|
1. Bierie, B., and Moses, H. L. (2006) Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6, 506-520 2. Ikushima, H., and Miyazono, K. (2010) TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer 10, 415-424 3. Sun, N., Taguchi, A., and Hanash, S. (2016) Switching Roles of TGF-β in Cancer Development: Implications for Therapeutic Target and Biomarker Studies. Journal of clinical medicine 5, 109 4. Ashcroft, G. S. (1999) Bidirectional regulation of macrophage function by TGF-beta. Microbes Infect 1, 1275-1282 5. Lee, J. C., Lee, K. M., Kim, D. W., and Heo, D. S. (2004) Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. Journal of immunology 172, 7335-7340 6. Ghiringhelli, F., Menard, C., Terme, M., Flament, C., Taieb, J., Chaput, N., Puig, P. E., Novault, S., Escudier, B., Vivier, E., Lecesne, A., Robert, C., Blay, J. Y., Bernard, J., Caillat-Zucman, S., Freitas, A., Tursz, T., Wagner-Ballon, O., Capron, C., Vainchencker, W., Martin, F., and Zitvogel, L. (2005) CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. The Journal of experimental medicine 202, 1075-1085 7. Smyth, M. J., Teng, M. W., Swann, J., Kyparissoudis, K., Godfrey, D. I., and Hayakawa, Y. (2006) CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer. Journal of immunology 176, 1582-1587 8. Naka, K., Hoshii, T., Muraguchi, T., Tadokoro, Y., Ooshio, T., Kondo, Y., Nakao, S., Motoyama, N., and Hirao, A. (2010) TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 463, 676-680 9. Neuzillet, C., Tijeras-Raballand, A., Cohen, R., Cros, J., Faivre, S., Raymond, E., and de Gramont, A. (2015) Targeting the TGFbeta pathway for cancer therapy. Pharmacol Ther 147, 22-31 10. Viel, S., Marcais, A., Guimaraes, F. S., Loftus, R., Rabilloud, J., Grau, M., Degouve, S., Djebali, S., Sanlaville, A., Charrier, E., Bienvenu, J., Marie, J. C., Caux, C., Marvel, J., Town, L., Huntington, N. D., Bartholin, L., Finlay, D., Smyth, M. J., and Walzer, T. (2016) TGF-beta inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci Signal 9, ra19 11. Zhang, Q., Yang, X., Pins, M., Javonovic, B., Kuzel, T., Kim, S. J., Parijs, L. V., Greenberg, N. M., Liu, V., Guo, Y., and Lee, C. (2005) Adoptive transfer of tumor-reactive transforming growth factor-beta-insensitive CD8+ T cells: eradication of autologous mouse prostate cancer. Cancer research 65, 1761-1769 12. Arber, D. A., Orazi, A., Hasserjian, R., Thiele, J., Borowitz, M. J., Le Beau, M. M., Bloomfield, C. D., Cazzola, M., and Vardiman, J. W. (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127, 2391-2405 13. Bennett, J. M., Catovsky, D., Daniel, M. T., Flandrin, G., Galton, D. A., Gralnick, H. R., and Sultan, C. (1976) Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol 33, 451-458 14. Kang, Z.-J., Liu, Y.-F., Xu, L.-Z., Long, Z.-J., Huang, D., Yang, Y., Liu, B., Feng, J.-X., Pan, Y.-J., and Yan, J.-S. (2016) The Philadelphia chromosome in leukemogenesis. Chinese journal of cancer 35, 48 15. Mrózek, K., and Bloomfield, C. D. (2008) Clinical significance of the most common chromosome translocations in adult acute myeloid leukemia. Journal of the National Cancer Institute Monographs 2008, 52-57 16. Gratwohl, A., Baldomero, H., Passweg, J., Frassoni, F., Niederwieser, D., Schmitz, N., Urbano-Ispizua, A., Accreditation Committee of the European Group for, B., Marrow, T., Working Parties Acute Chronic, L., and Lymphoma Working, P. (2003) Hematopoietic stem cell transplantation for hematological malignancies in Europe. Leukemia 17, 941-959 17. Jelinek, T., Mihalyova, J., Kascak, M., Duras, J., and Hajek, R. (2017) PD-1/PD-L1 inhibitors in haematological malignancies: update 2017. Immunology (doi:10.1111/imm.12788) 18. Schutz, C., Inselmann, S., Sausslele, S., Dietz, C. T., Mu Ller, M. C., Eigendorff, E., Brendel, C. A., Metzelder, S. K., Bru Mmendorf, T. H., Waller, C., Dengler, J., Goebeler, M. E., Herbst, R., Freunek, G., Hanzel, S., Illmer, T., Wang, Y., Lange, T., Finkernagel, F., Hehlmann, R., Huber, M., Neubauer, A., Hochhaus, A., Guilhot, J., Xavier Mahon, F., Pfirrmann, M., and Burchert, A. (2017) Expression of the CTLA-4 ligand CD86 on plasmacytoid dendritic cells (pDC) predicts risk of disease recurrence after treatment discontinuation in CML. Leukemia 31, 829-836 19. Downing, J. R. (2008) Targeted therapy in leukemia. Mod Pathol 21 Suppl 2, S2-7 20. Newick, K., O'Brien, S., Moon, E., and Albelda, S. M. (2017) CAR T cell therapy for solid tumors. Annual review of medicine 68, 139-152 21. Liu, D., Tian, S., Zhang, K., Xiong, W., Lubaki, N. M., Chen, Z., and Han, W. (2017) Chimeric antigen receptor (CAR)-modified natural killer cell-based immunotherapy and immunological synapse formation in cancer and HIV. Protein & Cell, 1-17 22. Curti, A., Ruggeri, L., D'Addio, A., Bontadini, A., Dan, E., Motta, M. R., Trabanelli, S., Giudice, V., Urbani, E., Martinelli, G., Paolini, S., Fruet, F., Isidori, A., Parisi, S., Bandini, G., Baccarani, M., Velardi, A., and Lemoli, R. M. (2011) Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute myeloid leukemia patients. Blood 118, 3273-3279 23. Bouchlaka, M. N., Redelman, D., and Murphy, W. J. (2010) Immunotherapy following hematopoietic stem cell transplantation: potential for synergistic effects. Immunotherapy 2, 399-418 24. Moretta, L. (2007) NK cell-mediated immune response against cancer. Surg Oncol 16 Suppl 1, S3-5 25. Rubnitz, J. E., Inaba, H., Kang, G., Gan, K., Hartford, C., Triplett, B. M., Dallas, M., Shook, D., Gruber, T., Pui, C. H., and Leung, W. (2015) Natural killer cell therapy in children with relapsed leukemia. Pediatr Blood Cancer 62, 1468-1472 26. Cheng, M., Chen, Y., Xiao, W., Sun, R., and Tian, Z. (2013) NK cell-based immunotherapy for malignant diseases. Cell Mol Immunol 10, 230-252 27. Boles, N. C., Lin, K. K., Lukov, G. L., Bowman, T. V., Baldridge, M. T., and Goodell, M. A. (2011) CD48 on hematopoietic progenitors regulates stem cells and suppresses tumor formation. Blood 118, 80-87 28. Kubin, M. Z., Parshley, D. L., Din, W., Waugh, J. Y., Davis-Smith, T., Smith, C. A., Macduff, B. M., Armitage, R. J., Chin, W., Cassiano, L., Borges, L., Petersen, M., Trinchieri, G., and Goodwin, R. G. (1999) Molecular cloning and biological characterization of NK cell activation-inducing ligand, a counterstructure for CD48. Eur J Immunol 29, 3466-3477 29. McArdel, S. L., Terhorst, C., and Sharpe, A. H. (2016) Roles of CD48 in regulating immunity and tolerance. Clin Immunol 164, 10-20 30. Hosen, N., Ichihara, H., Mugitani, A., Aoyama, Y., Fukuda, Y., Kishida, S., Matsuoka, Y., Nakajima, H., Kawakami, M., Yamagami, T., Fuji, S., Tamaki, H., Nakao, T., Nishida, S., Tsuboi, A., Iida, S., Hino, M., Oka, Y., Oji, Y., and Sugiyama, H. (2012) CD48 as a novel molecular target for antibody therapy in multiple myeloma. Br J Haematol 156, 213-224 31. Kiel, M. J., Yilmaz, Ö. H., Iwashita, T., Yilmaz, O. H., Terhorst, C., and Morrison, S. J. (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. cell 121, 1109-1121 32. Gangwar, R. S., Minai‐Fleminger, Y., Seaf, M., Gutgold, A., Shikotra, A., Barber, C., Chauhan, A., Holgate, S., Bradding, P., and Howarth, P. (2017) CD48 on blood leukocytes and in serum of asthma patients varies with severity. Allergy 72, 888-895 33. McArdel, S. L., Brown, D. R., Sobel, R. A., and Sharpe, A. H. (2016) Anti-CD48 Monoclonal Antibody Attenuates Experimental Autoimmune Encephalomyelitis by Limiting the Number of Pathogenic CD4+ T Cells. J Immunol 197, 3038-3048 34. Elias, S., Yamin, R., Golomb, L., Tsukerman, P., Stanietsky-Kaynan, N., Ben-Yehuda, D., and Mandelboim, O. (2014) Immune evasion by oncogenic proteins of acute myeloid leukemia. Blood 123, 1535-1543 35. Gleason, M. K., Lenvik, T. R., McCullar, V., Felices, M., O'Brien, M. S., Cooley, S. A., Verneris, M. R., Cichocki, F., Holman, C. J., Panoskaltsis-Mortari, A., Niki, T., Hirashima, M., Blazar, B. R., and Miller, J. S. (2012) Tim-3 is an inducible human natural killer cell receptor that enhances interferon gamma production in response to galectin-9. Blood 119, 3064-3072 36. Alter, G., Malenfant, J. M., and Altfeld, M. (2004) CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods 294, 15-22 37. Orange, J. S., and Ballas, Z. K. (2006) Natural killer cells in human health and disease. Clin Immunol 118, 1-10 38. Pegram, H. J., Andrews, D. M., Smyth, M. J., Darcy, P. K., and Kershaw, M. H. (2011) Activating and inhibitory receptors of natural killer cells. Immunol Cell Biol 89, 216-224 39. Nakajima, H., and Colonna, M. (2000) 2B4: an NK cell activating receptor with unique specificity and signal transduction mechanism. Human immunology 61, 39-43 40. Kumar, V., and McNerney, M. E. (2005) A new self: MHC-class-I-independent natural-killer-cell self-tolerance. Nat Rev Immunol 5, 363-374 41. Vivier, E., Tomasello, E., Baratin, M., Walzer, T., and Ugolini, S. (2008) Functions of natural killer cells. Nature immunology 9, 503-510 42. Liang, S., Zhang, W., and Horuzsko, A. (2006) Human ILT2 receptor associates with murine MHC class I molecules in vivo and impairs T cell function. European journal of immunology 36, 2457-2471 43. Shiroishi, M., Tsumoto, K., Amano, K., Shirakihara, Y., Colonna, M., Braud, V. M., Allan, D. S., Makadzange, A., Rowland-Jones, S., Willcox, B., Jones, E. Y., van der Merwe, P. A., Kumagai, I., and Maenaka, K. (2003) Human inhibitory receptors Ig-like transcript 2 (ILT2) and ILT4 compete with CD8 for MHC class I binding and bind preferentially to HLA-G. Proceedings of the National Academy of Sciences of the United States of America 100, 8856-8861 44. Dulphy, N., Chretien, A. S., Khaznadar, Z., Fauriat, C., Nanbakhsh, A., Caignard, A., Chouaib, S., Olive, D., and Toubert, A. (2016) Underground Adaptation to a Hostile Environment: Acute Myeloid Leukemia vs. Natural Killer Cells. Front Immunol 7, 94 45. Tomescu, C., Chehimi, J., Maino, V. C., and Montaner, L. J. (2009) Retention of viability, cytotoxicity, and response to IL-2, IL-15, or IFN-alpha by human NK cells after CD107a degranulation. J Leukoc Biol 85, 871-876 46. Aktas, E., Kucuksezer, U. C., Bilgic, S., Erten, G., and Deniz, G. (2009) Relationship between CD107a expression and cytotoxic activity. Cell Immunol 254, 149-154 47. Cohnen, A., Chiang, S. C., Stojanovic, A., Schmidt, H., Claus, M., Saftig, P., Janssen, O., Cerwenka, A., Bryceson, Y. T., and Watzl, C. (2013) Surface CD107a/LAMP-1 protects natural killer cells from degranulation-associated damage. Blood 122, 1411-1418 48. Hasegawa, Y., Takanashi, S., Kanehira, Y., Tsushima, T., Imai, T., and Okumura, K. (2001) Transforming growth factor-beta1 level correlates with angiogenesis, tumor progression, and prognosis in patients with nonsmall cell lung carcinoma. Cancer 91, 964-971 49. Rouce, R. H., Shaim, H., Sekine, T., Weber, G., Ballard, B., Ku, S., Barese, C., Murali, V., Wu, M. F., Liu, H., Shpall, E. J., Bollard, C. M., Rabin, K. R., and Rezvani, K. (2016) The TGF-beta/SMAD pathway is an important mechanism for NK cell immune evasion in childhood B-acute lymphoblastic leukemia. Leukemia 30, 800-811 50. Barber, D. F., Faure, M., and Long, E. O. (2004) LFA-1 contributes an early signal for NK cell cytotoxicity. Journal of immunology 173, 3653-3659 51. Urlaub, D., Hofer, K., Muller, M. L., and Watzl, C. (2017) LFA-1 Activation in NK Cells and Their Subsets: Influence of Receptors, Maturation, and Cytokine Stimulation. Journal of immunology 198, 1944-1951 52. Feizi, T. (1985) Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens. Nature 314, 53-57 53. Coon, J. S., and Weinstein, R. S. (1986) Blood group-related antigens as markers of malignant potential and heterogeneity in human carcinomas. Hum Pathol 17, 1089-1106 54. Fukuda, M. (1996) Possible roles of tumor-associated carbohydrate antigens. Cancer Res 56, 2237-2244 55. Gooi, H. C., Jones, N. J., Hounsell, E. F., Scudder, P., Hilkens, J., Hilgers, J., and Feizi, T. (1985) Novel antigenic specificity involving the blood group antigen, Lea, in combination with onco-developmental antigen, SSEA-1, recognized by two monoclonal antibodies to human milk-fat globule membranes. Biochem Biophys Res Commun 131, 543-550 56. Liao, Y. J., Lee, Y. H., Chang, F. L., Ho, H., Huang, C. H., and Twu, Y. C. (2016) The SHP2‐ERK2 signaling pathway regulates branched I antigen formation by controlling the binding of CCAAT/enhancer binding protein α to the IGnTC promoter region during erythroid differentiation. Transfusion 56, 2691-2702 57. Bhide, G. P., and Colley, K. J. (2017) Sialylation of N-glycans: mechanism, cellular compartmentalization and function. Histochemistry and cell biology, 1-26 58. Monzavi-Karbassi, B., Pashov, A., and Kieber-Emmons, T. (2013) Tumor-Associated Glycans and Immune Surveillance. Vaccines 1, 174-203 59. Zhang, H., Meng, F., Wu, S., Kreike, B., Sethi, S., Chen, W., Miller, F. R., and Wu, G. (2011) Engagement of I-branching {beta}-1, 6-N-acetylglucosaminyltransferase 2 in breast cancer metastasis and TGF-{beta} signaling. Cancer Res 71, 4846-4856
|