: update 2017. Immunology (doi:10.1111/imm.12788)
18. Schutz, C., Inselmann, S., Sausslele, S., Dietz, C. T., Mu Ller, M. C., Eigendorff, E., Brendel, C. A., Metzelder, S. K., Bru Mmendorf, T. H., Waller, C., Dengler, J., Goebeler, M. E., Herbst, R., Freunek, G., Hanzel, S., Illmer, T., Wang, Y., Lange, T., Finkernagel, F., Hehlmann, R., Huber, M., Neubauer, A., Hochhaus, A., Guilhot, J., Xavier Mahon, F., Pfirrmann, M., and Burchert, A. (2017) Expression of the CTLA-4 ligand CD86 on plasmacytoid dendritic cells (pDC) predicts risk of disease recurrence after treatment discontinuation in CML. Leukemia 31, 829-836
19. Downing, J. R. (2008) Targeted therapy in leukemia. Mod Pathol 21 Suppl 2, S2-7
20. Newick, K., O'Brien, S., Moon, E., and Albelda, S. M. (2017) CAR T cell therapy for solid tumors. Annual review of medicine 68, 139-152
21. Liu, D., Tian, S., Zhang, K., Xiong, W., Lubaki, N. M., Chen, Z., and Han, W. (2017) Chimeric antigen receptor (CAR)-modified natural killer cell-based immunotherapy and immunological synapse formation in cancer and HIV. Protein & Cell, 1-17
22. Curti, A., Ruggeri, L., D'Addio, A., Bontadini, A., Dan, E., Motta, M. R., Trabanelli, S., Giudice, V., Urbani, E., Martinelli, G., Paolini, S., Fruet, F., Isidori, A., Parisi, S., Bandini, G., Baccarani, M., Velardi, A., and Lemoli, R. M. (2011) Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute myeloid leukemia patients. Blood 118, 3273-3279
23. Bouchlaka, M. N., Redelman, D., and Murphy, W. J. (2010) Immunotherapy following hematopoietic stem cell transplantation: potential for synergistic effects. Immunotherapy 2, 399-418
24. Moretta, L. (2007) NK cell-mediated immune response against cancer. Surg Oncol 16 Suppl 1, S3-5
25. Rubnitz, J. E., Inaba, H., Kang, G., Gan, K., Hartford, C., Triplett, B. M., Dallas, M., Shook, D., Gruber, T., Pui, C. H., and Leung, W. (2015) Natural killer cell therapy in children with relapsed leukemia. Pediatr Blood Cancer 62, 1468-1472
26. Cheng, M., Chen, Y., Xiao, W., Sun, R., and Tian, Z. (2013) NK cell-based immunotherapy for malignant diseases. Cell Mol Immunol 10, 230-252
27. Boles, N. C., Lin, K. K., Lukov, G. L., Bowman, T. V., Baldridge, M. T., and Goodell, M. A. (2011) CD48 on hematopoietic progenitors regulates stem cells and suppresses tumor formation. Blood 118, 80-87
28. Kubin, M. Z., Parshley, D. L., Din, W., Waugh, J. Y., Davis-Smith, T., Smith, C. A., Macduff, B. M., Armitage, R. J., Chin, W., Cassiano, L., Borges, L., Petersen, M., Trinchieri, G., and Goodwin, R. G. (1999) Molecular cloning and biological characterization of NK cell activation-inducing ligand, a counterstructure for CD48. Eur J Immunol 29, 3466-3477
29. McArdel, S. L., Terhorst, C., and Sharpe, A. H. (2016) Roles of CD48 in regulating immunity and tolerance. Clin Immunol 164, 10-20
30. Hosen, N., Ichihara, H., Mugitani, A., Aoyama, Y., Fukuda, Y., Kishida, S., Matsuoka, Y., Nakajima, H., Kawakami, M., Yamagami, T., Fuji, S., Tamaki, H., Nakao, T., Nishida, S., Tsuboi, A., Iida, S., Hino, M., Oka, Y., Oji, Y., and Sugiyama, H. (2012) CD48 as a novel molecular target for antibody therapy in multiple myeloma. Br J Haematol 156, 213-224
31. Kiel, M. J., Yilmaz, Ö. H., Iwashita, T., Yilmaz, O. H., Terhorst, C., and Morrison, S. J. (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. cell 121, 1109-1121
32. Gangwar, R. S., Minai‐Fleminger, Y., Seaf, M., Gutgold, A., Shikotra, A., Barber, C., Chauhan, A., Holgate, S., Bradding, P., and Howarth, P. (2017) CD48 on blood leukocytes and in serum of asthma patients varies with severity. Allergy 72, 888-895
33. McArdel, S. L., Brown, D. R., Sobel, R. A., and Sharpe, A. H. (2016) Anti-CD48 Monoclonal Antibody Attenuates Experimental Autoimmune Encephalomyelitis by Limiting the Number of Pathogenic CD4+ T Cells. J Immunol 197, 3038-3048
34. Elias, S., Yamin, R., Golomb, L., Tsukerman, P., Stanietsky-Kaynan, N., Ben-Yehuda, D., and Mandelboim, O. (2014) Immune evasion by oncogenic proteins of acute myeloid leukemia. Blood 123, 1535-1543
35. Gleason, M. K., Lenvik, T. R., McCullar, V., Felices, M., O'Brien, M. S., Cooley, S. A., Verneris, M. R., Cichocki, F., Holman, C. J., Panoskaltsis-Mortari, A., Niki, T., Hirashima, M., Blazar, B. R., and Miller, J. S. (2012) Tim-3 is an inducible human natural killer cell receptor that enhances interferon gamma production in response to galectin-9. Blood 119, 3064-3072
36. Alter, G., Malenfant, J. M., and Altfeld, M. (2004) CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods 294, 15-22
37. Orange, J. S., and Ballas, Z. K. (2006) Natural killer cells in human health and disease. Clin Immunol 118, 1-10
38. Pegram, H. J., Andrews, D. M., Smyth, M. J., Darcy, P. K., and Kershaw, M. H. (2011) Activating and inhibitory receptors of natural killer cells. Immunol Cell Biol 89, 216-224
39. Nakajima, H., and Colonna, M. (2000) 2B4: an NK cell activating receptor with unique specificity and signal transduction mechanism. Human immunology 61, 39-43
40. Kumar, V., and McNerney, M. E. (2005) A new self: MHC-class-I-independent natural-killer-cell self-tolerance. Nat Rev Immunol 5, 363-374
41. Vivier, E., Tomasello, E., Baratin, M., Walzer, T., and Ugolini, S. (2008) Functions of natural killer cells. Nature immunology 9, 503-510
42. Liang, S., Zhang, W., and Horuzsko, A. (2006) Human ILT2 receptor associates with murine MHC class I molecules in vivo and impairs T cell function. European journal of immunology 36, 2457-2471
43. Shiroishi, M., Tsumoto, K., Amano, K., Shirakihara, Y., Colonna, M., Braud, V. M., Allan, D. S., Makadzange, A., Rowland-Jones, S., Willcox, B., Jones, E. Y., van der Merwe, P. A., Kumagai, I., and Maenaka, K. (2003) Human inhibitory receptors Ig-like transcript 2 (ILT2) and ILT4 compete with CD8 for MHC class I binding and bind preferentially to HLA-G. Proceedings of the National Academy of Sciences of the United States of America 100, 8856-8861
44. Dulphy, N., Chretien, A. S., Khaznadar, Z., Fauriat, C., Nanbakhsh, A., Caignard, A., Chouaib, S., Olive, D., and Toubert, A. (2016) Underground Adaptation to a Hostile Environment: Acute Myeloid Leukemia vs. Natural Killer Cells. Front Immunol 7, 94
45. Tomescu, C., Chehimi, J., Maino, V. C., and Montaner, L. J. (2009) Retention of viability, cytotoxicity, and response to IL-2, IL-15, or IFN-alpha by human NK cells after CD107a degranulation. J Leukoc Biol 85, 871-876
46. Aktas, E., Kucuksezer, U. C., Bilgic, S., Erten, G., and Deniz, G. (2009) Relationship between CD107a expression and cytotoxic activity. Cell Immunol 254, 149-154
47. Cohnen, A., Chiang, S. C., Stojanovic, A., Schmidt, H., Claus, M., Saftig, P., Janssen, O., Cerwenka, A., Bryceson, Y. T., and Watzl, C. (2013) Surface CD107a/LAMP-1 protects natural killer cells from degranulation-associated damage. Blood 122, 1411-1418
48. Hasegawa, Y., Takanashi, S., Kanehira, Y., Tsushima, T., Imai, T., and Okumura, K. (2001) Transforming growth factor-beta1 level correlates with angiogenesis, tumor progression, and prognosis in patients with nonsmall cell lung carcinoma. Cancer 91, 964-971
49. Rouce, R. H., Shaim, H., Sekine, T., Weber, G., Ballard, B., Ku, S., Barese, C., Murali, V., Wu, M. F., Liu, H., Shpall, E. J., Bollard, C. M., Rabin, K. R., and Rezvani, K. (2016) The TGF-beta/SMAD pathway is an important mechanism for NK cell immune evasion in childhood B-acute lymphoblastic leukemia. Leukemia 30, 800-811
50. Barber, D. F., Faure, M., and Long, E. O. (2004) LFA-1 contributes an early signal for NK cell cytotoxicity. Journal of immunology 173, 3653-3659
51. Urlaub, D., Hofer, K., Muller, M. L., and Watzl, C. (2017) LFA-1 Activation in NK Cells and Their Subsets: Influence of Receptors, Maturation, and Cytokine Stimulation. Journal of immunology 198, 1944-1951
52. Feizi, T. (1985) Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens. Nature 314, 53-57
53. Coon, J. S., and Weinstein, R. S. (1986) Blood group-related antigens as markers of malignant potential and heterogeneity in human carcinomas. Hum Pathol 17, 1089-1106
54. Fukuda, M. (1996) Possible roles of tumor-associated carbohydrate antigens. Cancer Res 56, 2237-2244
55. Gooi, H. C., Jones, N. J., Hounsell, E. F., Scudder, P., Hilkens, J., Hilgers, J., and Feizi, T. (1985) Novel antigenic specificity involving the blood group antigen, Lea, in combination with onco-developmental antigen, SSEA-1, recognized by two monoclonal antibodies to human milk-fat globule membranes. Biochem Biophys Res Commun 131, 543-550
56. Liao, Y. J., Lee, Y. H., Chang, F. L., Ho, H., Huang, C. H., and Twu, Y. C. (2016) The SHP2‐ERK2 signaling pathway regulates branched I antigen formation by controlling the binding of CCAAT/enhancer binding protein α to the IGnTC promoter region during erythroid differentiation. Transfusion 56, 2691-2702
57. Bhide, G. P., and Colley, K. J. (2017) Sialylation of N-glycans: mechanism, cellular compartmentalization and function. Histochemistry and cell biology, 1-26
58. Monzavi-Karbassi, B., Pashov, A., and Kieber-Emmons, T. (2013) Tumor-Associated Glycans and Immune Surveillance. Vaccines 1, 174-203
59. Zhang, H., Meng, F., Wu, S., Kreike, B., Sethi, S., Chen, W., Miller, F. R., and Wu, G. (2011) Engagement of I-branching {beta}-1, 6-N-acetylglucosaminyltransferase 2 in breast cancer metastasis and TGF-{beta} signaling. Cancer Res 71, 4846-4856
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top