跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 21:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉祈瑞
研究生(外文):Chi-Jui Liu
論文名稱:建立TREM基因剔除狼瘡小鼠模式以探討TREM在紅斑性狼瘡所扮演的角色並尋找可行的治療方式
論文名稱(外文):Establishing triggering receptor expressed on myeloid cells (TREM)-deficient B6.lpr model to study the roles of TREM in lupus progression and find the feasible therapeutic strategy for lupus
指導教授:孫光蕙
指導教授(外文):Kuang-Hui Sun
學位類別:博士
校院名稱:國立陽明大學
系所名稱:醫學生物技術暨檢驗學系
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
論文頁數:127
中文關鍵詞:全身性紅斑性狼瘡
外文關鍵詞:SLETREMB6.lpr
相關次數:
  • 被引用被引用:0
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
全身性紅斑性狼瘡(systemic lupus erythematosus, SLE)為一種由自體抗體所引起的全身性自體免疫疾病。病人體內免疫細胞上所表現的先天性免疫受體會受到pathogen-associated molecular patterns (PAMPs)或danger-associated molecular patterns (DAMPs)活化,後續引起過度的免疫反應。Triggering receptor expressed on myeloid cells (TREM)為新發現的一群先天性免疫受體,研究指出其可調控類鐸受體(Toll-like receptor, TLR)所引起之發炎反應。TREMs已被報導會參與多種發炎性疾病的發展,然而其於不同疾病中所扮演的角色可能有所不同。於本論文中,我們建立了帶有TREM缺失的B6.lpr狼瘡小鼠,希望可藉此了解TREMs於紅斑性狼瘡中所扮演的角色。我們發現sTREM-1表現量於狼瘡病人及狼瘡小鼠血清中皆有顯著增高的情形,並且與疾病嚴重程度有正相關性。相較於控制組小鼠,40週大之Trem-1-/-.lpr小鼠有較高的死亡率及較嚴重之狼瘡病徵,包括尿蛋白增加、血清中抗雙股DNA自體抗體濃度上升、較嚴重的腎臟病變以及大量免疫細胞增生。此外,我們發現活化於樹突細胞(dendritic cell, DC)表面所表現的TREM-1後可抑制TLR-9所引起的B細胞活化因子(B cell-activating factor, BAFF)表現,因此Trem-1-/-.lpr小鼠淋巴結樹突細胞及血清中的BAFF表現量皆明顯高於B6.lpr小鼠。相較於Trem-1-/-.lpr小鼠,64週大之Trem-2-/-.lpr小鼠與B6.lpr狼瘡小鼠病情則無顯著差異。然而在腹腔注射脂多糖(lipopolysaccharide, LPS)以模擬病原菌感染後,Trem-2-/-.lpr小鼠則有明顯高於B6.lpr小鼠的存活率。以上結果顯示TREM-1於紅斑性狼瘡的疾病進程中扮演著抑制的角色;相較之下,TREM-2在自然情況下雖不影響狼瘡的發展,但在狼瘡小鼠受病原菌感染時則可使疾病惡化。
在第二部分的研究中我們希望可藉由Trem-1-/-.lpr小鼠來研究可行之治療方式。先前研究指出細胞自噬作用(autophagy)在細胞恆定與存活中扮演重要角色,而我們發現在狼瘡小鼠體內的細胞自噬作用有高於正常小鼠的現象,特別是於Trem-1-/-.lpr小鼠。並且也發現細胞自噬作用與尿蛋白的表現量有顯著正相關性。已上結果顯示細胞自噬作用可能與疾病的發展有關。因此我們將慢病毒(lentivirus)介導之shRNA腹腔注射於Trem-1-/-.lpr小鼠以抑制細胞自噬作用相關基因Atg5的表現,希望藉此探討抑制細胞自噬作用是否可改善小鼠狼瘡病徵。結果顯示注射病毒後小鼠體內細胞自噬作用確實有效受到抑制。而抑制Atg5表現後可減緩Trem-1-/-.lpr小鼠的狼瘡病徵,包含尿蛋白含量下降、血清中抗雙股DNA抗體減少及較輕微的淋巴結腫大。更重要的是,我們發現於Trem-1-/-.lpr小鼠淋巴結中漿細胞及CD4-CD8- T細胞的數量在細胞自噬作用受抑制後明顯降低。以上結果說明抑制細胞自噬作用或許可作為有效的紅斑性狼瘡治療方式。
Activation of innate immune receptors by pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) plays an important role in the progression of systemic lupus erythematosus (SLE). Triggering receptor expressed on myeloid cells (TREM) is a novel innate immune receptor family which can regulate Toll-like receptor (TLR)-induced inflammatory responses. Roles of TREMs in diseases are still controversial and their roles in lupus still need to be determined. In current study, we aimed to establish TREM knockout B6.lpr mice for studying the role of TREMs in lupus. We found that sTREM-1 expression was increased and correlated with disease activity in both lupus patients and lupus-prone mice. Trem-1-/-.lpr but not Trem-2-/-.lpr mice had lower survival rate than control animals and exhibited more severe lupus symptoms including, proteinuria, anti-dsDNA antibody, nephritis, and immune cell expansions at 40 weeks of age. Moreover, TREM-1 could downregulate TLR-9-induced B cell-activating factor (BAFF) production in dendritic cells (DCs) and, therefore, serum and lymph node DCs of Trem-1-/-.lpr mice had higher BAFF level than those from B6.lpr mice. In contrast, the symptom severities of Trem-2-/-.lpr mice were similar to that found in B6.lpr mice during the 64-week follow-up period. However, Trem-2-/-.lpr mice had higher survival rate than B6.lpr mice after in vivo LPS stimulation. Above results suggested that TREM-1 can act as a suppressor in lupus progression and TREM-2 can exacerbate disease during bacterial infection.
In the second part, we want to find the therapeutic strategy by using Trem-1-/-.lpr mice model. We found that autophagy, which is important for cell homeostasis and survival, was elevated in lupus-prone B6.lpr and especially in Trem-1-/-.lpr mice. Most important, levels of autophagy were positively correlated with the proteinuria levels in Trem-1-/-.lpr mice. These results implied a role of autophagy in the pathogenesis of lupus. Therefore, lentiviral-shRNA targeting Atg5, an autophagy-essential protein, was i.p. injected into Trem-1-/-.lpr mice to determine whether suppressing autophagy can modulate the lupus-like disease. The results showed that shAtg5 could efficiently suppress the autophagy in vivo. Moreover, suppression of Atg5 ameliorated the symptoms of lupus in Trem-1-/-.lpr mice, including proteinuria, anti-dsDNA antibody, and lymphadenopathy. The numbers of plasma cells and CD4-CD8- T cells, which are the major expanded cells in Trem-1-/-.lpr mice, were significantly reduced after lentiviral-shAtg5 administration. These results implied that targeting autophagy may be a feasible therapeutic strategy in lupus.
中文摘要 i
ABSTRACT iii
CONTENTS v
INTRODUCTION 1
1. Systemic lupus erythematosus (SLE) 1
2. Triggering receptor expressed on myeloid cells (TREMs) 8
3. Autophagy 14
PURPOSE 23
MATERIALS 25
1. Human subjects 25
2. Animal models 25
3. PCR primers for genotyping 26
4. PCR primers for RT-qPCR 26
5. ELISA kits and cytometric beads array (CBA) 27
6. Antibodies for FACS and immunofluorescence staining 27
7. Reagents for cell culture and cell stimulation 28
8. Chemicals and other reagents 29
9. Buffers 30
METHODS 33
1. Genotyping 33
2. RT-qPCR 34
3. Flow cytometry 35
4. ELISA and cytometric beads array (CBA) 36
5. Measurement of proteinuria 37
6. Renal pathology 38
7. Culture of BMDCs, bone marrow-derived pDCs (BMpDC), and bone marrow-derived macrophages (BMM) 38
8. In vivo LPS treatment 39
9. Measurement of autophagy 40
10. In vivo knockdown of Atg5 by lentivirus-delivered shRNA 40
11. Statistical analysis 41
RESULTS 42
DISCUSSION 56
REFERENCES 61
FIGURES 80
TABLES 105
APPENDICES 106
[1] E.E. Carter, S.G. Barr, A.E. Clarke, The global burden of SLE: prevalence, health disparities and socioeconomic impact, Nature reviews. Rheumatology 2016;12:605-620.
[2] A. Rahman, D.A. Isenberg, Systemic lupus erythematosus, The New England journal of medicine 2008;358:929-939.
[3] D. Deapen, A. Escalante, L. Weinrib, D. Horwitz, B. Bachman, P. Roy-Burman et al., A revised estimate of twin concordance in systemic lupus erythematosus, Arthritis and rheumatism 1992;35:311-318.
[4] D. Alarcon-Segovia, M.E. Alarcon-Riquelme, M.H. Cardiel, F. Caeiro, L. Massardo, A.R. Villa et al., Familial aggregation of systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1,177 lupus patients from the GLADEL cohort, Arthritis and rheumatism 2005;52:1138-1147.
[5] A.A. Bengtsson, L. Rönnblom, Systemic lupus erythematosus: still a challenge for physicians, Journal of Internal Medicine 2017;281:52-64.
[6] M. Teruel, M.E. Alarcón-Riquelme, The genetic basis of systemic lupus erythematosus: What are the risk factors and what have we learned, Journal of autoimmunity 2016;74:161-175.
[7] Z. Liu, A. Davidson, Taming lupus-a new understanding of pathogenesis is leading to clinical advances, Nature medicine 2012;18:871-882.
[8] G.C. Tsokos, M.S. Lo, P.C. Reis, K.E. Sullivan, New insights into the immunopathogenesis of systemic lupus erythematosus, Nature reviews. Rheumatology 2016;12:716-730.
[9] D.L. Kamen, Environmental influences on systemic lupus erythematosus expression, Rheumatic Disease Clinics of North America 2014;40:401-412, vii.
[10] J.A. James, B.R. Neas, K.L. Moser, T. Hall, G.R. Bruner, A.L. Sestak et al., Systemic lupus erythematosus in adults is associated with previous Epstein-Barr virus exposure, Arthritis and rheumatism 2001;44:1122-1126.
[11] M.T. McClain, L.D. Heinlen, G.J. Dennis, J. Roebuck, J.B. Harley, J.A. James, Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry, Nature medicine 2004;11:85-89.
[12] D. Rigante, S. Esposito, Infections and Systemic Lupus Erythematosus: Binding or Sparring Partners?, International journal of molecular sciences 2015;16:17331-17343.
[13] D.S. Pisetsky, The role of innate immunity in the induction of autoimmunity, Autoimmunity reviews 2008;8:69-72.
[14] C.D. Vedove, M. Del Giglio, D. Schena, G. Girolomoni, Drug-induced lupus erythematosus, Archives of dermatological research 2009;301:99-105.
[15] C. Chang, M.E. Gershwin, Drugs and autoimmunity--a contemporary review and mechanistic approach, Journal of autoimmunity 2010;34:J266-275.
[16] R.L. Rubin, Drug-induced lupus, Expert opinion on drug safety 2015;14:361-378.
[17] J.P. Buyon, M.A. Petri, M.Y. Kim, K.C. Kalunian, J. Grossman, B.H. Hahn et al., The effect of combined estrogen and progesterone hormone replacement therapy on disease activity in systemic lupus erythematosus: a randomized trial, Annals of internal medicine 2005;142:953-962.
[18] D. Khan, S. Ansar Ahmed, The Immune System Is a Natural Target for Estrogen Action: Opposing Effects of Estrogen in Two Prototypical Autoimmune Diseases, Frontiers in immunology 2015;6:635.
[19] E. Kontaki, D.T. Boumpas, Innate immunity in systemic lupus erythematosus: sensing endogenous nucleic acids, Journal of autoimmunity 2010;35:206-211.
[20] L.E. Munoz, U.S. Gaipl, S. Franz, A. Sheriff, R.E. Voll, J.R. Kalden et al., SLE--a disease of clearance deficiency?, Rheumatology 2005;44:1101-1107.
[21] D. Ganguly, S. Haak, V. Sisirak, B. Reizis, The role of dendritic cells in autoimmunity, Nature reviews. Immunology 2013;13:566-577.
[22] V. Brinkmann, U. Reichard, C. Goosmann, B. Fauler, Y. Uhlemann, D.S. Weiss et al., Neutrophil extracellular traps kill bacteria, Science 2004;303:1532-1535.
[23] N. Jounai, K. Kobiyama, F. Takeshita, K.J. Ishii, Recognition of damage-associated molecular patterns related to nucleic acids during inflammation and vaccination, Frontiers in cellular and infection microbiology 2012;2:168.
[24] F. Mackay, P. Schneider, Cracking the BAFF code, Nature reviews. Immunology 2009;9:491-502.
[25] F.B. Vincent, E.F. Morand, P. Schneider, F. Mackay, The BAFF/APRIL system in SLE pathogenesis, Nature reviews. Rheumatology 2014;10:365-373.
[26] J.R. Groom, C.A. Fletcher, S.N. Walters, S.T. Grey, S.V. Watt, M.J. Sweet et al., BAFF and MyD88 signals promote a lupuslike disease independent of T cells, The Journal of experimental medicine 2007;204:1959-1971.
[27] F. Mackay, S.A. Woodcock, P. Lawton, C. Ambrose, M. Baetscher, P. Schneider et al., Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations, The Journal of experimental medicine 1999;190:1697-1710.
[28] K.A. Kirou, E. Gkrouzman, Anti-interferon alpha treatment in SLE, Clinical immunology 2013;148:303-312.
[29] A. Mathian, A. Weinberg, M. Gallegos, J. Banchereau, S. Koutouzov, IFN-alpha induces early lethal lupus in preautoimmune (New Zealand Black x New Zealand White) F1 but not in BALB/c mice, The Journal of Immunology 2005;174:2499-2506.
[30] M.B. Litinskiy, B. Nardelli, D.M. Hilbert, B. He, A. Schaffer, P. Casali et al., DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL, Nature immunology 2002;3:822-829.
[31] P. Lopez, D. Scheel-Toellner, J. Rodriguez-Carrio, L. Caminal-Montero, C. Gordon, A. Suarez, Interferon-alpha-induced B-lymphocyte stimulator expression and mobilization in healthy and systemic lupus erthymatosus monocytes, Rheumatology 2014;53:2249-2258.
[32] L. Bennett, A.K. Palucka, E. Arce, V. Cantrell, J. Borvak, J. Banchereau et al., Interferon and granulopoiesis signatures in systemic lupus erythematosus blood, The Journal of experimental medicine 2003;197:711-723.
[33] M.L. Santiago-Raber, R. Baccala, K.M. Haraldsson, D. Choubey, T.A. Stewart, D.H. Kono et al., Type-I interferon receptor deficiency reduces lupus-like disease in NZB mice, The Journal of experimental medicine 2003;197:777-788.
[34] T.N. Jorgensen, E. Roper, J.M. Thurman, P. Marrack, B.L. Kotzin, Type I interferon signaling is involved in the spontaneous development of lupus-like disease in B6.Nba2 and (B6.Nba2 x NZW)F(1) mice, Genes and immunity 2007;8:653-662.
[35] M. Petri, A.M. Orbai, G.S. Alarcon, C. Gordon, J.T. Merrill, P.R. Fortin et al., Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus, Arthritis and rheumatism 2012;64:2677-2686.
[36] G. Murphy, L. Lisnevskaia, D. Isenberg, Systemic lupus erythematosus and other autoimmune rheumatic diseases: challenges to treatment, The Lancet 2013;382:809-818.
[37] B. Thong, N.J. Olsen, Systemic lupus erythematosus diagnosis and management, Rheumatology 2016;
[38] W. Xiong, R.G. Lahita, Pragmatic approaches to therapy for systemic lupus erythematosus, Nature reviews. Rheumatology 2014;10:97-107.
[39] B.H. Hahn, Belimumab for systemic lupus erythematosus, The New England journal of medicine 2013;368:1528-1535.
[40] Y.W. Wu, W. Tang, J.P. Zuo, Toll-like receptors: potential targets for lupus treatment, Acta pharmacologica Sinica 2015;36:1395-1407.
[41] A. Perl, Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases, Nature reviews. Rheumatology 2016;12:169-182.
[42] A. Bouchon, J. Dietrich, M. Colonna, Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes, The Journal of Immunology 2000;164:4991-4995.
[43] M. Colonna, TREMs in the immune system and beyond, Nature reviews. Immunology 2003;3:445-453.
[44] J. Klesney-Tait, I.R. Turnbull, M. Colonna, The TREM receptor family and signal integration, Nature immunology 2006;7:1266-1273.
[45] V. Gomez-Pina, A. Soares-Schanoski, A. Rodriguez-Rojas, C. del Fresno, F. Garcia, M.T. Vallejo-Cremades et al., Metalloproteinases Shed TREM-1 Ectodomain from Lipopolysaccharide-Stimulated Human Monocytes, The Journal of Immunology 2007;179:4065-4073.
[46] J. Klesney-Tait, M. Colonna, Uncovering the TREM-1-TLR connection, AJP: Lung Cellular and Molecular Physiology 2007;293:L1374-L1376.
[47] L.B. Ivashkiv, A signal-switch hypothesis for cross-regulation of cytokine and TLR signalling pathways, Nature reviews. Immunology 2008;8:816-822.
[48] S. Gibot, Clinical review: role of triggering receptor expressed on myeloid cells-1 during sepsis, Critical care 2005;9:485-489.
[49] J.W. Ford, D.W. McVicar, TREM and TREM-like receptors in inflammation and disease, Current opinion in immunology 2009;21:38-46.
[50] A. Bouchon, F. Facchetti, M.A. Weigand, M. Colonna, TREM-1 amplifies inflammation and is a crucial mediator of septic shock, Nature 2001;410:1103-1107.
[51] Y. Molad, E. Pokroy-Shapira, V. Carmon, CpG-oligodeoxynucleotide-induced TLR9 activation regulates macrophage TREM-1 expression and shedding, Innate immunity 2013;19:623-630.
[52] S. Gao, L. Yuan, Y. Wang, C. Hua, Enhanced expression of TREM-1 in splenic cDCs in lupus prone mice and it was modulated by miRNA-150, Molecular immunology 2017;81:127-134.
[53] J. Wu, J. Li, R. Salcedo, N.F. Mivechi, G. Trinchieri, A. Horuzsko, The proinflammatory myeloid cell receptor TREM-1 controls Kupffer cell activation and development of hepatocellular carcinoma, Cancer research 2012;72:3977-3986.
[54] P. Haselmayer, L. Grosse-Hovest, P. von Landenberg, H. Schild, M.P. Radsak, TREM-1 ligand expression on platelets enhances neutrophil activation, Blood 2007;110:1029-1035.
[55] C.B. Read, J.L. Kuijper, S.A. Hjorth, M.D. Heipel, X. Tang, A.J. Fleetwood et al., Cutting Edge: identification of neutrophil PGLYRP1 as a ligand for TREM-1, The Journal of Immunology 2015;194:1417-1421.
[56] J.R. Bleharski, V. Kiessler, C. Buonsanti, P.A. Sieling, S. Stenger, M. Colonna et al., A role for triggering receptor expressed on myeloid cells-1 in host defense during the early-induced and adaptive phases of the immune response, The Journal of Immunology 2003;170:3812-3818.
[57] M.G. Netea, T. Azam, G. Ferwerda, S.E. Girardin, S.H. Kim, C.A. Dinarello, Triggering receptor expressed on myeloid cells-1 (TREM-1) amplifies the signals induced by the NACHT-LRR (NLR) pattern recognition receptors, Journal of leukocyte biology 2006;80:1454-1461.
[58] D. Pierobon, M.C. Bosco, F. Blengio, F. Raggi, A. Eva, M. Filippi et al., Chronic hypoxia reprograms human immature dendritic cells by inducing a proinflammatory phenotype and TREM-1 expression, European journal of immunology 2013;43:949-966.
[59] M. Schenk, A. Bouchon, F. Seibold, C. Mueller, TREM-1--expressing intestinal macrophages crucially amplify chronic inflammation in experimental colitis and inflammatory bowel diseases, The Journal of clinical investigation 2007;117:3097-3106.
[60] S. Gibot, F. Massin, M. Marcou, V. Taylor, R. Stidwill, P. Wilson et al., TREM-1 promotes survival during septic shock in mice, European journal of immunology 2007;37:456-466.
[61] S. Gibot, Soluble triggering receptor expressed on myeloid cells and the diagnosis of pneumonia and severe sepsis, Seminars in respiratory and critical care medicine 2006;27:29-33.
[62] S. Gibot, A. Cravoisy, B. Levy, M.C. Bene, G. Faure, P.E. Bollaert, Soluble triggering receptor expressed on myeloid cells and the diagnosis of pneumonia, The New England journal of medicine 2004;350:451-458.
[63] J. Kuai, B. Gregory, A. Hill, D.D. Pittman, J.L. Feldman, T. Brown et al., TREM-1 expression is increased in the synovium of rheumatoid arthritis patients and induces the expression of pro-inflammatory cytokines, Rheumatology 2009;48:1352-1358.
[64] Y. Murakami, T. Akahoshi, N. Aoki, M. Toyomoto, N. Miyasaka, H. Kohsaka, Intervention of an inflammation amplifier, triggering receptor expressed on myeloid cells 1, for treatment of autoimmune arthritis, Arthritis and rheumatism 2009;60:1615-1623.
[65] S. Dang, Y. Shen, K. Yin, J. Zhang, TREM-1 Promotes Pancreatitis-Associated Intestinal Barrier Dysfunction, Gastroenterology research and practice 2012;2012:720865.
[66] T.H. Lo, K.Y. Tseng, W.S. Tsao, C.Y. Yang, S.L. Hsieh, A.W. Chiu et al., TREM-1 regulates macrophage polarization in ureteral obstruction, Kidney international 2014;86:1174-1186.
[67] Y. Du, T. Wu, X.J. Zhou, L.S. Davis, C. Mohan, Blockade of CD354 (TREM-1) Ameliorates Anti-GBM-Induced Nephritis, Inflammation 2016;39:1169-1176.
[68] L.A. Hyder, J. Gonzalez, J.L. Harden, L.M. Johnson-Huang, L.C. Zaba, K.C. Pierson et al., TREM-1 as a potential therapeutic target in psoriasis, The Journal of investigative dermatology 2013;133:1742-1751.
[69] A. Tammaro, M. Derive, S. Gibot, J.C. Leemans, S. Florquin, M.C. Dessing, TREM-1 and its potential ligands in non-infectious diseases: from biology to clinical perspectives, Pharmacology & therapeutics 2017;
[70] J. Klesney-Tait, K. Keck, X. Li, S. Gilfillan, K. Otero, S. Baruah et al., Transepithelial migration of neutrophils into the lung requires TREM-1, The Journal of clinical investigation 2013;123:138-149.
[71] Y.T. Lin, K.Y. Tseng, Y.C. Yeh, F.C. Yang, C.P. Fung, N.J. Chen, TREM-1 promotes survival during Klebsiella pneumoniae liver abscess in mice, Infection and immunity 2014;82:1335-1342.
[72] A. Tammaro, I. Stroo, E. Rampanelli, F. Blank, L.M. Butter, N. Claessen et al., Role of TREM1-DAP12 in renal inflammation during obstructive nephropathy, PLoS One 2013;8:e82498.
[73] A. Tammaro, J. Kers, D. Emal, I. Stroo, G.J. Teske, L.M. Butter et al., Effect of TREM-1 blockade and single nucleotide variants in experimental renal injury and kidney transplantation, Scientific reports 2016;6:38275.
[74] J. Joffre, S. Potteaux, L. Zeboudj, X. Loyer, A. Boufenzer, L. Laurans et al., Genetic and Pharmacological Inhibition of TREM-1 Limits the Development of Experimental Atherosclerosis, Journal of the American College of Cardiology 2016;68:2776-2793.
[75] A. Boufenzer, J. Lemarie, T. Simon, M. Derive, Y. Bouazza, N. Tran et al., TREM-1 Mediates Inflammatory Injury and Cardiac Remodeling Following Myocardial Infarction, Circulation research 2015;116:1772-1782.
[76] C.D. Schmid, L.N. Sautkulis, P.E. Danielson, J. Cooper, K.W. Hasel, B.S. Hilbush et al., Heterogeneous expression of the triggering receptor expressed on myeloid cells-2 on adult murine microglia, Journal of neurochemistry 2002;83:1309-1320.
[77] I.R. Turnbull, S. Gilfillan, M. Cella, T. Aoshi, M. Miller, L. Piccio et al., Cutting edge: TREM-2 attenuates macrophage activation, The Journal of Immunology 2006;177:3520-3524.
[78] M.R. Daws, P.M. Sullam, E.C. Niemi, T.T. Chen, N.K. Tchao, W.E. Seaman, Pattern Recognition by TREM-2: Binding of Anionic Ligands, The Journal of Immunology 2003;171:594-599.
[79] L. Stefano, G. Racchetti, F. Bianco, N. Passini, R.S. Gupta, P. Panina Bordignon et al., The surface-exposed chaperone, Hsp60, is an agonist of the microglial TREM2 receptor, Journal of neurochemistry 2009;110:284-294.
[80] Y. Atagi, C.C. Liu, M.M. Painter, X.F. Chen, C. Verbeeck, H. Zheng et al., Apolipoprotein E Is a Ligand for Triggering Receptor Expressed on Myeloid Cells 2 (TREM2), The Journal of biological chemistry 2015;290:26043-26050.
[81] D.N. Quan, M.D. Cooper, J.L. Potter, M.H. Roberts, H. Cheng, G.A. Jarvis, TREM-2 binds to lipooligosaccharides of Neisseria gonorrhoeae and is expressed on reproductive tract epithelial cells, Mucosal immunology 2008;1:229-238.
[82] H. Ito, J.A. Hamerman, TREM-2, triggering receptor expressed on myeloid cell-2, negatively regulates TLR responses in dendritic cells, European journal of immunology 2012;42:176-185.
[83] O. Sharif, R. Gawish, J.M. Warszawska, R. Martins, K. Lakovits, A. Hladik et al., The triggering receptor expressed on myeloid cells 2 inhibits complement component 1q effector mechanisms and exerts detrimental effects during pneumococcal pneumonia, PLoS pathogens 2014;10:e1004167.
[84] K. Takahashi, C.D. Rochford, H. Neumann, Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2, The Journal of experimental medicine 2005;201:647-657.
[85] J.A. Hamerman, J.R. Jarjoura, M.B. Humphrey, M.C. Nakamura, W.E. Seaman, L.L. Lanier, Cutting edge: inhibition of TLR and FcR responses in macrophages by triggering receptor expressed on myeloid cells (TREM)-2 and DAP12, The Journal of Immunology 2006;177:2051-2055.
[86] C.L. Hsieh, M. Koike, S.C. Spusta, E.C. Niemi, M. Yenari, M.C. Nakamura et al., A role for TREM2 ligands in the phagocytosis of apoptotic neuronal cells by microglia, Journal of neurochemistry 2009;109:1144-1156.
[87] E.N. N'Diaye, C.S. Branda, S.S. Branda, L. Nevarez, M. Colonna, C. Lowell et al., TREM-2 (triggering receptor expressed on myeloid cells 2) is a phagocytic receptor for bacteria, The Journal of cell biology 2009;184:215-223.
[88] A. Bouchon, C. Hernandez-Munain, M. Cella, M. Colonna, A DAP12-mediated pathway regulates expression of CC chemokine receptor 7 and maturation of human dendritic cells, The Journal of experimental medicine 2001;194:1111-1122.
[89] M. Cella, C. Buonsanti, C. Strader, T. Kondo, A. Salmaggi, M. Colonna, Impaired differentiation of osteoclasts in TREM-2-deficient individuals, The Journal of experimental medicine 2003;198:645-651.
[90] J.C. Thrash, B.E. Torbett, M.J. Carson, Developmental regulation of TREM2 and DAP12 expression in the murine CNS: implications for Nasu-Hakola disease, Neurochemical research 2009;34:38-45.
[91] L. Piccio, C. Buonsanti, M. Mariani, M. Cella, S. Gilfillan, A.H. Cross et al., Blockade of TREM-2 exacerbates experimental autoimmune encephalomyelitis, European journal of immunology 2007;37:1290-1301.
[92] K. Takahashi, M. Prinz, M. Stagi, O. Chechneva, H. Neumann, TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis, PLoS medicine 2007;4:e124.
[93] T. Jonsson, H. Stefansson, S. Steinberg, I. Jonsdottir, P.V. Jonsson, J. Snaedal et al., Variant of TREM2 associated with the risk of Alzheimer's disease, The New England journal of medicine 2013;368:107-116.
[94] R. Guerreiro, A. Wojtas, J. Bras, M. Carrasquillo, E. Rogaeva, E. Majounie et al., TREM2 variants in Alzheimer's disease, The New England journal of medicine 2013;368:117-127.
[95] M. Colonna, Y. Wang, TREM2 variants: new keys to decipher Alzheimer disease pathogenesis, Nature reviews. Neuroscience 2016;17:201-207.
[96] C. Correale, M. Genua, S. Vetrano, E. Mazzini, C. Martinoli, A. Spinelli et al., Bacterial sensor triggering receptor expressed on myeloid cells-2 regulates the mucosal inflammatory response, Gastroenterology 2013;144:346-356 e343.
[97] K. Wu, D.E. Byers, X. Jin, E. Agapov, J. Alexander-Brett, A.C. Patel et al., TREM-2 promotes macrophage survival and lung disease after respiratory viral infection, The Journal of experimental medicine 2015;212:681-697.
[98] N. Mizushima, B. Levine, Autophagy in mammalian development and differentiation, Nature cell biology 2010;12:823-830.
[99] J. Kaur, J. Debnath, Autophagy at the crossroads of catabolism and anabolism, Nature reviews. Molecular cell biology 2015;16:461-472.
[100] P. Boya, F. Reggiori, P. Codogno, Emerging regulation and functions of autophagy, Nature cell biology 2013;15:713-720.
[101] B. Levine, N. Mizushima, H.W. Virgin, Autophagy in immunity and inflammation, Nature 2011;469:323-335.
[102] G. Zaffagnini, S. Martens, Mechanisms of Selective Autophagy, Journal of molecular biology 2016;428:1714-1724.
[103] S. Michaeli, G. Galili, Degradation of organelles or specific organelle components via selective autophagy in plant cells, International journal of molecular sciences 2014;15:7624-7638.
[104] A. Stolz, A. Ernst, I. Dikic, Cargo recognition and trafficking in selective autophagy, Nature cell biology 2014;16:495-501.
[105] A.B. Birgisdottir, T. Lamark, T. Johansen, The LIR motif - crucial for selective autophagy, Journal of cell science 2013;126:3237-3247.
[106] Y. Xu, C. Jagannath, X.D. Liu, A. Sharafkhaneh, K.E. Kolodziejska, N.T. Eissa, Toll-like receptor 4 is a sensor for autophagy associated with innate immunity, Immunity 2007;27:135-144.
[107] M.A. Delgado, R.A. Elmaoued, A.S. Davis, G. Kyei, V. Deretic, Toll-like receptors control autophagy, The EMBO journal 2008;27:1110-1121.
[108] R. Cooney, J. Baker, O. Brain, B. Danis, T. Pichulik, P. Allan et al., NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation, Nature medicine 2010;16:90-97.
[109] L.H. Travassos, L.A. Carneiro, M. Ramjeet, S. Hussey, Y.G. Kim, J.G. Magalhaes et al., Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry, Nature immunology 2010;11:55-62.
[110] Y. Lei, H. Wen, Y. Yu, D.J. Taxman, L. Zhang, D.G. Widman et al., The mitochondrial proteins NLRX1 and TUFM form a complex that regulates type I interferon and autophagy, Immunity 2012;36:933-946.
[111] M.G. Gutierrez, S.S. Master, S.B. Singh, G.A. Taylor, M.I. Colombo, V. Deretic, Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages, Cell 2004;119:753-766.
[112] M. Pilli, J. Arko-Mensah, M. Ponpuak, E. Roberts, S. Master, M.A. Mandell et al., TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation, Immunity 2012;37:223-234.
[113] J. Harris, Autophagy and cytokines, Cytokine 2011;56:140-144.
[114] C.W. Keller, C. Fokken, S.G. Turville, A. Lunemann, J. Schmidt, C. Munz et al., TNF-alpha induces macroautophagy and regulates MHC class II expression in human skeletal muscle cells, The Journal of biological chemistry 2011;286:3970-3980.
[115] K. Kiyono, H.I. Suzuki, H. Matsuyama, Y. Morishita, A. Komuro, M.R. Kano et al., Autophagy is activated by TGF-beta and potentiates TGF-beta-mediated growth inhibition in human hepatocellular carcinoma cells, Cancer research 2009;69:8844-8852.
[116] C. Li, E. Capan, Y. Zhao, J. Zhao, D. Stolz, S.C. Watkins et al., Autophagy Is Induced in CD4+ T Cells and Important for the Growth Factor-Withdrawal Cell Death, The Journal of Immunology 2006;177:5163-5168.
[117] J. Kim, M. Kundu, B. Viollet, K.L. Guan, AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1, Nature cell biology 2011;13:132-141.
[118] D. Crighton, S. Wilkinson, J. O'Prey, N. Syed, P. Smith, P.R. Harrison et al., DRAM, a p53-induced modulator of autophagy, is critical for apoptosis, Cell 2006;126:121-134.
[119] F. Ng, B.L. Tang, Sirtuins' modulation of autophagy, Journal of cellular physiology 2013;228:2262-2270.
[120] J. Harris, S.A. De Haro, S.S. Master, J. Keane, E.A. Roberts, M. Delgado et al., T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis, Immunity 2007;27:505-517.
[121] H.J. Park, S.J. Lee, S.H. Kim, J. Han, J. Bae, S.J. Kim et al., IL-10 inhibits the starvation induced autophagy in macrophages via class I phosphatidylinositol 3-kinase (PI3K) pathway, Molecular immunology 2011;48:720-727.
[122] M.M. Lipinski, G. Hoffman, A. Ng, W. Zhou, B.F. Py, E. Hsu et al., A genome-wide siRNA screen reveals multiple mTORC1 independent signaling pathways regulating autophagy under normal nutritional conditions, Developmental cell 2010;18:1041-1052.
[123] S.T. Shibutani, T. Saitoh, H. Nowag, C. Munz, T. Yoshimori, Autophagy and autophagy-related proteins in the immune system, Nature immunology 2015;16:1014-1024.
[124] Z. Zhao, B. Fux, M. Goodwin, I.R. Dunay, D. Strong, B.C. Miller et al., Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens, Cell host & microbe 2008;4:458-469.
[125] A. Orvedahl, S. MacPherson, R. Sumpter, Jr., Z. Talloczy, Z. Zou, B. Levine, Autophagy protects against Sindbis virus infection of the central nervous system, Cell host & microbe 2010;7:115-127.
[126] I. Nakagawa, A. Amano, N. Mizushima, A. Yamamoto, H. Yamaguchi, T. Kamimoto et al., Autophagy defends cells against invading group A Streptococcus, Science 2004;306:1037-1040.
[127] P. Kuballa, A. Huett, J.D. Rioux, M.J. Daly, R.J. Xavier, Impaired autophagy of an intracellular pathogen induced by a Crohn's disease associated ATG16L1 variant, PLoS One 2008;3:e3391.
[128] M. Ogawa, T. Yoshimori, T. Suzuki, H. Sagara, N. Mizushima, C. Sasakawa, Escape of intracellular Shigella from autophagy, Science 2005;307:727-731.
[129] A. Orvedahl, R. Sumpter, Jr., G. Xiao, A. Ng, Z. Zou, Y. Tang et al., Image-based genome-wide siRNA screen identifies selective autophagy factors, Nature 2011;480:113-117.
[130] G.B. Kyei, C. Dinkins, A.S. Davis, E. Roberts, S.B. Singh, C. Dong et al., Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages, The Journal of cell biology 2009;186:255-268.
[131] M.A. Sanjuan, C.P. Dillon, S.W. Tait, S. Moshiach, F. Dorsey, S. Connell et al., Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis, Nature 2007;450:1253-1257.
[132] X. Qu, Z. Zou, Q. Sun, K. Luby-Phelps, P. Cheng, R.N. Hogan et al., Autophagy gene-dependent clearance of apoptotic cells during embryonic development, Cell 2007;128:931-946.
[133] T. Saitoh, N. Fujita, M.H. Jang, S. Uematsu, B.G. Yang, T. Satoh et al., Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production, Nature 2008;456:264-268.
[134] H.K. Lee, J.M. Lund, B. Ramanathan, N. Mizushima, A. Iwasaki, Autophagy-dependent viral recognition by plasmacytoid dendritic cells, Science 2007;315:1398-1401.
[135] D. Zhou, K.H. Kang, S.A. Spector, Production of interferon alpha by human immunodeficiency virus type 1 in human plasmacytoid dendritic cells is dependent on induction of autophagy, The Journal of infectious diseases 2012;205:1258-1267.
[136] M. Severa, E. Giacomini, V. Gafa, E. Anastasiadou, F. Rizzo, M. Corazzari et al., EBV stimulates TLR- and autophagy-dependent pathways and impairs maturation in plasmacytoid dendritic cells: implications for viral immune escape, European journal of immunology 2013;43:147-158.
[137] N. Jounai, F. Takeshita, K. Kobiyama, A. Sawano, A. Miyawaki, K.Q. Xin et al., The Atg5 Atg12 conjugate associates with innate antiviral immune responses, Proceedings of the National Academy of Sciences of the United States of America 2007;104:14050-14055.
[138] T. Saitoh, N. Fujita, T. Hayashi, K. Takahara, T. Satoh, H. Lee et al., Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response, Proceedings of the National Academy of Sciences of the United States of America 2009;106:20842-20846.
[139] C.P. Chang, Y.C. Su, C.W. Hu, H.Y. Lei, TLR2-dependent selective autophagy regulates NF-kappaB lysosomal degradation in hepatoma-derived M2 macrophage differentiation, Cell death and differentiation 2013;20:515-523.
[140] M. Yang, J. Liu, J. Shao, Y. Qin, Q. Ji, X. Zhang et al., Cathepsin S-mediated autophagic flux in tumor-associated macrophages accelerate tumor development by promoting M2 polarization, Molecular cancer 2014;13:43.
[141] S. Romao, M. Gannage, C. Munz, Checking the garbage bin for problems in the house, or how autophagy assists in antigen presentation to the immune system, Seminars in cancer biology 2013;23:391-396.
[142] D. Schmid, M. Pypaert, C. Munz, Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes, Immunity 2007;26:79-92.
[143] H.K. Lee, L.M. Mattei, B.E. Steinberg, P. Alberts, Y.H. Lee, A. Chervonsky et al., In vivo requirement for Atg5 in antigen presentation by dendritic cells, Immunity 2010;32:227-239.
[144] J. Nedjic, M. Aichinger, J. Emmerich, N. Mizushima, L. Klein, Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance, Nature 2008;455:396-400.
[145] L. English, M. Chemali, J. Duron, C. Rondeau, A. Laplante, D. Gingras et al., Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection, Nature immunology 2009;10:480-487.
[146] S.K. Tey, R. Khanna, Autophagy mediates transporter associated with antigen processing-independent presentation of viral epitopes through MHC class I pathway, Blood 2012;120:994-1004.
[147] M. Uhl, O. Kepp, H. Jusforgues-Saklani, J.M. Vicencio, G. Kroemer, M.L. Albert, Autophagy within the antigen donor cell facilitates efficient antigen cross-priming of virus-specific CD8+ T cells, Cell death and differentiation 2009;16:991-1005.
[148] M. Mortensen, E.J. Soilleux, G. Djordjevic, R. Tripp, M. Lutteropp, E. Sadighi-Akha et al., The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance, The Journal of experimental medicine 2011;208:455-467.
[149] H.H. Pua, I. Dzhagalov, M. Chuck, N. Mizushima, Y.W. He, A critical role for the autophagy gene Atg5 in T cell survival and proliferation, The Journal of experimental medicine 2007;204:25-31.
[150] W. Jia, Y.W. He, Temporal regulation of intracellular organelle homeostasis in T lymphocytes by autophagy, The Journal of Immunology 2011;186:5313-5322.
[151] X. Xu, K. Araki, S. Li, J.H. Han, L. Ye, W.G. Tan et al., Autophagy is essential for effector CD8(+) T cell survival and memory formation, Nature immunology 2014;15:1152-1161.
[152] B.C. Miller, Z. Zhao, L.M. Stephenson, K. Cadwell, H.H. Pua, H.K. Lee et al., The autophagy gene ATG5 plays an essential role in B lymphocyte development, Autophagy 2008;4:309-314.
[153] N. Pengo, M. Scolari, L. Oliva, E. Milan, F. Mainoldi, A. Raimondi et al., Plasma cells require autophagy for sustainable immunoglobulin production, Nature immunology 2013;14:298-305.
[154] K.L. Conway, P. Kuballa, B. Khor, M. Zhang, H.N. Shi, H.W. Virgin et al., ATG5 regulates plasma cell differentiation, Autophagy 2013;9:528-537.
[155] M. Chen, S. Kodali, A. Jang, L. Kuai, J. Wang, Requirement for autophagy in the long-term persistence but not initial formation of memory B cells, The Journal of Immunology 2015;194:2607-2615.
[156] M. Chen, M.J. Hong, H. Sun, L. Wang, X. Shi, B.E. Gilbert et al., Essential role for autophagy in the maintenance of immunological memory against influenza infection, Nature medicine 2014;20:503-510.
[157] Z. Yang, J.J. Goronzy, C.M. Weyand, Autophagy in autoimmune disease, Journal of molecular medicine (Berlin, Germany) 2015;93:707-717.
[158] X.J. Zhou, H. Zhang, Autophagy in immunity: implications in etiology of autoimmune/autoinflammatory diseases, Autophagy 2012;8:1286-1299.
[159] J.C. Barrett, S. Hansoul, D.L. Nicolae, J.H. Cho, R.H. Duerr, J.D. Rioux et al., Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease, Nature genetics 2008;40:955-962.
[160] C.W. Lees, J.C. Barrett, M. Parkes, J. Satsangi, New IBD genetics: common pathways with other diseases, Gut 2011;60:1739-1753.
[161] L. Henckaerts, I. Cleynen, M. Brinar, J.M. John, K. Van Steen, P. Rutgeerts et al., Genetic variation in the autophagy gene ULK1 and risk of Crohn's disease, Inflammatory bowel diseases 2011;17:1392-1397.
[162] M. Alirezaei, H.S. Fox, C.T. Flynn, C.S. Moore, A.L. Hebb, R.F. Frausto et al., Elevated ATG5 expression in autoimmune demyelination and multiple sclerosis, Autophagy 2009;5:152-158.
[163] A. Bhattacharya, X. Parillon, S. Zeng, S. Han, N.T. Eissa, Deficiency of autophagy in dendritic cells protects against experimental autoimmune encephalomyelitis, The Journal of biological chemistry 2014;289:26525-26532.
[164] L. Zhu, H. Wang, Y. Wu, Z. He, Y. Qin, Q. Shen, The Autophagy Level Is Increased in the Synovial Tissues of Patients with Active Rheumatoid Arthritis and Is Correlated with Disease Severity, Mediators of inflammation 2017;2017:7623145.
[165] J.M. Ireland, E.R. Unanue, Autophagy in antigen-presenting cells results in presentation of citrullinated peptides to CD4 T cells, The Journal of experimental medicine 2011;208:2625-2632.
[166] Y.J. Shin, S.H. Han, D.S. Kim, G.H. Lee, W.H. Yoo, Y.M. Kang et al., Autophagy induction and CHOP under-expression promotes survival of fibroblasts from rheumatoid arthritis patients under endoplasmic reticulum stress, Arthritis research & therapy 2010;12:R19.
[167] Z. Yang, H. Fujii, S.V. Mohan, J.J. Goronzy, C.M. Weyand, Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells, The Journal of experimental medicine 2013;210:2119-2134.
[168] J.W. Han, H.F. Zheng, Y. Cui, L.D. Sun, D.Q. Ye, Z. Hu et al., Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus, Nature genetics 2009;41:1234-1237.
[169] G. International Consortium for Systemic Lupus Erythematosus, J.B. Harley, M.E. Alarcon-Riquelme, L.A. Criswell, C.O. Jacob, R.P. Kimberly et al., Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci, Nature genetics 2008;40:204-210.
[170] V. Gateva, J.K. Sandling, G. Hom, K.E. Taylor, S.A. Chung, X. Sun et al., A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus, Nature genetics 2009;41:1228-1233.
[171] X.J. Zhou, X.L. Lu, J.C. Lv, H.Z. Yang, L.X. Qin, M.H. Zhao et al., Genetic association of PRDM1-ATG5 intergenic region and autophagy with systemic lupus erythematosus in a Chinese population, Annals of the rheumatic diseases 2011;70:1330-1337.
[172] X. Liu, H. Qin, J. Xu, The role of autophagy in the pathogenesis of systemic lupus erythematosus, International Immunopharmacology 2016;40:351-361.
[173] A.J. Clarke, U. Ellinghaus, A. Cortini, A. Stranks, A.K. Simon, M. Botto et al., Autophagy is activated in systemic lupus erythematosus and required for plasmablast development, Annals of the rheumatic diseases 2015;74:912-920.
[174] F. Gros, J. Arnold, N. Page, M. Decossas, A.S. Korganow, T. Martin et al., Macroautophagy is deregulated in murine and human lupus T lymphocytes, Autophagy 2012;8:1113-1123.
[175] Q. Remijsen, T. Vanden Berghe, E. Wirawan, B. Asselbergh, E. Parthoens, R. De Rycke et al., Neutrophil extracellular trap cell death requires both autophagy and superoxide generation, Cell research 2011;21:290-304.
[176] B. Li, Y. Yue, C. Dong, Y. Shi, S. Xiong, Blockade of macrophage autophagy ameliorates activated lymphocytes-derived DNA induced murine lupus possibly via inhibition of proinflammatory cytokine production, Clinical and experimental rheumatology 2014;32:705-714.
[177] Y. Molad, E. Pokroy-Shapira, T. Kaptzan, A. Monselise, M. Shalita-Chesner, Y. Monselise, Serum soluble triggering receptor on myeloid cells-1 (sTREM-1) is elevated in systemic lupus erythematosus but does not distinguish between lupus alone and concurrent infection, Inflammation 2013;36:1519-1524.
[178] M.P. Thome, E.C. Filippi-Chiela, E.S. Villodre, C.B. Migliavaca, G.R. Onzi, K.B. Felipe et al., Ratiometric analysis of Acridine Orange staining in the study of acidic organelles and autophagy, Journal of cell science 2016;129:4622-4632.
[179] A. Faber-Elmann, Z. Sthoeger, A. Tcherniack, M. Dayan, E. Mozes, Activity of matrix metalloproteinase-9 is elevated in sera of patients with systemic lupus erythematosus, Clinical and experimental immunology 2002;127:393-398.
[180] T.A. Gheita, D.M. Abdel Rehim, S.A. Kenawy, H.A. Gheita, Clinical significance of matrix metalloproteinase-3 in systemic lupus erythematosus patients: a potential biomarker for disease activity and damage, Acta reumatológica portuguesa 2015;40:145-149.
[181] H. Vira, V. Pradhan, V. Umare, A. Chaudhary, A. Rajadhyksha, M. Nadkar et al., Role of MMP-7 in the pathogenesis of systemic lupus erythematosus (SLE), Lupus 2016;961203316682855.
[182] H. Watarai, E. Sekine, S. Inoue, R. Nakagawa, T. Kaisho, M. Taniguchi, PDC-TREM, a plasmacytoid dendritic cell-specific receptor, is responsible for augmented production of type I interferon, Proceedings of the National Academy of Sciences of the United States of America 2008;105:2993-2998.
[183] S. Shivakumar, G.C. Tsokos, S.K. Datta, T cell receptor alpha/beta expressing double-negative (CD4-/CD8-) and CD4+ T helper cells in humans augment the production of pathogenic anti-DNA autoantibodies associated with lupus nephritis, The Journal of Immunology 1989;143:103-112.
[184] P.L. Cohen, R.A. Eisenberg, Lpr and gld: single gene models of systemic autoimmunity and lymphoproliferative disease, Annual review of immunology 1991;9:243-269.
[185] A. Anand, G.S. Dean, K. Quereshi, D.A. Isenberg, P.M. Lydyard, Characterization of CD3+ CD4- CD8- (double negative) T cells in patients with systemic lupus erythematosus: activation markers, Lupus 2002;11:493-500.
[186] P.A. Sieling, S.A. Porcelli, B.T. Duong, F. Spada, B.R. Bloom, B. Diamond et al., Human double-negative T cells in systemic lupus erythematosus provide help for IgG and are restricted by CD1c, The Journal of Immunology 2000;165:5338-5344.
[187] G.S. Dean, A. Anand, A. Blofeld, D.A. Isenberg, P.M. Lydyard, Characterization of CD3+ CD4- CD8- (double negative) T cells in patients with systemic lupus erythematosus: production of IL-4, Lupus 2002;11:501-507.
[188] J.C. Crispin, M. Oukka, G. Bayliss, R.A. Cohen, C.A. Van Beek, I.E. Stillman et al., Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys, The Journal of Immunology 2008;181:8761-8766.
[189] M. Mizui, T. Koga, L.A. Lieberman, J. Beltran, N. Yoshida, M.C. Johnson et al., IL-2 protects lupus-prone mice from multiple end-organ damage by limiting CD4-CD8- IL-17-producing T cells, The Journal of Immunology 2014;193:2168-2177.
[190] R. Baccala, R. Gonzalez-Quintial, A.L. Blasius, I. Rimann, K. Ozato, D.H. Kono et al., Essential requirement for IRF8 and SLC15A4 implicates plasmacytoid dendritic cells in the pathogenesis of lupus, Proceedings of the National Academy of Sciences of the United States of America 2013;110:2940-2945.
[191] I. Arsov, A. Adebayo, M. Kucerova-Levisohn, J. Haye, M. MacNeil, F.N. Papavasiliou et al., A Role for Autophagic Protein Beclin 1 Early in Lymphocyte Development, The Journal of Immunology 2011;186:2201-2209.
[192] J. Martinez, L.D. Cunha, S. Park, M. Yang, Q. Lu, R. Orchard et al., Noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells, Nature 2016;533:115-119.
[193] L. Wang, H.K. Law, The Role of Autophagy in Lupus Nephritis, International journal of molecular sciences 2015;16:25154-25167.
[194] C. He, D.J. Klionsky, Regulation Mechanisms and Signaling Pathways of Autophagy, Annual Review of Genetics 2009;43:67-93.
[195] M. Delgado, M.G. Toscano, K. Benabdellah, M. Cobo, F. O'Valle, E. Gonzalez-Rey et al., In vivo delivery of lentiviral vectors expressing vasoactive intestinal peptide complementary DNA as gene therapy for collagen-induced arthritis, Arthritis and rheumatism 2008;58:1026-1037.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top