跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/08 23:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:唐毓濃
研究生(外文):TANG, YU-NONG
論文名稱:彈性流程式生產排程與物料搬運平衡問題
論文名稱(外文):Production Scheduling and Material Delivery Balancing in a Flexible Flow-Shop System
指導教授:吳政翰吳政翰引用關係
指導教授(外文):WU, CHENG-HAN
口試委員:吳政翰邱靜娥陳盈彥
口試委員(外文):WU, CHENG-HANCHIU, JING-ERCHEN, YIN-YANN
口試日期:2017-07-18
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:工業工程與管理系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:74
中文關鍵詞:物料搬運生產排程有限暫存區彈性流程式
外文關鍵詞:Material deliveryProduction SchedulingCapacity-limited bufferFlexible Flow-Shop system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:1
  現今產業間競爭激烈,對於生產製造而言,製造端一直以來為供應鏈主要的核心的價值,經營者無不望追求最優利潤及適度降低成本。經營者為了能夠快速滿足大量客戶訂單,將工廠內每個工作站增設多個相同機台以提升產能,而形成彈性流程式生產。然而工廠內的生產加工與物料搬運之間環環相扣,故本研究針對彈性流程式問題結合物料搬運與生產排程,將物件從搬運到加工製程後結束流程,視為一種彈性流程式生產。本研究將問題規劃為三階段,階段一為搬運設備將物件搬運至機台,階段二為物件於機台加工組裝,階段三為搬運設備將合成品運送至目的地,階段三完成後即結束流程,將訂單的交期與有限暫存區納入考量,以最小化總延遲時間與總完工時間為目標,解決訂單排程順序及規劃搬運設備及機台的運用,建立一整數規劃模型,並設計啟發式演算法求解,以最佳化物料搬運與生產排程。
Intensive competition induces firms to improve the effectiveness on operational decisions by minimizing cost or maximizing profit. To satisfy the increases in order quantities, firms use multiple identical machines for production in each workstation, called“Flexible Flow-Shop” production system. Because production scheduling is associated with material deliveries, we consider an optimization problem regarding production scheduling and material delivery in a flexible flow-shop system. After the delivery of materials, the production will be proceeded. The production process is as follows: Vehicles carry materials to machines, and then, machines are activated for production. After the production, vehicles carry products to a destination. In this problem, we consider the due date of orders and capacity-limited buffers. To minimize the maximum production span, we formulate an integer linear programming model for solving production scheduling problem that determines order sequence and the delivery problem that determines the delivery assignment between vehicles and machines. Then, we develop a heuristics algorithm for optimization. Finally, we provide a sensitive analysis to discuss the performance of the proposed algorithm with respect to the changes of parameters and problem scale.
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 研究架構 4
第二章 文獻探討 6
2.1 彈性流程式生產 6
2.2 廠內物料搬運 8
2.3 有限暫存區 9
2.4 基因演算法 11
2.5 小結 14
第三章 研究方法 17
3.1 問題描述 17
3.2 問題假設 20
3.3 模型建立 21
3.3.1 符號定義與說明 21
3.3.2 模型建構與說明 24
3.4 演算法建構 29
3.4.1 染色體編碼 29
3.4.2 產生初始母體 30
3.4.3 適應度函數 32
3.4.4 選擇與交配 32
3.4.5 突變 33
3.4.6 調整機制 33
3.4.7 設定終止條件 36
第四章 數值分析 37
4.1 問題設計 37
4.2 演算法參數設定 38
4.3 演算法與最早交期時間優先派工法則之比較 42
4.4 模型參數分析 44
4.4.1 加工機台數量與訂單數目對平均總延遲時間的影響 44
4.4.2 搬運設備數量與訂單數目對平均總延遲時間的影響 45
4.4.3 暫存區容量與訂單數目對平均總延遲時間的影響 46
4.4.4 加工機台數量與訂單數目對平均總完工時間的影響 47
4.4.5 搬運設備數量與訂單數目對平均總完工時間的影響 48
4.4.6 暫存區容量與訂單數目對平均總完工時間的影響 49
4.5 小結 49
第五章 結論與未來研究方向 51
5.1 結論 51
5.2 未來研究方向 52
參考文獻 53
附錄 56
A. 演算法與最早交期時間優先派工法則之比較數據 56
B. 模型參數組合數據 57
1.Berghman, L., & Leus, R. (2015). Practical solutions for a dock assignment problem with trailer transportation. European Journal of Operational Research, 246(3), 787-799.
2.Cheng, C.-Y., & Huang, L.-W. (2017). Minimizing total earliness and tardiness through unrelated parallel machine scheduling using distributed release time control. Journal of Manufacturing Systems, 42, 1-10.
3.Choi, H.-S., & Lee, D.-H. (2009). Scheduling algorithms to minimize the number of tardy jobs in two-stage hybrid flow shops. Computers & Industrial Engineering, 56(1), 113-120.
4.Chou, F.-D. (2013). Particle swarm optimization with cocktail decoding method for hybrid flow shop scheduling problems with multiprocessor tasks. International Journal of Production Economics, 141(1), 137-145.
5.El Khayat, G., Langevin, A., & Riopel, D. (2006). Integrated production and material handling scheduling using mathematical programming and constraint programming. European Journal of Operational Research, 175(3), 1818-1832.
6.Fattahi, P., Hosseini, S. M. H., Jolai, F., & Tavakkoli-Moghaddam, R. (2014). A branch and bound algorithm for hybrid flow shop scheduling problem with setup time and assembly operations. Applied Mathematical Modelling, 38(1), 119-134.
7.Gupta, J. N. (1988). Two-stage, hybrid flowshop scheduling problem. Journal of the Operational Research Society, 39(4), 359-364.
8.Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence: U Michigan Press.
9.Im, K., Kim, K., Park, T., & Lee, S. (2009). Effective vehicle dispatching method minimising the blocking and delivery times in automatic material handling systems of 300 mm semiconductor fabrication. International Journal of Production Research, 47(14), 3997-4011.
10.Latorre-Núñez, G., Lüer-Villagra, A., Marianov, V., Obreque, C., Ramis, F., & Neriz, L. (2016). Scheduling operating rooms with consideration of all resources, post anesthesia beds and emergency surgeries. Computers & Industrial Engineering, 97, 248-257.
11.Li, X., & Gao, L. (2016). An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem. International Journal of Production Economics, 174, 93-110.
12.Liu, S. Q., & Kozan, E. (2016). Parallel-identical-machine job-shop scheduling with different stage-dependent buffering requirements. Computers & Operations Research, 74, 31-41.
13.Lochana Moorthy, R., Hock-Guan, W., Wing-Cheong, N., & Chung-Piaw, T. (2003). Cyclic deadlock prediction and avoidance for zone-controlled AGV system. International Journal of Production Economics, 83(3), 309-324.
14.Mitchell, M. (1998). An introduction to genetic algorithms: MIT press.
15.Pan, Q.-K., & Wang, L. (2012). Effective heuristics for the blocking flowshop scheduling problem with makespan minimization. Omega, 40(2), 218-229.
16.Ruiz, R., & Maroto, C. (2006). A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine eligibility. European Journal of Operational Research, 169(3), 781-800.
17.Sawik, T. (2000). Mixed integer programming for scheduling flexible flow lines with limited intermediate buffers. Mathematical and Computer Modelling, 31(13), 39-52.
18.Sule, D. R. (1997). Industrial Scheduling: PWS Publishing Company.
19.Veeravalli, B., Rajesh, G., & Viswanadham, N. (2002). Design and analysis of optimal material distribution policies in flexible manufacturing systems using a single AGV. International Journal of Production Research, 40(12), 2937-2954.
20.Wardono, B., & Fathi, Y. (2004). A tabu search algorithm for the multi-stage parallel machine problem with limited buffer capacities. European Journal of Operational Research, 155(2), 380-401.
21.Zandieh, M., & Rashidi, E. (2009). An effective hybrid genetic algorithm for hybrid flow shops with sequence dependent setup times and processor blocking. Journal of Industrial Engineering, 4(8), 51-58.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top