|
Bertolacinia, C.D.P. et al. Clinical findings in patients with GLI2 mutations – phenotypic variability. Clinical Genetics 81, 70–75 (2012).
Chuang, P.-T. & McMahon, A.P. Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein. Nature 397, 617-621 (1999).
Doudna, J.A. & Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).
Feather, S.A., Winyard, P.J.D., Dodd, S. & A. S. Woolf2. Oral-facial-digital syndrome type 1 is another dominant polycystic kidney disease: clinical, radiological and histopathological features of a new kindred. Nephrol Dial Transplant 12, 1354-1361 (1997).
Gibbons, IR. The relationship between the fine structure and direction of beat in gill cilia of a lamellibranch mollusc. J Biophys Biochem Cytol. 11, 179–205 (1961).
Gabriel, E. et al. CPAP promotes timely cilium disassembly to maintain neural progenitor pool. The EMBO Journal 35, 803-819 (2016).
Goto, H., Inoko, A. & Inagaki, M. Cell cycle progression by the repression of primary cilia formation in proliferating cells. Cellular and Molecular Life Sciences 70, 3893–3905 (2013).
Heyne, G.W. et al. Gli2 gene-environment interactions contribute to the etiological complexity of holoprosencephaly: evidence from a mouse model. Disease Models & Mechanisms 9, 1307-1315 (2016).
Hsiao, Y.-C., Tuz, K. & Ferland, R.J. Trafficking in and to the primary cilium. Cilia 1:4 (2012).
Izawa, I., Goto, H., Kasahara, K. & Inagaki, M. Current topics of functional links between primary cilia and cell cycle.Cilia 4:12 (2015).
Jimenez-Sanchez, M. et al. The Hedgehog signalling pathway regulates autophagy. Nature communication 3:1200 (2012).
Kobayashi, T. & Dynlacht, B.D. Regulating the transition from centriole to basal body. J. Cell Biol. 193, .435-444 (2011).
Kim, S. & Tsiokas, L. Cilia and cell cycle re-entry: More than a coincidence. Cell Cycle 10, 2683-2690 (2011).
Kim, S. et al. Nde1-mediated inhibition of ciliogenesis affects cell cycle re-entry. Nature Cell Biology 13, 351-360 (2011).
Keeling, J., Tsiokas, L. & Maskey, D. Cellular Mechanisms of Ciliary Length Control. Cells 5(1):6 (2016).
Kim, S., Lee, K., Choi, J.-H., Ringstad, N. & Dynlacht, B.D. Nek2 activation of Kif24 ensures cilium disassembly during the cell cycle. Nature communication 6:8087 (2015).
Katoh, Y. & Katoh, M. Hedgehog Target Genes: Mechanisms of Carcinogenesis Induced by Aberrant Hedgehog Signaling Activation. Current Molecular Medicine 9, 873-886 (2009).
Kramann, R. et al. Pharmacological GLI2 inhibition prevents myofibroblast cell-cycle progression and reduces kidney fibrosis. The Journal of Clinical Investigation 125(8), 2935-2951 (2015).
Lin, Y.T. et al. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway. Experimental cell research 318, 1877-1888 (2012).
Lopes, C.A.M. et al. Centriolar satellites are assembly points for proteins implicated in human ciliopathies, including oral-facial-digital syndrome 1. Journal of Cell Science 24, 600-612 (2011).
Matise, M.P. & Joyner, A.L. Gli genes in development and cancer. Oncogene 18, 7852 -7859 (1999).
Maskey, D. et al. Cell cycle-dependent ubiquitylation and destruction of NDE1 by CDK5-FBW7 regulates ciliary length. The EMBO Journal 34(19), 2424-2440 (2015).
MI, F. et al. Oral-facial-digital type I protein is required for primary cilia formation and left-right axis specification. Nature genetics 38(1), 112-117 (2006).
Mill, P. et al. Sonic hedgehog-dependent activation of Gli2 is essential for embryonic hair follicle development. Genes and Development 2003, 282–294 (2002).
Pampliega, O. et al. Functional interaction between autophagy and ciliogenesis. Nature 502, 194-200 (2013).
Pugacheva, E.N., Jablonski, S.A., Hartman, T.R., Henske, E.P. & Golemis, E.A. HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell 129(7), 1351–1363 (2007).
Reiter, J.F., Blacque, O.E. & Leroux, M.R. The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO reports 13(7), 608-618 (2012).
Roessler, E. et al. Loss-of-function mutations in the human GLI2 gene are associated with pituitary anomalies and holoprosencephaly-like features. PNAS 100, 13424-13429 (2003).
Satir, P. Landmarks in cilia research from Leeuwenhoek to us. Cell motility and the cytoskeleton 32, 90-94 (1995). Spassky, N. et al. Primary Cilia are required for cerebellar development and Shh-dependent expansion of progenitor pool. Developmental Biology 317, 246–259 (2008).
Sasaki, H., Nishizaki, Y., Hui, C.-c., Nakafuku, M. & Kondoh, H. Regulation of Gli2 and Gli3 activities by an amino-terminal repression domain: implication of Gli2 and Gli3 as primary mediators of Shh signaling. Development 126, 3915-3924 (1999).
Song, G. et al. CRISPR/Cas9: A powerful tool for crop genome editing. The Crop Journal 4, 75 – 82 (2016).
Tran, P.V., Sharma, M., Li, X. & Calvet, J.P. Developmental Signaling: Does It Bridge the Gap Between Cilia Dysfunction and Renal Cystogenesis? Birth Defects Res C Embryo Today 02, 159–173 (2014).
Tang, Z. et al. Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites. Nature 502(7470), 254-257 (2013).
Tang, Z., Zhu, M. & Zhong, Q. Self-eating to remove cilia roadblock. Autophagy 10:2, 379-381 (2014).
Tang, X. et al. Inhibition of Hedgehog signaling pathway impedes cancer cell proliferation by promotion of autophagy. European Journal of Cell Biology 94, 223-233 (2015).
Vogel, T.W., Carter, C.S., Abode-Iyamah, K., Z., Q. & Robinson, S. The role of primary cilia in the pathophysiology of neural tube defects. Neurosurgical Focus. Cell biology international 33, 333-339 (2005).
Varjosalo, M. & Taipale, J. Hedgehog: functions and mechanisms. Gene and development 22(18), 2454-2472 (2008).
Verhey, K.J., Dishinger, J. & Kee, H.L. Kinesin Motors and Primary Cilia. Biochem Soc Trans. 39(5), 1120-1125 (2011).
Wheatley, D.N. Landmarks in the first hundred years of primary (9+0) cilium research. Cell biology international 29, 333-339 (2005).
Xu, Y., An, Y., Wang, X., Zha, W. & Li, X. Inhibition of the Hedgehog pathway induces autophagy in pancreatic ductal adenocarcinoma cells. Oncology Reports 31, 707-712 (2014).
|