跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/13 10:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳陶陶
研究生(外文):Tao-Tao Chen
論文名稱:低強度脈衝式超音波減緩脂多醣誘導神經發炎及記憶功能障礙
論文名稱(外文):Low-intensity pulsed ultrasound alleviates neuroinflammation and memory impairments induced by lipopolysaccharide
指導教授:楊逢羿楊逢羿引用關係
指導教授(外文):Feng-Yi Yang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物醫學影像暨放射科學系
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:75
中文關鍵詞:低強度脈衝式超音波腦源性生長因子神經發炎記憶損傷阿茲海默症
外文關鍵詞:low-intensity pulsed ultrasoundbrain-derived neurotrophic factorneuroinflammationmemory impairmentAlzheimer's disease
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
神經發炎在於神經病變疾病中的病因學和病情發展扮演著重要角色,例如,阿茲海默症。腦源性神經滋養因子(Brain-derived neurotrophic factor, BDNF)為中樞神經系統中分布最廣泛之滋養因子,對於神經元細胞存活與突觸的可塑性扮演著重要的角色。此研究目的是探討利用低強度脈衝超音波(low-intensity pulsed ultrasound, LIPUS)對脂多醣(Lipopolysaccharide, LPS)誘導的神經發炎以及記憶損傷模擬的阿茲海默症模型中的神經保護效果。
在細胞實驗中,我們利用LIPUS刺激星狀膠細胞,星狀膠細胞增加細胞的存活率並且增加了BDNF的表現量;而且,LIPUS可以緩解因Aβ(amyloid β)刺激後引起的星狀膠細胞的死亡。在動物實驗中,在水迷宮實驗結果顯示給予LPS造成神經發炎的小鼠停留在目標區域的時間小於健康小鼠,而使用LIPUS治療後顯著增加其停留在目標區域的滯留時間。此外;在物件辨識的行為實驗中,LIPUS治療組別的表現亦優於未治療的LPS組。此外,蛋白質分析的結果顯示,經LIPUS治療後能顯著減緩海馬迴及皮質的區域中的發炎因子(TNF-α,IL-1β和IL-6),可知LIPUS具有減緩神經發炎的功能。
綜合以上結果,我們發現LIPUS能夠減緩因脂多醣所造成的記憶缺損並且透過抑制神經發炎與BDNF的減損,並且可減少類澱粉蛋白的沉積。因此,LIPUS刺激對於如阿茲海默症等之神經退化性疾病提供一項具有潛力的治療方法。
Neuroinflammation has been known to play a critical role in the etiology and progression of several neurodegenerative disorders, such as Alzheimer’s disease (AD). Brain-derived neurotrophic factor (BDNF), the most prevalent neurotrophin in the central nervous system (CNS), plays a key role in neuronal survival and synaptic plasticity. The aim of this study was to investigate the protective role of low-intensity pulsed ultrasound (LIPUS) against lipopolysaccharide (LPS)-induced neuroinflammation and memory impairments in a simulation to AD.
In in vitro experiment, we used LIPUS to stimulate the astrocytes. LIPUS increased the cell viability and BDNF expression. Moreover, the death of astrocytes induced by Aβ can be alleviated following LIPUS stimulation. In in vivo experiment, our data illustrates that mice in LPS group spent less time in the target quadrant than the sham group. LPS plus LIPUS-treated mice exhibited a significant increase in the average time spent in the target quadrant compared to the LPS-treated group. Furthermore, LPS plus LIPUS-treated mice revealed a preference for the novel object compared to the LPS-treated group. In addition, the levels of proinflammatory cytokines (TNF-, IL-1β, and IL-6) in the hippocampus or cortex regions of LPS-treated mice were significantly decreased following LIPUS treatment, suggesting the finding that LIPUS is a promising tool which has the property to attenuate neuroinflammation.
In summary, our results showed that LIPUS attenuated LPS-induced memory impairment as well as amyloidogenesis via suppression of neuroinflammatory activity and BDNF decline. Thus, LIPUS stimulation might be a useful intervention for neuroinflammation-associated Alzheimer’s disease.
致謝 I
中文摘要 II
ABSTRACT IV
目錄 VI
圖目錄 VIII
表目錄 IX
縮寫表 X
第一章緒論 1
1.1 神經發炎反應 1
1.2 脂多醣(LPS) 2
1.3 阿茲海默症 3
1.4 星狀膠質細胞 4
1.5 腦源性神經滋養因子 6
1.6 超音波的運用 7
1.7 研究動機與目的 9
第二章 實驗材料與方法 10
2.1 實驗藥品來源 10
2.2 細胞實驗 12
2.2.1 實驗細胞來源 12
2.2.2 實驗溶液配製 12
2.2.3 細胞解凍 13
2.2.4 細胞培養 14
2.2.5 繼代培養 14
2.2.6 冷凍細胞 14
2.2.7 細胞實驗流程 15
2.2.8 細胞實驗分組 16
2.3 細胞增殖分析 16
2.4 動物實驗 17
2.4.1 實驗動物來源 17
2.4.2 動物實驗流程 17
2.4.3 動物實驗與分組 18
2.5 動物行為實驗 19
2.5.1 水迷宮實驗 19
2.5.2 物件辨識 20
2.6 超音波實驗設備 20
2.6.1 平面脈衝式超音波設備 20
2.6.2 聚焦脈衝式超音波設備 21
2.6.3 超音波參數設定 22
2.7 蛋白質萃取 23
2.8 西方墨點法(Wetern Bolt) 24
2.8.1 實驗溶液配置 24
2.8.2 蛋白質定量 24
2.8.3 電泳膠製備與分析 25
2.8.4 轉印 26
2.8.5 目標物與抗體結合 26
2.9 統計方法 28
第三章 實驗結果 29
3.1 脈衝式超音波增加細胞內神經滋養因子表現量 29
3.2 A對於細胞的影響 31
3.3 脈衝式超音波減少A對細胞產生的毒殺性 33
3.4 脈衝式超音波對老鼠體重變化的影響 35
3.5 水迷宮測試學習及記憶能力 36
3.6 物件辨識行為測試認知能力 41
3.7 脈衝式超音波對類澱粉蛋白沉積的影響 42
3.8 脈衝式超音波對腦內神經膠質細胞的影響 46
3.9 脈衝式超音波影響腦內神經發炎因子 49
3.10 脈衝式超音波影響腦內神經發炎反應 52
3.11 脈衝式超音波影響動物神經滋養因子表現量 55
3.12 脈衝式超音波對BDNF晚期的影響 58
第四章 討論 60
4.1 脈衝式超音波降低A細胞毒性 60
4.2 脈衝式超音波改善動物行為模式 61
4.3 脈衝式超音波對於BDNF的刺激 63
4.4 神經膠質細胞的探討 65
4.5 脈衝式超音波對於發炎因子的影響 67
第五章 結論與未來展望 68
文獻參考 70
Ransohoff, R.M. and M.A. Brown, Innate immunity in the central nervous system. J Clin Invest, 2012. 122(4): p. 1164-71.
2. Glass, C.K., et al., Mechanisms underlying inflammation in neurodegeneration. Cell, 2010. 140(6): p. 918-34.
3. Martorana, F., et al., Withaferin A Inhibits Nuclear Factor-kappaB-Dependent Pro-Inflammatory and Stress Response Pathways in the Astrocytes. Neural Plast, 2015. 2015: p. 381964.
4. Pardon, M.C., Lipopolysaccharide hyporesponsiveness: protective or damaging response to the brain? Rom J Morphol Embryol, 2015. 56(3): p. 903-13.
5. Erridge, C., E. Bennett-Guerrero, and I.R. Poxton, Structure and function of lipopolysaccharides. Microbes Infect, 2002. 4(8): p. 837-51.
6. Wilson, J.W., et al., Mechanisms of bacterial pathogenicity. Postgrad Med J, 2002. 78(918): p. 216-24.
7. Bhatia, H.S., et al., Rice bran derivatives alleviate microglia activation: possible involvement of MAPK pathway. J Neuroinflammation, 2016. 13(1): p. 148.
8. Behairi, N., et al., All-trans retinoic acid (ATRA) prevents lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment in aged rats. J Neuroimmunol, 2016. 300: p. 21-29.
9. Buckwalter, M.S. and T. Wyss-Coray, Modelling neuroinflammatory phenotypes in vivo. J Neuroinflammation, 2004. 1(1): p. 10.
10. Nazem, A., et al., Rodent models of neuroinflammation for Alzheimer's disease. J Neuroinflammation, 2015. 12: p. 74.
11. van der Vorm, A., et al., Ethical aspects of research into Alzheimer disease. A European Delphi Study focused on genetic and non-genetic research. J Med Ethics, 2009. 35(2): p. 140-4.
12. Kokiko-Cochran, O., et al., Altered Neuroinflammation and Behavior after Traumatic Brain Injury in a Mouse Model of Alzheimer's Disease. J Neurotrauma, 2016. 33(7): p. 625-40.
13. Mayeux, R. and Y. Stern, Epidemiology of Alzheimer disease. Cold Spring Harb Perspect Med, 2012. 2(8).
14. Andreeva, T.V., W.J. Lukiw, and E.I. Rogaev, Biological Basis for Amyloidogenesis in Alzheimer's Disease. Biochemistry (Mosc), 2017. 82(2): p. 122-139.
15. Hou, L., et al., The effects of amyloid-beta42 oligomer on the proliferation and activation of astrocytes in vitro. In Vitro Cell Dev Biol Anim, 2011. 47(8): p. 573-80.
16. Salomone, S., et al., New pharmacological strategies for treatment of Alzheimer's disease: focus on disease modifying drugs. Br J Clin Pharmacol, 2012. 73(4): p. 504-17.
17. Brambilla, L., F. Martorana, and D. Rossi, Astrocyte signaling and neurodegeneration: new insights into CNS disorders. Prion, 2013. 7(1): p. 28-36.
18. Tower, D.B. and O.M. Young, The activities of butyrylcholinesterase and carbonic anhydrase, the rate of anaerobic glycolysis, and the question of a constant density of glial cells in cerebral cortices of various mammalian species from mouse to whale. J Neurochem, 1973. 20(2): p. 269-78.
19. Morales, I., et al., Neuroinflammation in the pathogenesis of Alzheimer's disease. A rational framework for the search of novel therapeutic approaches. Front Cell Neurosci, 2014. 8: p. 112.
20. Ben Haim, L., et al., Elusive roles for reactive astrocytes in neurodegenerative diseases. Front Cell Neurosci, 2015. 9: p. 278.
21. Kimura, N., et al., Astroglial responses against Abeta initially occur in cerebral primary cortical cultures: species differences between rat and cynomolgus monkey. Neurosci Res, 2004. 49(3): p. 339-46.
22. Lu, L., et al., Oxidative stress on the astrocytes in culture derived from a senescence accelerated mouse strain. Neurochem Int, 2008. 52(1-2): p. 282-9.
23. van Gijsel-Bonnello, M., et al., Metabolic changes and inflammation in cultured astrocytes from the 5xFAD mouse model of Alzheimer's disease: Alleviation by pantethine. PLoS One, 2017. 12(4): p. e0175369.
24. Binder, D.K. and H.E. Scharfman, Brain-derived neurotrophic factor. Growth Factors, 2004. 22(3): p. 123-31.
25. Manji, H.K. and R.S. Duman, Impairments of neuroplasticity and cellular resilience in severe mood disorders: implications for the development of novel therapeutics. Psychopharmacol Bull, 2001. 35(2): p. 5-49.
26. Kazanis, I., et al., Alterations in IGF-I, BDNF and NT-3 levels following experimental brain trauma and the effect of IGF-I administration. Exp Neurol, 2004. 186(2): p. 221-34.
27. Lukiw, W.J. and E.I. Rogaev, Genetics of Aggression in Alzheimer's Disease (AD). Front Aging Neurosci, 2017. 9: p. 87.
28. Thornton, E., et al., Soluble amyloid precursor protein alpha reduces neuronal injury and improves functional outcome following diffuse traumatic brain injury in rats. Brain Res, 2006. 1094(1): p. 38-46.
29. Sleiman, S.F., et al., Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body beta-hydroxybutyrate. Elife, 2016. 5.
30. Berchtold, N.C., et al., Exercise primes a molecular memory for brain-derived neurotrophic factor protein induction in the rat hippocampus. Neuroscience, 2005. 133(3): p. 853-61.
31. Kim, Y.S., et al., High-intensity focused ultrasound therapy: an overview for radiologists. Korean J Radiol, 2008. 9(4): p. 291-302.
32. Pron, G., Magnetic Resonance-Guided High-Intensity Focused Ultrasound (MRgHIFU) Treatment of Symptomatic Uterine Fibroids: An Evidence-Based Analysis. Ont Health Technol Assess Ser, 2015. 15(4): p. 1-86.
33. Su, W.S., et al., Controllable permeability of blood-brain barrier and reduced brain injury through low-intensity pulsed ultrasound stimulation. Oncotarget, 2015. 6(39): p. 42290-9.
34. Salem, K.H. and A. Schmelz, Low-intensity pulsed ultrasound shortens the treatment time in tibial distraction osteogenesis. Int Orthop, 2014. 38(7): p. 1477-82.
35. Manaka, S., et al., Low-intensity pulsed ultrasound-induced ATP increases bone formation via the P2X7 receptor in osteoblast-like MC3T3-E1 cells. FEBS Lett, 2015. 589(3): p. 310-8.
36. Zhao, X., et al., Low-intensity pulsed ultrasound (LIPUS) prevents periprosthetic inflammatory loosening through FBXL2-TRAF6 ubiquitination pathway. Sci Rep, 2017. 7: p. 45779.
37. Nagao, M., et al., LIPUS suppressed LPS-induced IL-1alpha through the inhibition of NF-kappaB nuclear translocation via AT1-PLCbeta pathway in MC3T3-E1 cells. J Cell Physiol, 2017.
38. Teo, A., et al., Enhancement of Cardiomyogenesis in Murine Stem Cells by Low-Intensity Ultrasound. J Ultrasound Med, 2017.
39. Zhang, L., et al., Curcumin Improves Amyloid beta-Peptide (1-42) Induced Spatial Memory Deficits through BDNF-ERK Signaling Pathway. PLoS One, 2015. 10(6): p. e0131525.
40. McDannold, N., et al., MRI-guided targeted blood-brain barrier disruption with focused ultrasound: histological findings in rabbits. Ultrasound Med Biol, 2005. 31(11): p. 1527-37.
41. Leinenga, G. and J. Gotz, Scanning ultrasound removes amyloid-beta and restores memory in an Alzheimer's disease mouse model. Sci Transl Med, 2015. 7(278): p. 278ra33.
42. Liu, S.H., et al., Ultrasound Enhances the Expression of Brain-Derived Neurotrophic Factor in Astrocyte Through Activation of TrkB-Akt and Calcium-CaMK Signaling Pathways. Cereb Cortex, 2017. 27(6): p. 3152-3160.
43. Singh, K.K., et al., Developmental axon pruning mediated by BDNF-p75NTR-dependent axon degeneration. Nat Neurosci, 2008. 11(6): p. 649-58.
44. de la Tremblaye, P.B., et al., CRHR1 exacerbates the glial inflammatory response and alters BDNF/TrkB/pCREB signaling in a rat model of global cerebral ischemia: implications for neuroprotection and cognitive recovery. Prog Neuropsychopharmacol Biol Psychiatry, 2017.
45. Maiti, P. and G.L. Dunbar, Comparative Neuroprotective Effects of Dietary Curcumin and Solid Lipid Curcumin Particles in Cultured Mouse Neuroblastoma Cells after Exposure to Abeta42. Int J Alzheimers Dis, 2017. 2017: p. 4164872.
46. Aguirre-Rueda, D., et al., WIN 55,212-2, agonist of cannabinoid receptors, prevents amyloid beta1-42 effects on astrocytes in primary culture. PLoS One, 2015. 10(4): p. e0122843.
47. Song, X., et al., Protective Effect of Silibinin on Learning and Memory Impairment in LPS-Treated Rats via ROS-BDNF-TrkB Pathway. Neurochem Res, 2016. 41(7): p. 1662-72.
48. Ali, M.R., et al., Tempol and perindopril protect against lipopolysaccharide-induced cognition impairment and amyloidogenesis by modulating brain-derived neurotropic factor, neuroinflammation and oxido-nitrosative stress. Naunyn Schmiedebergs Arch Pharmacol, 2016. 389(6): p. 637-56.
49. Goel, R., et al., Angiotensin II Receptor Blockers Attenuate Lipopolysaccharide-Induced Memory Impairment by Modulation of NF-kappaB-Mediated BDNF/CREB Expression and Apoptosis in Spontaneously Hypertensive Rats. Mol Neurobiol, 2017.
50. Ennaceur, A., One-trial object recognition in rats and mice: methodological and theoretical issues. Behav Brain Res, 2010. 215(2): p. 244-54.
51. Silvers, J.M., et al., Automation of the novel object recognition task for use in adolescent rats. J Neurosci Methods, 2007. 166(1): p. 99-103.
52. Kroll, R.A. and E.A. Neuwelt, Outwitting the blood-brain barrier for therapeutic purposes: osmotic opening and other means. Neurosurgery, 1998. 42(5): p. 1083-99; discussion 1099-100.
53. Sakane, T. and W.M. Pardridge, Carboxyl-directed pegylation of brain-derived neurotrophic factor markedly reduces systemic clearance with minimal loss of biologic activity. Pharm Res, 1997. 14(8): p. 1085-91.
54. Brightwell, J.J., et al., Long-term memory for place learning is facilitated by expression of cAMP response element-binding protein in the dorsal hippocampus. Learn Mem, 2007. 14(3): p. 195-9.
55. Silva, A.J., et al., CREB and memory. Annu Rev Neurosci, 1998. 21: p. 127-48.
56. Liddelow, S.A., et al., Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017. 541(7638): p. 481-487.
57. Liberto, C.M., et al., Pro-regenerative properties of cytokine-activated astrocytes. J Neurochem, 2004. 89(5): p. 1092-100.
58. Prat, A., et al., Glial cell influence on the human blood-brain barrier. Glia, 2001. 36(2): p. 145-55.
59. Carson, M.J., et al., CNS immune privilege: hiding in plain sight. Immunol Rev, 2006. 213: p. 48-65.
60. Sears, H.C., C.J. Kennedy, and P.A. Garrity, Macrophage-mediated corpse engulfment is required for normal Drosophila CNS morphogenesis. Development, 2003. 130(15): p. 3557-65.
61. Carson, M.J., J.C. Thrash, and B. Walter, The cellular response in neuroinflammation: The role of leukocytes, microglia and astrocytes in neuronal death and survival. Clin Neurosci Res, 2006. 6(5): p. 237-245.
62. Lehnardt, S., et al., Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci U S A, 2003. 100(14): p. 8514-9.
63. Rivest, S., Regulation of innate immune responses in the brain. Nat Rev Immunol, 2009. 9(6): p. 429-39.
64. Mizuno, T., et al., Production of interleukin-10 by mouse glial cells in culture. Biochem Biophys Res Commun, 1994. 205(3): p. 1907-15.
65. Block, M.L., L. Zecca, and J.S. Hong, Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci, 2007. 8(1): p. 57-69.
66. Alboni, S., et al., Interleukin 18 in the CNS. J Neuroinflammation, 2010. 7: p. 9.
67. Shaftel, S.S., W.S. Griffin, and M.K. O'Banion, The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. J Neuroinflammation, 2008. 5: p. 7.
68. Shaftel, S.S., et al., Sustained hippocampal IL-1 beta overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology. J Clin Invest, 2007. 117(6): p. 1595-604.
69. Liu, B., et al., Molecular consequences of activated microglia in the brain: overactivation induces apoptosis. J Neurochem, 2001. 77(1): p. 182-9.
70. Krstic, D. and I. Knuesel, Deciphering the mechanism underlying late-onset Alzheimer disease. Nat Rev Neurol, 2013. 9(1): p. 25-34.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊