|
Reference 1. Diamant, M., E.E. Blaak, and W.M. de Vos, Do nutrient-gut-microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes? Obes Rev, 2011. 12(4): p. 272-81. 2. Pickup, J.C., Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care, 2004. 27(3): p. 813-23. 3. Bosi, E., et al., Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia, 2006. 49(12): p. 2824-7. 4. Neu, J., et al., Changes in intestinal morphology and permeability in the biobreeding rat before the onset of type 1 diabetes. J Pediatr Gastroenterol Nutr, 2005. 40(5): p. 589-95. 5. Sima, C., et al., Type 1 diabetes predisposes to enhanced gingival leukocyte margination and macromolecule extravasation in vivo. J Periodontal Res, 2010. 45(6): p. 748-56. 6. Hawkesworth, S., et al., Evidence for metabolic endotoxemia in obese and diabetic Gambian women. Nutr Diabetes, 2013. 3: p. e83. 7. Ortiz-Lopez, C., et al., Prevalence of prediabetes and diabetes and metabolic profile of patients with nonalcoholic fatty liver disease (NAFLD). Diabetes Care, 2012. 35(4): p. 873-8. 8. Lai, C.W., et al., Shedding-induced gap formation contributes to gut barrier dysfunction in endotoxemia. J Trauma Acute Care Surg, 2013. 74(1): p. 203-13. 9. Lin, Y.C., et al., Assessment of hypermucoviscosity as a virulence factor for experimental Klebsiella pneumoniae infections: comparative virulence analysis with hypermucoviscosity-negative strain. BMC Microbiol, 2011. 11: p. 50. 10. Wang, J.H., et al., Primary liver abscess due to Klebsiella pneumoniae in Taiwan. Clin Infect Dis, 1998. 26(6): p. 1434-8. 11. Fung, C.P., et al., Immune response and pathophysiological features of Klebsiella pneumoniae liver abscesses in an animal model. Lab Invest, 2011. 91(7): p. 1029-39. 12. Wang, H.H., et al., The association of haemoglobin A(1)C levels with the clinical and CT characteristics of Klebsiella pneumoniae liver abscesses in patients with diabetes mellitus. Eur Radiol, 2014. 24(5): p. 980-9. 13. Lin, Y.T., et al., Klebsiella pneumoniae liver abscess in diabetic patients: association of glycemic control with the clinical characteristics. BMC Infect Dis, 2013. 13: p. 56. 14. Cesaro, C., et al., Gut microbiota and probiotics in chronic liver diseases. Dig Liver Dis, 2011. 43(6): p. 431-8. 15. Szabo, G., A. Dolganiuc, and P. Mandrekar, Pattern recognition receptors: a contemporary view on liver diseases. Hepatology, 2006. 44(2): p. 287-98. 16. Seki, E. and B. Schnabl, Role of innate immunity and the microbiota in liver fibrosis: crosstalk between the liver and gut. J Physiol, 2012. 590(3): p. 447-58. 17. Henao-Mejia, J., et al., Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature, 2012. 482(7384): p. 179-85. 18. Miura, K., et al., Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology, 2010. 139(1): p. 323-34 e7. 19. Alican, I. and P. Kubes, A critical role for nitric oxide in intestinal barrier function and dysfunction. Am J Physiol, 1996. 270(2 Pt 1): p. G225-37. 20. Unno, N., et al., Inhibition of inducible nitric oxide synthase ameliorates endotoxin-induced gut mucosal barrier dysfunction in rats. Gastroenterology, 1997. 113(4): p. 1246-57. 21. Tang, Y., et al., Nitric oxide-mediated intestinal injury is required for alcohol-induced gut leakiness and liver damage. Alcohol Clin Exp Res, 2009. 33(7): p. 1220-30. 22. Moens, E. and M. Veldhoen, Epithelial barrier biology: good fences make good neighbours. Immunology, 2012. 135(1): p. 1-8. 23. Harris, C.E., et al., Intestinal permeability in the critically ill. Intensive Care Med, 1992. 18(1): p. 38-41. 24. Gatt, M., B.S. Reddy, and J. MacFie, Review article: bacterial translocation in the critically ill--evidence and methods of prevention. Aliment Pharmacol Ther, 2007. 25(7): p. 741-57. 25. Fry, D.E., Sepsis, systemic inflammatory response, and multiple organ dysfunction: the mystery continues. Am Surg, 2012. 78(1): p. 1-8. 26. Puleo, F., et al., Gut failure in the ICU. Semin Respir Crit Care Med, 2011. 32(5): p. 626-38. 27. Samel, S., et al., Microscopy of bacterial translocation during small bowel obstruction and ischemia in vivo--a new animal model. BMC Surg, 2002. 2: p. 6. 28. de Kort, S., D. Keszthelyi, and A.A. Masclee, Leaky gut and diabetes mellitus: what is the link? Obes Rev, 2011. 12(6): p. 449-58. 29. Fasano, A., Leaky gut and autoimmune diseases. Clin Rev Allergy Immunol, 2012. 42(1): p. 71-8. 30. Vaarala, O., M.A. Atkinson, and J. Neu, The "perfect storm" for type 1 diabetes: the complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes, 2008. 57(10): p. 2555-62. 31. Arrieta, M.C., L. Bistritz, and J.B. Meddings, Alterations in intestinal permeability. Gut, 2006. 55(10): p. 1512-20. 32. Moro, G., et al., Dosage-related bifidogenic effects of galacto- and fructooligosaccharides in formula-fed term infants. J Pediatr Gastroenterol Nutr, 2002. 34(3): p. 291-5. 33. Gomes, A.C., et al., Gut microbiota, probiotics and diabetes. Nutr J, 2014. 13: p. 60. 34. Visser, J.T., et al., Restoration of impaired intestinal barrier function by the hydrolysed casein diet contributes to the prevention of type 1 diabetes in the diabetes-prone BioBreeding rat. Diabetologia, 2010. 53(12): p. 2621-8. 35. Macfarlane, G.T. and J.H. Cummings, Probiotics, infection and immunity. Curr Opin Infect Dis, 2002. 15(5): p. 501-6. 36. Rowland, I., et al., Current level of consensus on probiotic science--report of an expert meeting--London, 23 November 2009. Gut Microbes, 2010. 1(6): p. 436-9. 37. Ritchie, M.L. and T.N. Romanuk, A meta-analysis of probiotic efficacy for gastrointestinal diseases. PLoS One, 2012. 7(4): p. e34938. 38. Barber, A.J., et al., The Ins2Akita mouse as a model of early retinal complications in diabetes. Invest Ophthalmol Vis Sci, 2005. 46(6): p. 2210-8. 39. Sierra, S., et al., Intestinal and immunological effects of daily oral administration of Lactobacillus salivarius CECT5713 to healthy adults. Anaerobe, 2010. 16(3): p. 195-200. 40. Momozawa, Y., et al., Characterization of bacteria in biopsies of colon and stools by high throughput sequencing of the V2 region of bacterial 16S rRNA gene in human. PLoS One, 2011. 6(2): p. e16952. 41. Hunninghake, G.W., et al., Insulin-like growth factor-1 levels contribute to the development of bacterial translocation in sepsis. Am J Respir Crit Care Med, 2010. 182(4): p. 517-25. 42. Ashare, A., et al., Severe bacteremia results in a loss of hepatic bacterial clearance. Am J Respir Crit Care Med, 2006. 173(6): p. 644-52. 43. Sakai, N., et al., Receptor activator of nuclear factor-kappaB ligand (RANKL) protects against hepatic ischemia/reperfusion injury in mice. Hepatology, 2012. 55(3): p. 888-97. 44. Matsumura, T., et al., Endotoxin and cytokine regulation of toll-like receptor (TLR) 2 and TLR4 gene expression in murine liver and hepatocytes. J Interferon Cytokine Res, 2000. 20(10): p. 915-21. 45. El Kasmi, K.C., et al., Toll-like receptor 4-dependent Kupffer cell activation and liver injury in a novel mouse model of parenteral nutrition and intestinal injury. Hepatology, 2012. 55(5): p. 1518-28. 46. Jun, D.W., et al., Association between small intestinal bacterial overgrowth and peripheral bacterial DNA in cirrhotic patients. Dig Dis Sci, 2010. 55(5): p. 1465-71. 47. Lichtman, S.N., et al., Hepatic inflammation in rats with experimental small intestinal bacterial overgrowth. Gastroenterology, 1990. 98(2): p. 414-23. 48. Bauer, T.M., et al., Small intestinal bacterial overgrowth in human cirrhosis is associated with systemic endotoxemia. Am J Gastroenterol, 2002. 97(9): p. 2364-70. 49. Mutlu, E., et al., Intestinal dysbiosis: a possible mechanism of alcohol-induced endotoxemia and alcoholic steatohepatitis in rats. Alcohol Clin Exp Res, 2009. 33(10): p. 1836-46. 50. Parks, D.A., G.B. Bulkley, and D.N. Granger, Role of oxygen-derived free radicals in digestive tract diseases. Surgery, 1983. 94(3): p. 415-22. 51. Guarner, C., et al., Increased serum nitrite and nitrate levels in patients with cirrhosis: relationship to endotoxemia. Hepatology, 1993. 18(5): p. 1139-43. 52. Szabo, G., P. Mandrekar, and A. Dolganiuc, Innate immune response and hepatic inflammation. Semin Liver Dis, 2007. 27(4): p. 339-50. 53. Fung, C.P., et al., Klebsiella pneumoniae in gastrointestinal tract and pyogenic liver abscess. Emerg Infect Dis, 2012. 18(8): p. 1322-5. 54. Tu, Y.C., et al., Genetic requirements for Klebsiella pneumoniae-induced liver abscess in an oral infection model. Infect Immun, 2009. 77(7): p. 2657-71. 55. Han, S.H., Review of hepatic abscess from Klebsiella pneumoniae. An association with diabetes mellitus and septic endophthalmitis. West J Med, 1995. 162(3): p. 220-4. 56. Cheng, D.L., et al., Septic metastatic lesions of pyogenic liver abscess. Their association with Klebsiella pneumoniae bacteremia in diabetic patients. Arch Intern Med, 1991. 151(8): p. 1557-9. 57. Patel, K.K., et al., Autophagy proteins control goblet cell function by potentiating reactive oxygen species production. EMBO J, 2013. 32(24): p. 3130-44. 58. Razi, M., E.Y. Chan, and S.A. Tooze, Early endosomes and endosomal coatomer are required for autophagy. J Cell Biol, 2009. 185(2): p. 305-21. 59. Balzan, S., et al., Bacterial translocation: overview of mechanisms and clinical impact. J Gastroenterol Hepatol, 2007. 22(4): p. 464-71. 60. Cani, P.D., et al., Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut, 2009. 58(8): p. 1091-103. 61. Cani, P.D., et al., Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia, 2007. 50(11): p. 2374-83. 62. Kleessen, B., L. Hartmann, and M. Blaut, Fructans in the diet cause alterations of intestinal mucosal architecture, released mucins and mucosa-associated bifidobacteria in gnotobiotic rats. Br J Nutr, 2003. 89(5): p. 597-606. 63. Niesner, R.A. and A.E. Hauser, Recent advances in dynamic intravital multi-photon microscopy. Cytometry A, 2011. 79(10): p. 789-98. 64. Weigert, R., et al., Intravital microscopy: a novel tool to study cell biology in living animals. Histochem Cell Biol, 2010. 133(5): p. 481-91. 65. Jones, R.M., J.W. Mercante, and A.S. Neish, Reactive oxygen production induced by the gut microbiota: pharmacotherapeutic implications. Curr Med Chem, 2012. 19(10): p. 1519-29. 66. Chen, L.-W., et al., Increasing intestinal reactive oxygen species reverses diabetes-induced inflammation (MUC2P. 928). The Journal of Immunology, 2015. 194(1 Supplement): p. 65.11-65.11.
|