|
1. 衛福部統計處, 105年死因統計結果分析. 2. Journal of ICRU. Report 62 Prescribing, Recording and Reporting Photon Beam Therapy (Supplement to ICRU Report 50) 1999, Figure 2.16 from p.16. 3. J. B. West, Respiratory Physiology: The Essentials, Figures 3a,3b. 4. Barnes E.A. et al. Dosimetric evaluation of lung tumor immobilization using breath hold at deep inspiration. Int J Radiat Oncol Biol Phys, 2001. 50(4): p. 1091-1098. 5. Report of AAPM TG-76. The Management of Respiratory Motion in Radiation Oncology. 2006. 6. Harada T. et al. Real-time tumor-tracking radiation therapy for lung carcinoma by the aid of insertion of a gold marker using bronchofiberscopy. Cancer, 2002. 95(8): p. 1720-7. 7. Litzenberg D.W. et al. Positional stability of electromagnetic transponders used for prostate localization and continuous, real-time tracking. Int J Radiat Oncol Biol Phys, 2007. 68(4): p. 1199-1206. 8. Lu W. et al. Comparison of spirometry and abdominal height as four-dimensional computed tomography metrics in lung. Med Phys, 2005. 32(7): p. 2351-2357. 9. Ramsey C.R. et al. Clinical experience with a commercial respiratory gating system. Int J Radiat Oncol Biol Phys, 2000. 48(3): p. 164-165. 10. Simon L. et al. Lung volume assessment for a cross-comparison of two breathing-adapted techniques in radiotherapy. Int J Radiat Oncol Biol Phys, 2005. 63(2): p. 602-9. 11. Vedam S.S. et al. Determining parameters for respiration-gated radiotherapy. Med Phys, 2001. 28(10): p. 2139-46. 12. Mageras G.S. et al. Deep inspiration breath hold and respiratory gating strategies for reducing organ motion in radiation treatment. Semin Radiat Oncol, 2004. 14(1): p. 65-75. 13. Zhang T. et al. Application of the spirometer in respiratory gated radiotherapy. Med Phys, 2003. 30(12): p. 3165-71. 14. Serban M. et al. A deformable phantom for 4D radiotherapy verification: design and image registration evaluation. Med Phys, 2008. 35(3): p. 1094-102. 15. Kim J. et al. Development of deformable moving lung phantom to simulate respiratory motion in radiotherapy. Med Dosim, 2016. 41(2): p. 113-7. 16. Moll J.M. et al. An objective clinical study of chest expansion. Ann Rheum Dis, 1972. 31(1): p. 1-8. 17. Conway B.J. et al. A patient-equivalent attenuation phantom for estimating patient exposures from automatic exposure controlled x-ray examinations of the abdomen and lumbo-sacral spine. Med Phys, 1990. 17(3): p. 448-53. 18. Brown D. OSP User's Guide Chapter 16: Tracker. In Open Source Physics: A User's Guide with Examples, 2017. 19. Seppenwoolde Y. et al. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys, 2002. 53(4): p. 822-834. 20. Ehrbar S. et al. Respiratory motion-management in stereotactic body radiation therapy for lung cancer - A dosimetric comparison in an anthropomorphic lung phantom (LuCa). Radiother Oncol, 2016. 121(2): p. 328-334. 21. Shirato H. et al. Real-time tumour-tracking radiotherapy. The Lancet, 1999. 353(9161): p. 1331-1332. 22. Schweikard A. et al. Respiration tracking in radiosurgery. Med Phys, 2004. 31(10): p. 2738-41. 23. van Herk M. Errors and margins in radiotherapy. Semin Radiat Oncol, 2004. 14(1): p. 52-64. 24. Li X.A. et al. Technical and dosimetric aspects of respiratory gating using a pressure-sensor motion monitoring system. Med Phys, 2006. 33(1): p. 145-54. 25. Lu W. et al. A comparison between amplitude sorting and phase-angle sorting using external respiratory measurement for 4D CT. Med Phys, 2006. 33(8): p. 2964-74. 26. Nioutsikou E. et al. Quantifying the effect of respiratory motion on lung tumour dosimetry with the aid of a breathing phantom with deforming lungs. Phys Med Biol, 2006. 51(14): p. 3359-74. 27. Kashani R. et al. Technical note: a deformable phantom for dynamic modeling in radiation therapy. Med Phys, 2007. 34(1): p. 199-201. 28. Jin J.Y. et al. Use of the BrainLAB ExacTrac X-Ray 6D system in image-guided radiotherapy. Med Dosim, 2008. 33(2): p. 124-34. 29. Baba F. et al. Stereotactic body radiotherapy for stage I lung cancer and small lung metastasis: evaluation of an immobilization system for suppression of respiratory tumor movement and preliminary results. Radiat Oncol, 2009. 4: p. 15. 30. Chang J. et al. Development of deformable moving lung phantom to simulate respiratory motion in radiotherapy. J Appl Clin Med Phys, 2010. 11(1): p. 281-286. 31. Court L.E. et al. Use of a realistic breathing lung phantom to evaluate dose delivery errorsa. Med Phys, 2010. 37(11): p. 5850-5857. 32. Deantonio L. et al. Detection of setup uncertainties with 3D surface registration system for conformal radiotherapy of breast cancer. Rep Pract Oncol Radiother, 2011. 16(3): p. 77-81. 33. Glide-Hurst C.K. et al. Coupling surface cameras with on-board fluoroscopy: a feasibility study. Med Phys, 2011. 38(6): p. 2937-47. 34. Spadea M.F. et al. Evaluation and commissioning of a surface based system for respiratory sensing in 4D CT. J Appl Clin Med Phys, 2011. 12(1): p. 162-169. 35. Steidl P. et al. A breathing thorax phantom with independently programmable 6D tumour motion for dosimetric measurements in radiation therapy. Phys Med Biol, 2012. 57(8): p. 2235-50. 36. Willoughby T. et al. Quality assurance for nonradiographic radiotherapy localization and positioning systems: Report of Task Group 147. Med Phys, 2012. 39(4): p. 1728-1747. 37. Cheung Y. et al. An externally and internally deformable, programmable lung motion phantom. Med Phys, 2015. 42(5): p. 2585-93. 38. Perrin R.L. et al. An anthropomorphic breathing phantom of the thorax for testing new motion mitigation techniques for pencil beam scanning proton therapy. Phys Med Biol, 2017. 62(6): p. 2486-2504.
|