跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2025/01/16 15:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馮真如
研究生(外文):Chen-Ju Feng
論文名稱:使用自製假體驗證放射治療位移監測系統之準確性
論文名稱(外文):The accuracy test of displacement monitoring system in radiotherapy using homemade phantom
指導教授:許世明許世明引用關係
指導教授(外文):Shih-Ming Hsu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物醫學影像暨放射科學系
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:51
中文關鍵詞:放射治療呼吸調控品質保證形變式假體
外文關鍵詞:radiotherapyrespiratory managementquality assurance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
呼吸產生的腫瘤移動是放射治療需要考量到的問題之一。 在治療過程中搭配呼吸調控(respiratory management)技術可以有效改善治療部位的劑量給予分布,而定期實施品質保證(quality assurance, QA)作業可確保監測系統之運作準確性,在QA測試上需可以呈現移動模擬假體輔以驗證。商業化動態假體即包含肺部腫瘤移行與體表起伏,但由於固態(rigid)材質的使用,相較於真實肺部組織的移動模式仍有其限制。
本研究旨在發展出一套自製形變式移動假體(deformable motion phantom) 模擬人體呼吸情況,嘗試以二維馬達驅動方式達到體內腫瘤及體表收張變化。材料與方法會從結構設計、材質選用逐一分析,並介紹假體原形機及移動參數設定。現階段實驗著重在假體自身再現性(reproducibility)測試,包含橫膈與內部形變、胸腔肋骨開閉。另外也將此假體先行運用於兩種監測系統之定位準確性測試。最後就實驗結果討論假體可行性及其需要再改進之處,以及未來實驗發展運用。
The tumor displacement caused by respiratory motion is one of issue that should be concern in radiotherapy. Using respiratory management technique can improve the dose distribution of treatment site effectively. Performing the quality assurance (QA) regularly can keep the constancy of monitoring system accuracy, and a simulation phantom could help us doing the QA process. Some commercialized motion phantom can provide tumor simulation and external extension, but due to the using of rigid material, there still have restriction comparing to the realistic lung motion pattern.
The aim of this study is to develop a home-made deformable motion phantom for human respiratory simulation, trying to use 2-dimentinal (2D) motor driving to perform internal and external deformity. The materials and methods would include structure design, materials selection, and the introduction of prototype machine parameter setting. The present experiment would focus on the reproducibility test of home-made phantom, including internal deformation of diaphragm /tumor and chest rib extension. Also, we applied the phantom with clinical system to perform localization accuracy test. In the end, we would base on the result of each experiment to discuss the feasibility of phantom, and figure out the improvement for future work.
目錄
中文摘要..........i
Abstract..........ii
目錄..........iii
圖目錄..........vi
表目錄..........ix
第1章 緒論
1.1前言..........1
1.2 文獻回顧..........2
1.2.1 體內標記偵測..........6
1.2.2 體表偵測..........7
1.2.3 肺容積量測..........8
1.2.4 治療技術..........9
1.3 研究目的..........12
1.3.1 假體發展..........13
1.3.2 設備與技術應用..........15
1.4 研究架構..........16
第2章 材料與方法
2.1 假體概念..........17
2.1.1 假體材質..........19
2.1.2 原形機與參數操作介面..........22
2.2 假體再現性驗證..........22
2.2.1 內部動態測試..........22
2.2.2 胸腔驅動再現性..........23
2.3 臨床設備應用..........24
2.3.1 VisionRT®系統..........24
2.3.2 電子驗證成像裝置..........27
2.3.3 靜態準確度比較..........28
2.3.4 體表動態監測..........29
第3章 實驗討論
3.1 內部動態測試..........30
3.2 胸腔驅動再現性..........33
3.3 臨床設備準確性應用..........35
3.3.1 靜態準確性..........35
3.3.2 VisionRT®相異ROI 動態量測比較..........39
第4章 結論..........42
第5章 未來發展
5.1 內部形變分析..........44
5.2 體積流量驗證..........44
5.3 移動關聯性..........45
5.4 臨床劑量驗證..........46
參考文獻..........47

圖目錄
圖1.1.1 十大癌症死因死亡率--105年vs. 95年。..........1
圖1.2.1 ICRU 62號報告中對各個靶體積的定義關係。PTV為CTV考慮到體內邊緣(IM)及設定邊緣(SM)所涵蓋的範圍。..........3
圖1.2.2 吸氣過程中(a)橫膈收縮往下移動與(b)肋間肌收縮拉提肋骨以增加胸腔空間直徑。..........4
圖1.2.1.1 (a)金製植入標記物(直徑2mm),(b)標記於透視攝影定位系統下之顯示。..........6
圖1.2.2.1 (a)光學攝影方式、(b)體表呼吸振幅變化記錄。.......7
圖1.2.2.2 體表標記與體內腫瘤移動之時間比較,(a)無相位偏移、(b)具顯著性相位偏移。..........8
圖1.2.3.1 (a)使用肺量計(SDX®系統)之病人設置、(b)呼吸訊號記錄介面。..........9
圖1.2.4.1兩種柵控技術的概念圖示。(a)振幅柵控、(b)相位柵控。..........10
圖1.2.4.2 病人進行DIBH的呼吸曲線示意圖。深吸氣後屏氣容積變化如圖中的平坦部份呈現。..........11
圖1.2.4.3 分別使用(a)自由呼吸與(b)DIBH的矢狀切面CT。可以看到DIBH的腫瘤位置(白色輪廓)較自由呼吸時遠離脊髓的部份。.......11
圖1.3.1.1 可變形式肺部假體之變形示意圖,(a)吐氣相(b)吸氣相。..........14
圖1.3.1.2 加入外在體廓設計概念的形變式肺部假體。..........14
圖2.1.1 呼吸變化參考圖形。EI:吸氣終點、EE:吐氣終點。.....18
圖2.1.1.1 壓克力材質之模擬腫瘤。(a)直徑5 cm、(b) 直徑4 cm、(c) 直徑3 cm。..........21
圖2.2.1.1加上金屬標記線之模擬腫瘤。(a)直徑5 cm、(b) 直徑4 cm、(c) 直徑3 cm。..........23
圖2.3.1.1 VisionRT®於治療室內的安裝位置。(a)床板左右兩側、(b)床板上方。..........25
圖2.3.1.2 VisionRT® 操作介面。黃框處之紅色量表顯示該方向移動量超過系統設置移動範圍。..........26
圖2.3.1.3 VisionRT®每日品保用之校正板。..........26
圖2.3.2.1 (a)EPID於治療機器的安裝位置、(b)近觀。..........27
圖3.1.1 (a)腫瘤中心及(b)腫瘤下緣之移動量與橫膈吐氣相移動對應。..........31
圖3.1.2 腫瘤中心與下緣對應橫膈吐氣相移動量。..........32
圖3.2.1三組肋骨對應各馬達參數之移動量。..........34
圖3.3.1.1 兩系統量測修正值與實驗點的對應。..........36
圖3.3.1.2 兩系統量測值與實驗預測值之誤差分布趨勢。.........37
圖3.3.1.3 目標偏離影像中心之投影扭曲現象。..........38
圖3.3.2.1 各ROI量測振幅對時間分布圖形。(a) ROI-A / ROI-B / ROI-C、(b) ROI-A / ROI-U / ROI-M / ROI-L。..........41
圖5.2.1 體積再現分析示意圖。(a)吸氣相、(b)吐氣相。........44
圖5.4.1 臨床劑量驗證搭配調控技術概念示意圖。..........46

表目錄
表1.2.1 肺部腫瘤移動研究統計資料 (單位:mm) 。..........5
表1.3.1 與定位設備相關之品保報告。..........12
表2.1.1 各年齡層與性別平均胸廓移動量。..........18
表2.1.1.1 各假體模擬部位特性與材質。..........19
表2.1.1.2 常見人體組織CT值範圍對照。..........20
表2.1.1.3 實驗備選材料之CT值。..........20
表3.1.1 橫膈伸縮設定與各量測點之實際位移對應。..........32
表3.2.1 胸腔開閉設定與各量測點之實際位移對應(LR分量)。.....34
表3.3.2.1各ROI之量測最大振幅值、最小振幅值與對應框架速度。..........40
表5.3.1 呼吸訊號與腫瘤移動之關聯性研究整理。..........45
1. 衛福部統計處, 105年死因統計結果分析.
2. Journal of ICRU. Report 62 Prescribing, Recording and Reporting Photon Beam Therapy (Supplement to ICRU Report 50) 1999, Figure 2.16 from p.16.
3. J. B. West, Respiratory Physiology: The Essentials, Figures 3a,3b.
4. Barnes E.A. et al. Dosimetric evaluation of lung tumor immobilization using breath hold at deep inspiration. Int J Radiat Oncol Biol Phys, 2001. 50(4): p. 1091-1098.
5. Report of AAPM TG-76. The Management of Respiratory Motion in Radiation Oncology. 2006.
6. Harada T. et al. Real-time tumor-tracking radiation therapy for lung carcinoma by the aid of insertion of a gold marker using bronchofiberscopy. Cancer, 2002. 95(8): p. 1720-7.
7. Litzenberg D.W. et al. Positional stability of electromagnetic transponders used for prostate localization and continuous, real-time tracking. Int J Radiat Oncol Biol Phys, 2007. 68(4): p. 1199-1206.
8. Lu W. et al. Comparison of spirometry and abdominal height as four-dimensional computed tomography metrics in lung. Med Phys, 2005. 32(7): p. 2351-2357.
9. Ramsey C.R. et al. Clinical experience with a commercial respiratory gating system. Int J Radiat Oncol Biol Phys, 2000. 48(3): p. 164-165.
10. Simon L. et al. Lung volume assessment for a cross-comparison of two breathing-adapted techniques in radiotherapy. Int J Radiat Oncol Biol Phys, 2005. 63(2): p. 602-9.
11. Vedam S.S. et al. Determining parameters for respiration-gated radiotherapy. Med Phys, 2001. 28(10): p. 2139-46.
12. Mageras G.S. et al. Deep inspiration breath hold and respiratory gating strategies for reducing organ motion in radiation treatment. Semin Radiat Oncol, 2004. 14(1): p. 65-75.
13. Zhang T. et al. Application of the spirometer in respiratory gated radiotherapy. Med Phys, 2003. 30(12): p. 3165-71.
14. Serban M. et al. A deformable phantom for 4D radiotherapy verification: design and image registration evaluation. Med Phys, 2008. 35(3): p. 1094-102.
15. Kim J. et al. Development of deformable moving lung phantom to simulate respiratory motion in radiotherapy. Med Dosim, 2016. 41(2): p. 113-7.
16. Moll J.M. et al. An objective clinical study of chest expansion. Ann Rheum Dis, 1972. 31(1): p. 1-8.
17. Conway B.J. et al. A patient-equivalent attenuation phantom for estimating patient exposures from automatic exposure controlled x-ray examinations of the abdomen and lumbo-sacral spine. Med Phys, 1990. 17(3): p. 448-53.
18. Brown D. OSP User's Guide Chapter 16: Tracker. In Open Source Physics: A User's Guide with Examples, 2017.
19. Seppenwoolde Y. et al. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys, 2002. 53(4): p. 822-834.
20. Ehrbar S. et al. Respiratory motion-management in stereotactic body radiation therapy for lung cancer - A dosimetric comparison in an anthropomorphic lung phantom (LuCa). Radiother Oncol, 2016. 121(2): p. 328-334.
21. Shirato H. et al. Real-time tumour-tracking radiotherapy. The Lancet, 1999. 353(9161): p. 1331-1332.
22. Schweikard A. et al. Respiration tracking in radiosurgery. Med Phys, 2004. 31(10): p. 2738-41.
23. van Herk M. Errors and margins in radiotherapy. Semin Radiat Oncol, 2004. 14(1): p. 52-64.
24. Li X.A. et al. Technical and dosimetric aspects of respiratory gating using a pressure-sensor motion monitoring system. Med Phys, 2006. 33(1): p. 145-54.
25. Lu W. et al. A comparison between amplitude sorting and phase-angle sorting using external respiratory measurement for 4D CT. Med Phys, 2006. 33(8): p. 2964-74.
26. Nioutsikou E. et al. Quantifying the effect of respiratory motion on lung tumour dosimetry with the aid of a breathing phantom with deforming lungs. Phys Med Biol, 2006. 51(14): p. 3359-74.
27. Kashani R. et al. Technical note: a deformable phantom for dynamic modeling in radiation therapy. Med Phys, 2007. 34(1): p. 199-201.
28. Jin J.Y. et al. Use of the BrainLAB ExacTrac X-Ray 6D system in image-guided radiotherapy. Med Dosim, 2008. 33(2): p. 124-34.
29. Baba F. et al. Stereotactic body radiotherapy for stage I lung cancer and small lung metastasis: evaluation of an immobilization system for suppression of respiratory tumor movement and preliminary results. Radiat Oncol, 2009. 4: p. 15.
30. Chang J. et al. Development of deformable moving lung phantom to simulate respiratory motion in radiotherapy. J Appl Clin Med Phys, 2010. 11(1): p. 281-286.
31. Court L.E. et al. Use of a realistic breathing lung phantom to evaluate dose delivery errorsa. Med Phys, 2010. 37(11): p. 5850-5857.
32. Deantonio L. et al. Detection of setup uncertainties with 3D surface registration system for conformal radiotherapy of breast cancer. Rep Pract Oncol Radiother, 2011. 16(3): p. 77-81.
33. Glide-Hurst C.K. et al. Coupling surface cameras with on-board fluoroscopy: a feasibility study. Med Phys, 2011. 38(6): p. 2937-47.
34. Spadea M.F. et al. Evaluation and commissioning of a surface based system for respiratory sensing in 4D CT. J Appl Clin Med Phys, 2011. 12(1): p. 162-169.
35. Steidl P. et al. A breathing thorax phantom with independently programmable 6D tumour motion for dosimetric measurements in radiation therapy. Phys Med Biol, 2012. 57(8): p. 2235-50.
36. Willoughby T. et al. Quality assurance for nonradiographic radiotherapy localization and positioning systems: Report of Task Group 147. Med Phys, 2012. 39(4): p. 1728-1747.
37. Cheung Y. et al. An externally and internally deformable, programmable lung motion phantom. Med Phys, 2015. 42(5): p. 2585-93.
38. Perrin R.L. et al. An anthropomorphic breathing phantom of the thorax for testing new motion mitigation techniques for pencil beam scanning proton therapy. Phys Med Biol, 2017. 62(6): p. 2486-2504.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊