|
1. IV, T.E.Y., et al., Brachytherapy. Springer, 2016. 2. Glasser, O., W. C. Roentgen and the discovery of the Roentgen rays. American Journal of Roentgenology, 1995. 165. 3. Attix, F.H., Introduction to Radiological Physics and Radiation Dosimetry. WILEY-VCH, 1991. First Edition. 4. 莊克士, 醫學影像物理學. 合記圖書出版社, 2012. 第二版. 5. 李境和, 游離輻射防護與法規. 財團法人中華民國輻射防護協會, 2014. 6. Lunsford, L.D., et al., Stereotactic Radiosurgery of the Brain Using the First United States 201 Cobalt-60 Source Gamma Knife. Neurosurgery, 1989. 24(2). 7. Kassis, A.I., The amazing world of Auger electrons. International Journal of Radiation Biology, 2004. 80(11-12). 8. Pradhan, A.K., et al., Resonant X-ray enhancement of the Auger effect in high-Z atoms, molecules, and nanoparticles: potential biomedical applications. The Journal of Physical Chemistry A, 2009. 113(45). 9. Fan, C.-Y., Beta-spectra and internal conversion coefficients for Co60, Nb95, Au198, and Hf181. Physical Review, 1952. 87(2). 10. Kassis, A.I. and S.J. Adelstein, Radiobiologic principles in radionuclide therapy. The Journal of Nuclear Medicine, 2005. 46(1). 11. Cole, A., Absorption of 20-eV to 50,000-eV electron beams in air and plastic. Radiation Research, 1969. 38(1). 12. Boswell, C.A. and M.W. Brechbiel, Auger electrons: lethal, low energy, and coming soon to a tumor cell nucleus near you. The Journal of Nuclear Medicine, 2005. 46(12). 13. Goddu, S.M., D.V. Rao, and R.W. Howell, Multicellular dosimetry for micrometastases: dependence of self-dose versus cross-dose to cell nuclei on type and energy of radiation and subcellular distribution of radionuclides. The Journal of Nuclear Medicine, 1994. 35(3). 14. Hall, E.J. and A.J. Giaccia, Radiobiology for the radiologist. Lippincottt Williams & Wilkins, 2011. Seventh Edition. 15. Hainfeld, J.F., et al., Radiotherapy enhancement with gold nanoparticles. Journal of Pharmacy and Pharmacology, 2008. 60(8). 16. Hainfeld, J.F., D.N. Slatkin, and H.M. Smilowitz, The use of gold nanoparticles to enhance radiotherapy in mice. Physics in Medicine and Biology, 2004. 49(18). 17. Chithrani, D.B., et al., Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res, 2010. 173(6). 18. Jain, S., et al., Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. International Journal of Radiation Oncology, Biology, Physics, 2011. 79(2). 19. Rahman, W.N., et al., Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomedicine: Nanotechnology, Biology and Medicine, 2009. 5(2). 20. Butterworth, K.T., et al., Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale, 2012. 4(16). 21. Butterworth, K.T., et al., Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: potential application for cancer therapy. Nanotechnology, 2010. 21(29). 22. Matsudaira, H., A.M. Ueno, and I. Furuno, Iodine contrast medium sensitizes cultured mammalian cells to X rays but not to γrays. Radiation Research, 1980. 84(144-148). 23. Liu, C.-J., et al., Enhanced X-ray irradiation-induced cancer cell damage by gold nanoparticles treated by a new synthesis method of polyethylene glycol modification. Nanotechnology, 2008. 19(29). 24. Brun, E., L. Sanche, and C. Sicard-Roselli, Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution. Colloids and Surfaces B: Biointerfaces, 2009. 72(1). 25. Cho, S.H., Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study. Physics in Medicine and Biology, 2005. 50(15). 26. McMahon, S.J., et al., Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Scientific Reports, 2011. 1: p. 18. 27. McMahon, S.J., et al., Radiotherapy in the presence of contrast agents: a general figure of merit and its application to gold nanoparticles. Physics in Medicine & Biology, 2008. 53(20). 28. Leung, M.K., et al., Irradiation of gold nanoparticles by X-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production. Medical Physics, 2011. 38(2). 29. Mesbahi, A., A review on gold nanoparticles radiosensitization effect in radiation therapy of cancer. Reports of Practical Oncology & Radiotherapy, 2010. 15(6). 30. Lin, Y., et al., Comparing gold nano-particle enhanced radiotherapy with protons, megavoltage photons and kilovoltage photons: a Monte Carlo simulation. Physics in Medicine and Biology, 2014. 59(24). 31. Douglass, M., E. Bezak, and S. Penfold, Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model. Medical Physics, 2013. 40(7). 32. Montenegro, M., et al., Monte Carlo simulations and atomic calculations for Auger processes in biomedical nanotheranostics. The Journal of Physical Chemistry A, 2009. 113(45): p. 12364-9. 33. Victoreen® 6000-529 mammographic ion chamber user manual. Fluke corporation biomedical, 2005. 34. Ionizing radiation detectors. PTW Freiburg, 2015. 35. Medical electrical equipment - Part 2-8: Particular requirements for basic safety and essential performance of therapeutic X-ray equipment operating in the range 10 kV to 1 MV. IEC 60601-2-8, 2010. Second Edition. 36. Medical electrical equipment - Part 2-8: Particular requirements for basic safety and essential performance of therapeutic X-ray equipment operating in the range 10 kV to 1 MV. SGS, 2012. SAF5103-IECEN60601-1-3B. 37. Kroese, D.P., et al., Why the Monte Carlo method is so important today. Wiley Interdisciplinary Reviews: Computational Statistics, 2014. 6(6). 38. Rogers, D.W.O. and A.F. Bielajew, Monte Carlo technique of electron and photon transport for radiation dosimetry. The Dosimetry of Ionization Radiation, 1990. 3(Chapter5). 39. Bernal, M.A. and J.A. Liendo, An investigation on the capabilities of the PENELOPE MC code in nanodosimetry. Medical Physics, 2009. 36(2). 40. Agostinelli, S., et al., Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A, 2003. 506(3). 41. Palmans, H., et al., Future development of biologically relevant dosimetry. The British Journal of Radiology, 2015. 88(1045). 42. Hill, R., et al., An evaluation of ionization chambers for the relative dosimetry of kilovoltage x-ray beams. Medical Physics, 2009. 36(9). 43. Sichani, B.T. and M. Sohrabpour, Monte Carlo dose calculations for radiotherapy machines: Theratron 780-C teletherapy case. Physics in Medicine and Biology, 2004. 49(5). 44. Mora, G.M., A. Maio, and D.W.O. Rogers, Monte Carlo simulation of a typical 60Co therapy source. Medical Physics, 1999. 26(11). 45. Cortes-Giraldo, M.A., et al., An implementation to read and write IAEA phase-space files in GEANT4-based simulations. International Journal of Radiation Biology, 2012. 88(1-2). 46. Cort´es-Giraldo, M.A., et al., Geant4 interface to work with IAEA phase-space files. 2009. 47. Bearden, J.A., X-ray wavelengths. Reviews of Modern Physics, 1967. 39(1). 48. Muir, B., et al., 60Co phase-space files generated using BEAMnrc. 2009. 49. Chofor, N., et al., Characterization of the radiation quality of 60Co therapy units by the fraction of air kerma attributable to scattered photons. Physics in Medicine and Biology, 2007. 52(7). 50. Khan, F.M., The physics of radiation therapy. Lippincott Williams & Wilkins, 2009. Fourth Edition. 51. Falzone, N., et al., Monte Carlo evaluation of Auger electron-emitting theranostic radionuclides. Journal of Nuclear Medicine, 2015. 56(9). 52. Howell, R.W., et al., MIRD cellular S values. Society of Nuclear Medicine and Molecular Imaging, 1997. 53. Minai, L., D. Yeheskely-Hayon, and D. Yelin, High levels of reactive oxygen species in gold nanoparticle-targeted cancer cells following femtosecond pulse irradiation. Scientific Reports, 2013. 3. 54. Abudurexiti, A., et al., Demonstration of iodine K-edge imaging by use of an energy-discrimination X-ray computed tomography system with a cadmium telluride detector. Radiological Physics and Technology, 2010. 3(2).
|