|
1. Global Burden of Disease Cancer, C., C. Fitzmaurice, C. Allen, R.M. Barber, L. Barregard, Z.A. Bhutta, et al., Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-years for 32 Cancer Groups, 1990 to 2015: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol, 2017. 3(4): p. 524-548. 2. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer Statistics, 2017. CA Cancer J Clin, 2017. 67(1): p. 7-30. 3. Farazi, P.A. and R.A. DePinho, Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer, 2006. 6(9): p. 674-87. 4. Balogh, J., D. Victor, 3rd, E.H. Asham, S.G. Burroughs, M. Boktour, A. Saharia, et al., Hepatocellular carcinoma: a review. J Hepatocell Carcinoma, 2016. 3: p. 41 -53. 5. Ozer Etik, D., N. Suna, and A.S. Boyacioglu, Management of Hepatocellular Carcinoma: Prevention, Surveillance, Diagnosis, and Staging. Exp Clin Transplant, 2017. 15(Suppl 2): p. 31-35. 6. Takeda, H., A. Takai, T. Inuzuka, and H. Marusawa, Genetic basis of hepatitis virus-associated hepatocellular carcinoma: linkage between infection, inflammation, and tumorigenesis. J Gastroenterol, 2017. 52(1): p. 26-38. 7. El-Serag, H.B., Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology, 2012. 142(6): p. 1264-1273 e1. 8. Chen, C.J., H.I. Yang, J. Su, C.L. Jen, S.L. You, S.N. Lu, et al., Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA, 2006. 295(1): p. 65-73. 9. Ferlay, J., I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, et al., Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 2015. 136(5): p. E359-86. 10. Yu, W.B., A. Rao, V. Vu, L. Xu, J.Y. Rao, and J.X. Wu, Management of centrally located hepatocellular carcinoma: Update 2016. World J Hepatol, 2017. 9(13): p. 627-634. 11. Burak, K.W. and M. Sherman, Hepatocellular carcinoma: Consensus, controversies and future directions. A report from the Canadian Association for the Study of the Liver Hepatocellular Carcinoma Meeting. Can J Gastroenterol Hepatol, 2015. 29(4): p. 178-84. 12. Bruix, J., M. Reig, and M. Sherman, Evidence-Based Diagnosis, Staging, and Treatment of Patients With Hepatocellular Carcinoma. Gastroenterology, 2016. 150(4): p. 835-53. 13. Zheng, Y.W., Y.Z. Nie, and H. Taniguchi, Cellular reprogramming and hepatocellular carcinoma development. World J Gastroenterol, 2013. 19(47): p. 8850-60. 14. Tamura, S., T. Kato, M. Berho, E.P. Misiakos, C. O'Brien, K.R. Reddy, et al., Impact of histological grade of hepatocellular carcinoma on the outcome of liver transplantation. Arch Surg, 2001. 136(1): p. 25-30; discussion 31. 15. Ben-Porath, I., M.W. Thomson, V.J. Carey, R. Ge, G.W. Bell, A. Regev, and R.A. Weinberg, An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet, 2008. 40(5): p. 499-507. 16. Thorgeirsson, S.S. and J.W. Grisham, Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet, 2002. 31(4): p. 339-46. 17. Yamashita, T. and X.W. Wang, Cancer stem cells in the development of liver cancer. J Clin Invest, 2013. 123(5): p. 1911-8. 18. Clouston, A.D., E.E. Powell, M.J. Walsh, M.M. Richardson, A.J. Demetris, and J.R. Jonsson, Fibrosis correlates with a ductular reaction in hepatitis C: roles of impaired replication, progenitor cells and steatosis. Hepatology, 2005. 41(4): p. 809-18. 19. Ziol, M., J.C. Nault, M. Aout, N. Barget, M. Tepper, A. Martin, et al., Intermediate hepatobiliary cells predict an increased risk of hepatocarcinogenesis in patients with hepatitis C virus-related cirrhosis. Gastroenterology, 2010. 139(1): p. 335-43 e2. 20. Tee, W.W. and D. Reinberg, Chromatin features and the epigenetic regulation of pluripotency states in ESCs. Development, 2014. 141(12): p. 2376-90. 21. Dawson, M.A. and T. Kouzarides, Cancer epigenetics: from mechanism to therapy. Cell, 2012. 150(1): p. 12-27. 22. Broske, A.M., L. Vockentanz, S. Kharazi, M.R. Huska, E. Mancini, M. Scheller, et al., DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat Genet, 2009. 41(11): p. 1207-15. 23. Lee, S., H.J. Lee, J.H. Kim, H.S. Lee, J.J. Jang, and G.H. Kang, Aberrant CpG island hypermethylation along multistep hepatocarcinogenesis. Am J Pathol, 2003. 163(4): p. 1371-8. 24. Calvisi, D.F., S. Ladu, A. Gorden, M. Farina, J.S. Lee, E.A. Conner, et al., Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J Clin Invest, 2007. 117(9): p. 2713-22. 25. Wilsker, D., A. Patsialou, P.B. Dallas, and E. Moran, ARID proteins: a diverse family of DNA binding proteins implicated in the control of cell growth, differentiation, and development. Cell Growth Differ, 2002. 13(3): p. 95-106. 26. Patsialou, A., D. Wilsker, and E. Moran, DNA-binding properties of ARID family proteins. Nucleic Acids Res, 2005. 33(1): p. 66-80. 27. Herrscher, R.F., M.H. Kaplan, D.L. Lelsz, C. Das, R. Scheuermann, and P.W. Tucker, The immunoglobulin heavy-chain matrix-associating regions are bound by Bright: a B cell-specific trans-activator that describes a new DNA-binding protein family. Genes Dev, 1995. 9(24): p. 3067-82. 28. Numata, S., P.P. Claudio, C. Dean, A. Giordano, and C.M. Croce, Bdp, a new member of a family of DNA-binding proteins, associates with the retinoblastoma gene product. Cancer Res, 1999. 59(15): p. 3741-7. 29. Kim, D., L. Probst, C. Das, and P.W. Tucker, REKLES is an ARID3-restricted multifunctional domain. J Biol Chem, 2007. 282(21): p. 15768-77. 30. Kim, D. and P.W. Tucker, A regulated nucleocytoplasmic shuttle contributes to Bright's function as a transcriptional activator of immunoglobulin genes. Mol Cell Biol, 2006. 26(6): p. 2187-201. 31. Webb, C.F., E.A. Smith, K.L. Medina, K.L. Buchanan, G. Smithson, and S. Dou, Expression of bright at two distinct stages of B lymphocyte development. J Immunol, 1998. 160(10): p. 4747-54. 32. Schmidt, C., D. Kim, G.C. Ippolito, H.R. Naqvi, L. Probst, S. Mathur, et al., Signalling of the BCR is regulated by a lipid rafts-localised transcription factor, Bright. EMBO J, 2009. 28(6): p. 711-24. 33. Webb, C.F., J. Bryant, M. Popowski, L. Allred, D. Kim, J. Harriss, et al., The ARID family transcription factor bright is required for both hematopoietic stem cell and B lineage development. Mol Cell Biol, 2011. 31(5): p. 1041 -53. 34. Rhee, C., M. Edwards, C. Dang, J. Harris, M. Brown, J. Kim, and H.O. Tucker, ARID3A is required for mammalian placenta development. Dev Biol, 2017. 422(2): p. 83-91. 35. Uribe, V., C. Badia-Careaga, J.C. Casanova, J.N. Dominguez, J.L. de la Pompa, and J.J. Sanz-Ezquerro, Arid3b is essential for second heart field cell deployment and heart patterning. Development, 2014. 141(21): p. 4168-81. 36. Kurkewich, J.L., N. Klopfenstein, W.M. Hallas, C. Wood, R.A. Sattler, C. Das, et al., Arid3b Is Critical for B Lymphocyte Development. PLoS One, 2016. 11(8): p. e0161468. 37. Dallas, P.B., I.W. Cheney, D.W. Liao, V. Bowrin, W. Byam, S. Pacchione, et al., p300/CREB binding protein-related protein p270 is a component of mammalian SWI/SNF complexes. Mol Cell Biol, 1998. 18(6): p. 3596-603. 38. Dallas, P.B., S. Pacchione, D. Wilsker, V. Bowrin, R. Kobayashi, and E. Moran, The human SWI-SNF complex protein p270 is an ARID family member with non-sequence-specific DNA binding activity. Mol Cell Biol, 2000. 20(9): p. 3137-46. 39. Tidwell, J.A., C. Schmidt, P. Heaton, V. Wilson, and P.W. Tucker, Characterization of a new ARID family transcription factor (Brightlike/ARID3C) that co-activates Bright/ARID3A-mediated immunoglobulin gene transcription. Mol Immunol, 2011. 49(1-2): p. 260-72. 40. Peeper, D.S., A. Shvarts, T. Brummelkamp, S. Douma, E.Y. Koh, G.Q. Daley, and R. Bernards, A functional screen identifies hDRIL1 as an oncogene that rescues RAS-induced senescence. Nat Cell Biol, 2002. 4(2): p. 148-53. 41. Fukuyo, Y., K. Mogi, Y. Tsunematsu, and T. Nakajima, E2FBP1/hDril1 modulates cell growth through downregulation of promyelocytic leukemia bodies. Cell Death Differ, 2004. 11(7): p. 747-59. 42. Fukuyo, Y., A. Takahashi, E. Hara, N. Horikoshi, T.K. Pandita, and T. Nakajima, E2FBP1 antagonizes the p16(INK4A)-Rb tumor suppressor machinery for growth suppression and cellular senescence by regulating promyelocytic leukemia protein stability. Int J Oral Sci, 2011. 3(4): p. 200-8. 43. Kobayashi, K., T. Era, A. Takebe, L.M. Jakt, and S. Nishikawa, ARID3B induces malignant transformation of mouse embryonic fibroblasts and is strongly associated with malignant neuroblastoma. Cancer Res, 2006. 66(17): p. 8331-6. 44. Kobayashi, K., L.M. Jakt, and S.I. Nishikawa, Epigenetic regulation of the neuroblastoma genes, Arid3b and Mycn. Oncogene, 2013. 32(21): p. 2640-8. 45. Chien, C.S., M.L. Wang, P.Y. Chu, Y.L. Chang, W.H. Liu, C.C. Yu, et al., Lin28B/Let-7 Regulates Expression of Oct4 and Sox2 and Reprograms Oral Squamous Cell Carcinoma Cells to a Stem-like State. Cancer Res, 2015. 75(12): p. 2553-65. 46. Roy, L., S.J. Samyesudhas, M. Carrasco, J. Li, S. Joseph, R. Dahl, and K.D. Cowden Dahl, ARID3B increases ovarian tumor burden and is associated with a cancer stem cell gene signature. Oncotarget, 2014. 5(18): p. 8355-66. 47. Lin, C., W. Song, X. Bi, J. Zhao, Z. Huang, Z. Li, et al., Recent advances in the ARID family: focusing on roles in human cancer. Onco Targets Ther, 201 4. 7: p. 315-24. 48. Li, M., H. Zhao, X. Zhang, L.D. Wood, R.A. Anders, M.A. Choti, et al., Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma. Nat Genet, 2011. 43(9): p. 828-9. 49. Fujimoto, A., Y. Totoki, T. Abe, K.A. Boroevich, F. Hosoda, H.H. Nguyen, et al., Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat Genet, 2012. 44(7): p. 760-4. 50. He, F., J. Li, J. Xu, S. Zhang, Y. Xu, W. Zhao, et al., Decreased expression of ARID1A associates with poor prognosis and promotes metastases of hepatocellular carcinoma. J Exp Clin Cancer Res, 2015. 34: p. 47. 51. Tordella, L., S. Khan, A. Hohmeyer, A. Banito, S. Klotz, S. Raguz, et al., SWI/SNF regulates a transcriptional program that induces senescence to prevent liver cancer. Genes Dev, 2016. 30(19): p. 2187-2198. 52. Chen, J., Z. Qian, F. Li, J. Li, and Y. Lu, Integrative Analysis of Microarray Data to Reveal Regulation Patterns in the Pathogenesis of Hepatocellular Carcinoma. Gut Liver, 2017. 11(1): p. 112-120. 53. Grosse-Gehling, P., C.A. Fargeas, C. Dittfeld, Y. Garbe, M.R. Alison, D. Corbeil, and L.A. Kunz-Schughart, CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges. J Pathol, 2013. 229(3): p. 355-78. 54. Vander Griend, D.J., W.L. Karthaus, S. Dalrymple, A. Meeker, A.M. DeMarzo, and J.T. Isaacs, The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells. Cancer Res, 2008. 68(23): p. 9703-11. 55. Shmelkov, S.V., J.M. Butler, A.T. Hooper, A. Hormigo, J. Kushner, T. Milde, et al., CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. J Clin Invest, 2008. 118(6): p. 2111 -20. 56. Qin, Q., Y. Sun, M. Fei, J. Zhang, Y. Jia, M. Gu, et al., Expression of putative stem marker nestin and CD133 in advanced serous ovarian cancer. Neoplasma, 2012. 59(3): p. 310-5. 57. Suetsugu, A., M. Nagaki, H. Aoki, T. Motohashi, T. Kunisada, and H. Moriwaki, Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun, 2006. 351(4): p. 820-4. 58. Sun, J.H., Q. Luo, L.L. Liu, and G.B. Song, Liver cancer stem cell markers: Progression and therapeutic implications. World J Gastroenterol, 2016. 22(13): p. 3547-57. 59. Sato-Dahlman, M., Y. Miura, J.L. Huang, P. Hajeri, K. Jacobsen, J. Davydova, and M. Yamamoto, CD133-targeted oncolytic adenovirus demonstrates anti-tumor effect in colorectal cancer. Oncotarget, 2017. 60. Venugopal, C., R. Hallett, P. Vora, B. Manoranjan, S. Mahendram, M.A. Qazi, et al., Pyrvinium Targets CD133 in Human Glioblastoma Brain Tumor-Initiating Cells. Clin Cancer Res, 201 5. 21(23): p. 5324-37. 61. de Celis, J.F. and R. Barrio, Regulation and function of Spalt proteins during animal development. Int J Dev Biol, 2009. 53(8-10): p. 1385-98. 62. Yang, J., C. Gao, L. Chai, and Y. Ma, A novel SALL4/OCT4 transcriptional feedback network for pluripotency of embryonic stem cells. PLoS One, 2010. 5(5): p. e10766. 63. Forghanifard, M.M., M. Moghbeli, R. Raeisossadati, A. Tavassoli, A.J. Mallak, S. Boroumand-Noughabi, and M.R. Abbaszadegan, Role of SALL4 in the progression and metastasis of colorectal cancer. J Biomed Sci, 2013. 20: p. 6. 64. Gautam, A.K., C. Wang, J. Zeng, J. Wang, J. Lu, J. Wei, et al., Expression and clinical significance of SALL4 and LGR5 in patients with lung cancer. Oncol Lett, 2015. 10(6): p. 3629-3634. 65. Oikawa, T., A. Kamiya, M. Zeniya, H. Chikada, A.D. Hyuck, Y. Yamazaki, et al., Sal-like protein 4 (SALL4), a stem cell biomarker in liver cancers. Hepatology, 2013. 57(4): p. 1469-83. 66. Zeng, S.S., T. Yamashita, M. Kondo, K. Nio, T. Hayashi, Y. Hara, et al., The transcription factor SALL4 regulates stemness of EpCAM-positive hepatocellular carcinoma. J Hepatol, 2014. 60(1): p. 127-34. 67. Yakaboski, E., A. Jares, and Y. Ma, Stem cell gene SALL4 in aggressive hepatocellular carcinoma: a cancer stem cell-specific target? Hepatology, 2014. 60(1): p. 419-21. 68. Medema, J.P., Cancer stem cells: the challenges ahead. Nat Cell Biol, 2013. 15(4): p. 338-44. 69. Liao, T.T., W.H. Hsu, C.H. Ho, W.L. Hwang, H.Y. Lan, T. Lo, et al., let-7 Modulates Chromatin Configuration and Target Gene Repression through Regulation of the ARID3B Complex. Cell Rep, 2016. 14(3): p. 520-33. 70. Aravalli, R.N., N.C. Talbot, and C.J. Steer, Gene expression profiling of MYC-driven tumor signatures in porcine liver stem cells by transcriptome sequencing. World J Gastroenterol, 2015. 21(7): p. 2011-29. 71. Cheng, S.W., H.W. Tsai, Y.J. Lin, P.N. Cheng, Y.C. Chang, C.J. Yen, et al., Lin28B is an oncofetal circulating cancer stem cell-like marker associated with recurrence of hepatocellular carcinoma. PLoS One, 2013. 8(11): p. e80053. 72. Goossens, N., X. Sun, and Y. Hoshida, Molecular classification of hepatocellular carcinoma: potential therapeutic implications. Hepat Oncol, 2015. 2(4): p. 371 -379. 73. Kopanja, D., A. Pandey, M. Kiefer, Z. Wang, N. Chandan, J.R. Carr, et al., Essential roles of FoxM1 in Ras-induced liver cancer progression and in cancer cells with stem cell features. J Hepatol, 2015. 63(2): p. 429-36. 74. Li, M., L. Zhang, C. Ge, L. Chen, T. Fang, H. Li, et al., An isocorydine derivative (d-ICD) inhibits drug resistance by downregulating IGF2BP3 expression in hepatocellular carcinoma. Oncotarget, 2015. 6(28): p. 25149-60. 75. Liu, F., G. Kunter, M.M. Krem, W.C. Eades, J.A. Cain, M.H. Tomasson, et al., Csf3r mutations in mice confer a strong clonal HSC advantage via activation of Stat5. J Clin Invest, 2008. 118(3): p. 946-55. 76. Marquardt, J.U. and S.S. Thorgeirsson, Stem cells in hepatocarcinogenesis: evidence from genomic data. Semin Liver Dis, 2010. 30(1): p. 26-34. 77. Raggi, C., V.M. Factor, D. Seo, A. Holczbauer, M.C. Gillen, J.U. Marquardt, et al., Epigenetic reprogramming modulates malignant properties of human liver cancer. Hepatology, 2014. 59(6): p. 2251 -62. 78. Xiao, S., R.M. Chang, M.Y. Yang, X. Lei, X. Liu, W.B. Gao, et al., Actin-like 6A predicts poor prognosis of hepatocellular carcinoma and promotes metastasis and epithelial-mesenchymal transition. Hepatology, 2016. 63(4): p. 1256-71. 79. Zhang, L., L. Zhang, H. Li, C. Ge, F. Zhao, H. Tian, et al., CXCL3 contributes to CD133(+) CSCs maintenance and forms a positive feedback regulation loop with CD133 in HCC via Erk1/2 phosphorylation. Sci Rep, 2016. 6: p. 27426. 80. Wilson, B.G. and C.W. Roberts, SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer, 2011. 11(7): p. 481-92. 81. Bialecki, E.S. and A.M. Di Bisceglie, Diagnosis of hepatocellular carcinoma. HPB (Oxford), 2005. 7(1): p. 26-34. 82. Nigg, E.A., Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature, 1997. 386(6627): p. 779-87. 83. Rhee, C., B.K. Lee, S. Beck, A. Anjum, K.R. Cook, M. Popowski, et al., Arid3a is essential to execution of the first cell fate decision via direct embryonic and extraembryonic transcriptional regulation. Genes Dev, 2014. 28(20): p. 2219-32.
|