跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/25 21:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉佩遠
研究生(外文):Pei-Yuan Liu
論文名稱:以有限元素方法建立乳房壓迫模型及其應用
論文名稱(外文):Breast Compression Modeling Using the Finite-element Analysis and Its Application
指導教授:吳杰
指導教授(外文):Jay Wu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物醫學影像暨放射科學系
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:76
中文關鍵詞:影像分割乳腺比例乳房壓迫厚度有限元素分析
外文關鍵詞:segmentationbreast glandularitycompressed breast thicknessfinite element analysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
近年來研究證實乳癌發生機率與乳腺比例有很大的關聯性,評估乳腺比例相對重要,然而,乳房X光攝影為第一線的乳癌篩檢工具,乳房壓迫厚度(compressed breast thickness, CBT)會因為個體乳房組織分布與乳腺比例多寡而有差異,因此導致乳房壓迫厚度難以預測。本研究分別建立乳腺比例回歸公式與模擬乳房壓迫形變,首先,磁振造影影像(magnetic resonance imaging, MRI)分割乳房組織得到乳腺比例,搭配臨床參數擬合出乳腺比例回歸公式,接著,以有限元素分析(finite element analysis, FEA)方法建立乳房壓迫模型並施予臨床壓迫力道模擬乳房X光攝影中頭腳相位(cranio-caudal, CC)的乳房形變。乳腺比例回歸公式與真實測量結果的皮爾森相關係數為0.755(p < .001);乳房壓迫模型的驗證方面,模擬與臨床CBT之平均與最大誤差為2.71和6 mm,皮爾森相關係數為0.971(p < .001)。本研究透過乳腺比例回歸公式的建立,可以個人化的評估乳腺比例,乳房壓迫模型技術的建立,能有效預測乳房攝影時乳房組織形變。
Recent studies indicate that occurrence of breast cancer is related to breast glandularity. Therefore, the assessment of breast glandularity is an essential issue. The distribution of breast tissue and variety of breast glandularity result in the difference of compressed breast thickness(CBT). In this study, we estimated breast glandularity by equation and establishing a breast compression model. First, breast tissues were segmented to calculate the breast Glandularity based on magnetic resonance(MR)images. To estimate the breast glandularity, we fit an equation by least squares with clinical imaging parameters. Then, we established the breast compression model to simulate the deformation of breast tissues in the cranio-caudal(CC)direction according to clinical forces by using finite element analysis(FEA)software. The Pearson correlation between the measured and estimated breast glandularity was 0.755 (p < .001). The average and maximum differences of CBT were 2.71 mm and 6 mm. The corresponding correlation between clinical and simulated CBT was 0.971(p < .001). Through this study, we can estimate the breast glandularity individually, and predict the CC deformation in mammography.
致謝.....i
摘要.....ii
Abstract.....iii
目錄.....iv
圖目錄.....vii
表目錄.....x
1. 前言.....11
1.1. 研究背景.....11
1.2. 研究目的.....13
1.3. 論文架構.....14
2. 文獻回顧.....16
2.1. 乳腺比例評估方法.....16
2.1.1. 半圓柱假體評估法.....16
2.1.2. 肉眼評估法.....18
2.1.3. 半自動評估法.....20
2.1.4. 全自動評估法.....20
2.2. 乳房壓迫模型的發展.....22
3. 材料方法.....26
3.1. 乳腺比例評估.....26
3.1.1. 個案蒐集.....26
3.1.2. 乳房X光攝影參數.....27
3.1.3. 三維乳房磁振造影參數.....27
3.1.4. 組織分割軟體.....28
3.1.5. 乳腺比例計算方法.....30
3.1.6. 臨床驗證.....31
3.1.7. 統計分析.....31
3.2. 乳房壓迫技術建立.....33
3.2.1. 個案蒐集.....34
3.2.2. 模型網格建立.....34
3.2.3. 有限元素分析.....35
3.2.4. 統計分析.....37
3.3. 乳房壓迫模型之應用.....38
3.3.1. 不同壓迫力道之應用.....38
3.3.2. 乳房X光攝影投影模擬.....39
4. 結果.....41
4.1. 臨床資料分布.....41
4.2. 乳腺比例評估.....42
4.2.1. 乳腺比例分布.....42
4.2.2. 乳腺比例與BI-RADS乳房組織分級之關聯性.....44
4.2.3. 乳腺比例與相關參數之關聯性.....45
4.2.4. 乳腺比例公式擬合.....47
4.2.5. 乳腺比例評估驗證.....50
4.3. 乳房壓迫技術建立.....51
4.3.1. 壓迫板位移與壓迫力道曲線.....51
4.3.2. 乳房壓迫模型驗證.....54
4.4. 乳房壓迫模型之應用.....56
4.4.1. 不同壓迫力道之應用.....56
4.4.2. 乳房投影.....58
5. 討論.....63
5.1. 影像擷取儀器選擇.....63
5.2. 半自動乳腺比例評估與全自動乳腺比例評估之比較.....63
5.3. 乳腺比例計算方式.....64
5.4. 乳腺比例與相關參數之關聯性探討.....64
5.5. 乳腺比例回歸公式評估結果探討.....65
5.6. 乳腺比例回歸公式所用回歸模型探討.....66
5.7. 重力對於乳房壓迫模型探討.....68
5.8. 建模材料參數探討.....68
5.9. 乳房壓迫驗證結果探討.....69
5.10.不同壓迫力道下乳房壓迫厚度與其他參數之關聯性.....70
5.11.乳房投影與網格探討.....70
6. 結論.....71
7. 參考文獻.....72


圖目錄
圖 1-1、2000-2013年台灣女性乳癌標準化發生率。.....11
圖 1-2、乳房側面構造圖。.....12
圖 2-1、Jamal提出之乳腺比例評估假體。.....17
圖 2-2、Ekpo利用兩種不同的自動乳腺比例評估結果顯示介面。(A)Volpara系統的顯示介面、(B)Quantra系統的顯示介面。.....21
圖 2-3、Brown提出的人體實際測量法以決定乳房外型。.....22
圖 3-1、乳房專用螺旋磁振造影掃描儀.....28
圖 3-2、乳房組織分割流程。(a)MRI原始影像、(b) 除胸壁以及外部的雜訊的全乳房體積、(c)左右乳房分割、(d)腺體組織呈現、(e)脂肪組織呈現。.....29
圖 3-3、利用乳房分割結果建立CAD模型。(a)矢狀面、(b)橫切面、(c)冠狀面。.....30
圖 3-11、乳房壓迫模型位置調整與材質給予操作面板。.....40
圖 3-12、第二十四個案例乳房CC view投影示意圖。.....40
圖 4-1、60個案例中臨床乳房壓迫厚度分布。.....41
圖 4-2、40個案例中臨床乳房壓迫厚度分布。.....42
圖 4-3、乳腺比例評估中60個案例乳房圈選結果分布。(a)乳房體積分布、(b)乳腺組織體積分布、(c)乳腺比例分布。.....43
圖 4-4、第15個案例的3D乳房模型。(a)扣除胸壁和胸大肌後的乳房輪廓,其乳房體積為773.14 cm3、(b)乳腺組織圈選結果,其乳腺體積為158.46 cm3、(C)乳腺組織於乳房中分布情形,其乳腺比例為20.5%。.....43
圖 4-5、乳腺比例為與BI-RADS分級之關聯性。.....44
圖 4-6、乳房體積與臨床乳房壓迫厚度之關聯性。.....46
圖 4-7、乳房體積與乳腺比例之關聯性。.....46
圖 4-8、乳腺比例與臨床乳房壓迫厚度之關聯性。.....47
圖 4-9、學生化殘差與乳房壓迫厚度之關聯性。.....48
圖 4-10、學生化殘差與年齡之關聯性。.....49
圖 4-11、學生化殘差與管電流的倒數之關聯性。.....49
圖 4-12、MRI影像分割所得乳腺比例與以回歸公式所得乳腺比例之關聯性。.....50
圖 4-13、所給予的壓迫力道與時間之關聯性。.....52
圖 4-14、壓迫板位移與時間之關聯性。.....52
圖 4-15、所給予的壓迫力道與壓迫板位移之關聯性。.....53
圖 4-16、不同乳房體積分群下壓迫板位移與壓迫力道曲線呈現。(a)乳房體積為200-400 ml曲線、(b)乳房體積為400-600 ml曲線、(c)乳房體積為600-800 ml曲線、(d)乳房體積為800-1400 ml曲線。.....54
圖 4-19、臨床乳房壓迫厚度與模擬乳房壓迫厚度之關係。.....55
圖 4-20、臨床乳房壓迫厚度與學生化殘差結果。.....56
圖 4-21、在10、12、14和16 daN下,乳房體積與模擬乳房壓迫厚度之關聯性。.....57
圖 4-22、在10、12、14和16 daN下,模擬乳房壓迫厚度與乳腺比例之關聯性。.....58
圖 4-23、乳房壓迫模型模擬結果與臨床乳房攝影影像比較,第一個案例投影結果。(a)模擬乳房壓迫投影影像、(b)臨床乳房攝影影像。.....59
圖 4-24、乳房壓迫模型模擬結果與臨床乳房攝影影像比較,第二個案例投影結果。(a)模擬乳房壓迫投影影像、(b)臨床乳房攝影影像。.....60
圖 4-25、乳房壓迫模型模擬結果與臨床乳房攝影影像比較,第三個案例投影結果。(a)模擬乳房壓迫投影影像、(b)臨床乳房攝影影像。.....61
圖 4-26、乳房壓迫模型模擬結果與臨床乳房攝影影像比較,第四個案例投影結果。(a)模擬乳房壓迫投影影像、(b)臨床乳房攝影影像。.....62
圖 5-1、以224個bCT案例評估之乳腺比例與乳房體積之關聯性。.....65


表目錄
表 2-1、2003年ACR定義之BI-RADS乳腺組織成分。.....19
表 2-2、2013年ACR定義之BI-RADS乳腺組織成分。.....19
表 2-3、Shih所提出的4個壓迫案例在不同可壓迫百分比的結果。.....24
表 5-1、其他研究中以乳房假體方法評估乳腺比例之比較.....66
表 5-2、neo-Hookean與Mooney-Rivlin模型材質參數設定.....69
Azar, F. S., D. N. Metaxas and M. D. Schnall (2002). "Methods for modeling and predicting mechanical deformations of the breast under external perturbations." Medical Image Analysis 6(1): 1-27.
Bethesda, M. (1989). Tissue Substitutes in Radiation Dosimetry and Measurement, Report 44 of the International Commission on Radiation Units and Measurements, ICRU.
Boyd, N. F., G. S. Dite, J. Stone, A. Gunasekara, D. R. English, M. R. McCredie, G. G. Giles, D. Tritchler, A. Chiarelli and M. J. Yaffe (2002). "Heritability of mammographic density, a risk factor for breast cancer." New England Journal of Medicine 347(12): 886-894.
Brown, T. L. H., C. Ringrose, R. Hyland, A. Cole and T. Brotherston (1999). "A method of assessing female breast morphometry and its clinical application." British journal of plastic surgery 52(5): 355-359.
Dance, D., C. Skinner, K. Young, J. Beckett and C. Kotre (2000). "Additional factors for the estimation of mean glandular breast dose using the UK mammography dosimetry protocol." Physics in medicine and biology 45(11): 3225.
Del Palomar, A. P., B. Calvo, J. Herrero, J. López and M. Doblaré (2008). "A finite element model to accurately predict real deformations of the breast." Medical engineering & physics 30(9): 1089-1097.
Dong, S. L., T. C. Chu, G. Y. Lan, Y. C. Lin, Y. H. Yeh and K. S. Chuang (2011). "Development of an adjustable model breast for mammographic dosimetry assessment in Taiwanese women." AJR Am J Roentgenol 196(4): W476-481.
Ekpo, E., P. Hogg, R. Highnam and M. McEntee (2015). "Breast composition: measurement and clinical use." Radiography 21(4): 324-333.
Erickson, D. W., J. R. Wells, G. M. Sturgeon, E. Samei, J. T. Dobbins, 3rd, W. P. Segars and J. Y. Lo (2016). "Population of 224 realistic human subject-based computational breast phantoms." Med Phys 43(1): 23.
Geise, R. A. and A. Palchevsky (1996). "Composition of Mammographic Phantom Materials." Radiology 198: 347-350.
Han, L., J. H. Hipwell, C. Tanner, Z. Taylor, T. Mertzanidou, J. Cardoso, S. Ourselin and D. J. Hawkes (2012). "Development of patient-specific biomechanical models for predicting large breast deformation." Phys Med Biol 57(2): 455-472.
Harvey, J. A. and V. E. Bovbjerg (2004). "Quantitative assessment of mammographic breast density: relationship with breast cancer risk 1." Radiology 230(1): 29-41.
Hsu, C. M., M. L. Palmeri, W. P. Segars, A. I. Veress and J. T. Dobbins, 3rd (2011). "An analysis of the mechanical parameters used for finite element compression of a high-resolution 3D breast phantom." Med Phys 38(10): 5756-5770.
Jamal, N., K.-H. Ng, D. McLean, L.-M. Looi and F. Moosa (2004). "Mammographic Breast Glandularity in Malaysian WomenData Derived from Radiography." American Roentgen Ray Society 182: 713–717.
Kawaguchi, A., Y. Matsunaga, Y. Asada, S. Suzuki and K. Chida (2016). "Glandularity Estimation in Japanese Women by Using a Breast Model Made from Mammographic Findings of European Women." Japanese Journal of Health Physics 51(4): 238-244.
Krouskop, T. A., T. M. Wheeler, F. Kallel, B. S. Garra and T. Hall (1998). "Elastic moduli of breast and prostate tissues under compression." Ultrasonic imaging 20(4): 260-274.
Kruger, R. L. and B. A. Schueler (2001). "A survey of clinical factors and patient dose in mammography." Medical physics 28(7): 1449-1454.
McCormack, V. A. and I. dos Santos Silva (2006). "Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis." Cancer Epidemiology and Prevention Biomarkers 15(6): 1159-1169.
Mohammadyari, P., R. Faghihi, M. A. Mosleh-Shirazi, M. Lotfi, M. R. Hematiyan, C. Koontz and A. S. Meigooni (2015). "Calculation of dose distribution in compressible breast tissues using finite element modeling, Monte Carlo simulation and thermoluminescence dosimeters." Phys Med Biol 60(23): 9185-9202.
Nie, K., J. H. Chen, S. Chan, M. K. I. Chau, H. J. Yu, S. Bahri, T. Tseng, O. Nalcioglu and M. Y. Su (2008). "Development of a quantitative method for analysis of breast density based on three‐dimensional breast MRI." Medical physics 35(12): 5253-5262.
Pathmanathan, P., D. J. Gavaghan, J. P. Whiteley, S. J. Chapman and J. M. Brady (2008). "Predicting tumor location by modeling the deformation of the breast." IEEE Transactions on Biomedical Engineering 55(10): 2471-2480.
Pertuz, S., E. S. McDonald, S. P. Weinstein, E. F. Conant and D. Kontos (2015). "Fully automated quantitative estimation of volumetric breast density from digital breast tomosynthesis images: preliminary results and comparison with digital mammography and mr imaging." Radiology 279(1): 65-74.
Pianigiani, S., L. Ruggiero and B. Innocenti (2015). "An Anthropometric-Based Subject-Specific Finite Element Model of the Human Breast for Predicting Large Deformations." Front Bioeng Biotechnol 3: 201.
Pujara, A. C., A. Mikheev, H. Rusinek, H. Rallapalli, J. Walczyk, Y. Gao, C. Chhor, K. Pysarenko, J. S. Babb and A. N. Melsaether (2017). "Clinical applicability and relevance of fibroglandular tissue segmentation on routine T1 weighted breast MRI." Clinical Imaging 42: 119-125.
Samani, A., J. Bishop, M. J. Yaffe and D. B. Plewes (2001). "Biomechanical 3-D finite element modeling of the human breast using MRI data." IEEE transactions on medical imaging 20(4): 271-279.
Schmachtenberg, C., S. Hammann-Kloss, U. Bick and F. Engelken (2015). "Intraindividual comparison of two methods of volumetric breast composition assessment." Acad Radiol 22(4): 447-452.
Shi, L., S. Vedantham, A. Karellas and A. M. O'Connell (2013). "Technical Note: Skin thickness measurements using high‐resolution flat‐panel cone‐beam dedicated breast CT." Medical physics 40(3).
Shih, T. C., J. H. Chen, D. Liu, K. Nie, L. Sun, M. Lin, D. Chang, O. Nalcioglu and M. Y. Su (2010). "Computational simulation of breast compression based on segmented breast and fibroglandular tissues on magnetic resonance images." Phys Med Biol 55(14): 4153-4168.
Smith, R. A. (2003). "Iarc handbooks of cancer prevention, volume 7: Breast cancer screening." Breast Cancer Res 5(4): 216-217.
Smith, R. A., K. S. Andrews, D. Brooks, S. A. Fedewa, D. Manassaram‐Baptiste, D. Saslow, O. W. Brawley and R. C. Wender (2017). "Cancer screening in the United States, 2017: A review of current American Cancer Society guidelines and current issues in cancer screening." CA: a cancer journal for clinicians 67(2): 100-121.
Sterns, E. E. and B. Zee (2000). "Mammographic density changes in perimenopausal and postmenopausal women: is effect of hormone replacement therapy predictable?" Breast cancer research and treatment 59(2): 125-132.
Sturgeon, G. M., N. Kiarashi, J. Y. Lo, E. Samei and W. P. Segars (2016). "Finite-element modeling of compression and gravity on a population of breast phantoms for multimodality imaging simulation." Med Phys 43(5): 2207.
Viswanathan, K. and K. Balasubramaniam (2009). Modeling and simulation schemes in X-ray radiography and computed tomography. Proceedings of the national seminar and exhibition on non-destructive evaluation NDE 2009.
Yaffe, M., J. M. Boone, N. Packard, O. Alonzo‐Proulx, S. Y. Huang, C. Peressotti, A. Al‐Mayah and K. Brock (2009). "The myth of the 50‐50 breast." Medical physics 36(12): 5437-5443.
Zoetelief, J., W. Veldkamp, M. Thijssen and J. Jansen (2006). "Glandularity and mean glandular dose determined for individual women at four regional breast cancer screening units in the Netherlands." Physics in medicine and biology 51(7): 1807.
行政院衛生福利部 國民健康署 民國2011年癌症登記報告
行政院衛生福利部 國民健康署第二期國家癌症防治計畫-癌症篩檢(2010-2013年)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top