跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/03 12:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林姝含
研究生(外文):Shu-Han Lin
論文名稱:糖尿病相關的庫氏細胞活化及克雷白氏肺炎菌肝臟轉位之研究
論文名稱(外文):Investigations on Diabetes-related Kupffer cell activation and Klebsiella pneumoniae liver translocation
指導教授:陳理維陳理維引用關係
指導教授(外文):Lee-Wei Chen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:急重症醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:102
中文關鍵詞:糖尿病庫氏細胞克雷白氏肺炎菌肝臟轉位
外文關鍵詞:diabetes mellitusKupffer cellKlebsiella pneumoniaeliver translocation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:243
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
Klebsiella pneumoniae (KP) 是在東亞及南亞最常見造成肝膿瘍的病原體,而糖尿病史一個主要的危險因子.為研究KP菌造成肝膿瘍的機制以及可能的以及可能的改善方式,我們使用STZ小鼠及Akita小鼠 (C57BL/6J-Ins2Akita).發現在糖尿病鼠中KP菌由腸道易位到肝臟量增加,可能致病菌Enterococcus以及E.coli過度生長,而益菌lactobacilli/bifidas在腸道中卻減少,腸道菌量增加可能是因為腸道通透性變化,使用多光子顯微鏡在活體小鼠身上觀察,發現的確在STZ-DM的小鼠身上腸道通透性增加,且杯狀細胞的數量也增加,而經由杯狀細胞穿透的量比從細胞間隙來得多,而餵食FOS後可以回復這個狀況,使得通透性下降.且餵食小鼠Fructooligosaccharides (FOS)或是 dead L. salivarius (dLac) 可以改變高血糖所造成的腸道菌叢失衡,並腸內菌轉位到肝臟的量也顯著下降.
小鼠血中ALT濃度增加且肝臟細菌的清除能力也下降,腸道中的iNOS protein表現增加,Kupffer cells中的IL-1β及TNF-α 表現增加進而增強發炎反應及肝臟的傷害.然而餵食小鼠Fructooligosaccharides (FOS)、 dead L. salivarius (dLac) 或iNOS抑制劑(L-NAME)後在糖尿病鼠上可減少腸道iNOS 蛋白的表現及Kupffer cell的活化,並且增加肝臟對KP菌的清除力.
總的來說,高血糖引發細菌腸道失衡及iNOS表現而NO產物增加,KP細菌易位增加,而餵食FOS、dead L. salivarius 及L-NAME可有效減少高血糖所引起的菌叢失衡、腸道iNOS表現及細菌易位.
Klebsiella pneumoniae (KP) is the most common pathogen of pyogenic liver abscess in East and Southeast Asia and diabetes mellitus (DM) is a major risk factor. The effect and mechanism of hyperglycemia on KP liver abscess was examined in streptozotocin- induced diabetic mice and Akita mice (C57BL/6J-Ins2Akita). KP translocation to liver and plasma alaine transaminase levels were increased and liver clearance of KP was decreased in DM mice. Diabetic mice exhibited overgrowth of Enterococcus as well as E.coli and decreased lactobacilli/bifidas growth in intestine, increased intestinal iNOS protein and nitrite levels in portal vein, and increased IL-1β and TNF-α expression of Kupffer cells. Fructooligosaccharides (FOS) or dead L. salivarius (dLac) supplementation reversed hyperglycemia-induced enteric dysbiosis, NO levels in portal vein, and KP translocation to liver. iNOS inhibition with L-NAME decreased intestinal iNOS protein expression as well as Kupffer cell activation and increased liver clearance of KP in DM mice. In conclusion, balance of intestinal microflora is important for preventing intestinal iNOS expression, Kupffer cell activation, and KP liver translocation in diabetes. Reversal of diabetes-induced enteric dysbiosis with FOS or dead L. salivarius decreases hyperglycemia-induced intestinal iNOS expression and KP liver translocation. Hyperglycemia induces Kupffer cell activation and KP liver translocation through enteric dysbiosis and nitric oxide production.
Enteric dysbiosis might result in gut barrier dysfunction via permeability increased. Using multiphoton microscopy observed the intravital mice, we found the intestinal permeability increased in STZ-DM mice and the goblet cells ratio also increased. More interesting, the FD4 leakage via goblets cell is more than paracellur space or gaps. Feeding FOS could reverse that situation, but it can’t change the distribution about of leaks in goblet cells and paracellular spaces.
誌謝……… i
中文摘要……… ii
English Abstract………iv
目錄……… vi
圖目錄……… vii
表目錄……… viii
第一章 前言……… 1
第一節 介紹……… 1
第二節 研究目的……… 7
第二章 實驗方法……… 8
第一節 實驗介紹……… 8
第二節 實驗方法細則……… 11
第三章 實驗結果………18
第四章 討論……… 28
參考文獻………72

List of Figures
FIGURE 1………79
FIGURE 2………79
FIGURE 3………80
FIGURE 4………80
FIGURE 5………81
FIGURE 6………81
FIGURE 7………81
FIGURE 8………82
FIGURE 9………83
FIGURE 10………85
FIGURE 11………87
FIGURE 12………89
FIGURE 13………91
FIGURE 14………93
FIGURE 15………95
FIGURE 16………97
FIGURE 17………99

List of Tables
Tables of introduction
TABLE 1 ………77
TABLE 2………78
Reference
1. Diamant, M., E.E. Blaak, and W.M. de Vos, Do nutrient-gut-microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes? Obes Rev, 2011. 12(4): p. 272-81.
2. Pickup, J.C., Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care, 2004. 27(3): p. 813-23.
3. Bosi, E., et al., Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia, 2006. 49(12): p. 2824-7.
4. Neu, J., et al., Changes in intestinal morphology and permeability in the biobreeding rat before the onset of type 1 diabetes. J Pediatr Gastroenterol Nutr, 2005. 40(5): p. 589-95.
5. Sima, C., et al., Type 1 diabetes predisposes to enhanced gingival leukocyte margination and macromolecule extravasation in vivo. J Periodontal Res, 2010. 45(6): p. 748-56.
6. Hawkesworth, S., et al., Evidence for metabolic endotoxemia in obese and diabetic Gambian women. Nutr Diabetes, 2013. 3: p. e83.
7. Ortiz-Lopez, C., et al., Prevalence of prediabetes and diabetes and metabolic profile of patients with nonalcoholic fatty liver disease (NAFLD). Diabetes Care, 2012. 35(4): p. 873-8.
8. Lai, C.W., et al., Shedding-induced gap formation contributes to gut barrier dysfunction in endotoxemia. J Trauma Acute Care Surg, 2013. 74(1): p. 203-13.
9. Lin, Y.C., et al., Assessment of hypermucoviscosity as a virulence factor for experimental Klebsiella pneumoniae infections: comparative virulence analysis with hypermucoviscosity-negative strain. BMC Microbiol, 2011. 11: p. 50.
10. Wang, J.H., et al., Primary liver abscess due to Klebsiella pneumoniae in Taiwan. Clin Infect Dis, 1998. 26(6): p. 1434-8.
11. Fung, C.P., et al., Immune response and pathophysiological features of Klebsiella pneumoniae liver abscesses in an animal model. Lab Invest, 2011. 91(7): p. 1029-39.
12. Wang, H.H., et al., The association of haemoglobin A(1)C levels with the clinical and CT characteristics of Klebsiella pneumoniae liver abscesses in patients with diabetes mellitus. Eur Radiol, 2014. 24(5): p. 980-9.
13. Lin, Y.T., et al., Klebsiella pneumoniae liver abscess in diabetic patients: association of glycemic control with the clinical characteristics. BMC Infect Dis, 2013. 13: p. 56.
14. Cesaro, C., et al., Gut microbiota and probiotics in chronic liver diseases. Dig Liver Dis, 2011. 43(6): p. 431-8.
15. Szabo, G., A. Dolganiuc, and P. Mandrekar, Pattern recognition receptors: a contemporary view on liver diseases. Hepatology, 2006. 44(2): p. 287-98.
16. Seki, E. and B. Schnabl, Role of innate immunity and the microbiota in liver fibrosis: crosstalk between the liver and gut. J Physiol, 2012. 590(3): p. 447-58.
17. Henao-Mejia, J., et al., Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature, 2012. 482(7384): p. 179-85.
18. Miura, K., et al., Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology, 2010. 139(1): p. 323-34 e7.
19. Alican, I. and P. Kubes, A critical role for nitric oxide in intestinal barrier function and dysfunction. Am J Physiol, 1996. 270(2 Pt 1): p. G225-37.
20. Unno, N., et al., Inhibition of inducible nitric oxide synthase ameliorates endotoxin-induced gut mucosal barrier dysfunction in rats. Gastroenterology, 1997. 113(4): p. 1246-57.
21. Tang, Y., et al., Nitric oxide-mediated intestinal injury is required for alcohol-induced gut leakiness and liver damage. Alcohol Clin Exp Res, 2009. 33(7): p. 1220-30.
22. Moens, E. and M. Veldhoen, Epithelial barrier biology: good fences make good neighbours. Immunology, 2012. 135(1): p. 1-8.
23. Harris, C.E., et al., Intestinal permeability in the critically ill. Intensive Care Med, 1992. 18(1): p. 38-41.
24. Gatt, M., B.S. Reddy, and J. MacFie, Review article: bacterial translocation in the critically ill--evidence and methods of prevention. Aliment Pharmacol Ther, 2007. 25(7): p. 741-57.
25. Fry, D.E., Sepsis, systemic inflammatory response, and multiple organ dysfunction: the mystery continues. Am Surg, 2012. 78(1): p. 1-8.
26. Puleo, F., et al., Gut failure in the ICU. Semin Respir Crit Care Med, 2011. 32(5): p. 626-38.
27. Samel, S., et al., Microscopy of bacterial translocation during small bowel obstruction and ischemia in vivo--a new animal model. BMC Surg, 2002. 2: p. 6.
28. de Kort, S., D. Keszthelyi, and A.A. Masclee, Leaky gut and diabetes mellitus: what is the link? Obes Rev, 2011. 12(6): p. 449-58.
29. Fasano, A., Leaky gut and autoimmune diseases. Clin Rev Allergy Immunol, 2012. 42(1): p. 71-8.
30. Vaarala, O., M.A. Atkinson, and J. Neu, The "perfect storm" for type 1 diabetes: the complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes, 2008. 57(10): p. 2555-62.
31. Arrieta, M.C., L. Bistritz, and J.B. Meddings, Alterations in intestinal permeability. Gut, 2006. 55(10): p. 1512-20.
32. Moro, G., et al., Dosage-related bifidogenic effects of galacto- and fructooligosaccharides in formula-fed term infants. J Pediatr Gastroenterol Nutr, 2002. 34(3): p. 291-5.
33. Gomes, A.C., et al., Gut microbiota, probiotics and diabetes. Nutr J, 2014. 13: p. 60.
34. Visser, J.T., et al., Restoration of impaired intestinal barrier function by the hydrolysed casein diet contributes to the prevention of type 1 diabetes in the diabetes-prone BioBreeding rat. Diabetologia, 2010. 53(12): p. 2621-8.
35. Macfarlane, G.T. and J.H. Cummings, Probiotics, infection and immunity. Curr Opin Infect Dis, 2002. 15(5): p. 501-6.
36. Rowland, I., et al., Current level of consensus on probiotic science--report of an expert meeting--London, 23 November 2009. Gut Microbes, 2010. 1(6): p. 436-9.
37. Ritchie, M.L. and T.N. Romanuk, A meta-analysis of probiotic efficacy for gastrointestinal diseases. PLoS One, 2012. 7(4): p. e34938.
38. Barber, A.J., et al., The Ins2Akita mouse as a model of early retinal complications in diabetes. Invest Ophthalmol Vis Sci, 2005. 46(6): p. 2210-8.
39. Sierra, S., et al., Intestinal and immunological effects of daily oral administration of Lactobacillus salivarius CECT5713 to healthy adults. Anaerobe, 2010. 16(3): p. 195-200.
40. Momozawa, Y., et al., Characterization of bacteria in biopsies of colon and stools by high throughput sequencing of the V2 region of bacterial 16S rRNA gene in human. PLoS One, 2011. 6(2): p. e16952.
41. Hunninghake, G.W., et al., Insulin-like growth factor-1 levels contribute to the development of bacterial translocation in sepsis. Am J Respir Crit Care Med, 2010. 182(4): p. 517-25.
42. Ashare, A., et al., Severe bacteremia results in a loss of hepatic bacterial clearance. Am J Respir Crit Care Med, 2006. 173(6): p. 644-52.
43. Sakai, N., et al., Receptor activator of nuclear factor-kappaB ligand (RANKL) protects against hepatic ischemia/reperfusion injury in mice. Hepatology, 2012. 55(3): p. 888-97.
44. Matsumura, T., et al., Endotoxin and cytokine regulation of toll-like receptor (TLR) 2 and TLR4 gene expression in murine liver and hepatocytes. J Interferon Cytokine Res, 2000. 20(10): p. 915-21.
45. El Kasmi, K.C., et al., Toll-like receptor 4-dependent Kupffer cell activation and liver injury in a novel mouse model of parenteral nutrition and intestinal injury. Hepatology, 2012. 55(5): p. 1518-28.
46. Jun, D.W., et al., Association between small intestinal bacterial overgrowth and peripheral bacterial DNA in cirrhotic patients. Dig Dis Sci, 2010. 55(5): p. 1465-71.
47. Lichtman, S.N., et al., Hepatic inflammation in rats with experimental small intestinal bacterial overgrowth. Gastroenterology, 1990. 98(2): p. 414-23.
48. Bauer, T.M., et al., Small intestinal bacterial overgrowth in human cirrhosis is associated with systemic endotoxemia. Am J Gastroenterol, 2002. 97(9): p. 2364-70.
49. Mutlu, E., et al., Intestinal dysbiosis: a possible mechanism of alcohol-induced endotoxemia and alcoholic steatohepatitis in rats. Alcohol Clin Exp Res, 2009. 33(10): p. 1836-46.
50. Parks, D.A., G.B. Bulkley, and D.N. Granger, Role of oxygen-derived free radicals in digestive tract diseases. Surgery, 1983. 94(3): p. 415-22.
51. Guarner, C., et al., Increased serum nitrite and nitrate levels in patients with cirrhosis: relationship to endotoxemia. Hepatology, 1993. 18(5): p. 1139-43.
52. Szabo, G., P. Mandrekar, and A. Dolganiuc, Innate immune response and hepatic inflammation. Semin Liver Dis, 2007. 27(4): p. 339-50.
53. Fung, C.P., et al., Klebsiella pneumoniae in gastrointestinal tract and pyogenic liver abscess. Emerg Infect Dis, 2012. 18(8): p. 1322-5.
54. Tu, Y.C., et al., Genetic requirements for Klebsiella pneumoniae-induced liver abscess in an oral infection model. Infect Immun, 2009. 77(7): p. 2657-71.
55. Han, S.H., Review of hepatic abscess from Klebsiella pneumoniae. An association with diabetes mellitus and septic endophthalmitis. West J Med, 1995. 162(3): p. 220-4.
56. Cheng, D.L., et al., Septic metastatic lesions of pyogenic liver abscess. Their association with Klebsiella pneumoniae bacteremia in diabetic patients. Arch Intern Med, 1991. 151(8): p. 1557-9.
57. Patel, K.K., et al., Autophagy proteins control goblet cell function by potentiating reactive oxygen species production. EMBO J, 2013. 32(24): p. 3130-44.
58. Razi, M., E.Y. Chan, and S.A. Tooze, Early endosomes and endosomal coatomer are required for autophagy. J Cell Biol, 2009. 185(2): p. 305-21.
59. Balzan, S., et al., Bacterial translocation: overview of mechanisms and clinical impact. J Gastroenterol Hepatol, 2007. 22(4): p. 464-71.
60. Cani, P.D., et al., Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut, 2009. 58(8): p. 1091-103.
61. Cani, P.D., et al., Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia, 2007. 50(11): p. 2374-83.
62. Kleessen, B., L. Hartmann, and M. Blaut, Fructans in the diet cause alterations of intestinal mucosal architecture, released mucins and mucosa-associated bifidobacteria in gnotobiotic rats. Br J Nutr, 2003. 89(5): p. 597-606.
63. Niesner, R.A. and A.E. Hauser, Recent advances in dynamic intravital multi-photon microscopy. Cytometry A, 2011. 79(10): p. 789-98.
64. Weigert, R., et al., Intravital microscopy: a novel tool to study cell biology in living animals. Histochem Cell Biol, 2010. 133(5): p. 481-91.
65. Jones, R.M., J.W. Mercante, and A.S. Neish, Reactive oxygen production induced by the gut microbiota: pharmacotherapeutic implications. Curr Med Chem, 2012. 19(10): p. 1519-29.
66. Chen, L.-W., et al., Increasing intestinal reactive oxygen species reverses diabetes-induced inflammation (MUC2P. 928). The Journal of Immunology, 2015. 194(1 Supplement): p. 65.11-65.11.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊