跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/14 04:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭柏威
研究生(外文):CHENG, PO-WEI
論文名稱:水熱法成長陣列氧化鋅/石墨烯親水性奈米柱於發泡金屬製備氣體擴散電極之研究
論文名稱(外文):The Characteristic Research of ZnO/Graphene Hydrophilic Nanorods by Hydrothermal Method upon Porous Metal as Gas Diffusion Electrode
指導教授:陳錫釗
指導教授(外文):Hsi-Chao Chen
口試委員:陳昇暉郭倩丞
口試委員(外文):CHEN, SHENG-HUIKUO, CHIEN-CHENG
口試日期:2017-07-20
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:85
中文關鍵詞:氣體擴散電極石墨烯氧化鋅奈米柱親水性
外文關鍵詞:Gas diffusion electrode (GDE)graphenezinc oxide nanorods (ZnO NRs)hydrophilic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
質子交換膜燃料電池(PEMFC)中,氧氣、氫離子與電子在陰極觸媒層催化下發生還原反應產生水,再經由氣體擴散電極(Gas diffusion electrode, GDE)將水排出燃料電池外部,因此在氣體擴散層中的水管理甚為重要。本研究目標以化學氣相沉積法及水熱法分別合成石墨烯及氧化鋅奈米柱於具多孔性的金屬發泡鎳上,製備可轉換親疏水性的氧化鋅奈米柱/石墨烯/發泡鎳複合氣體擴散電極,應用於質子交換膜燃料電池上。
本研究方法可分為兩大部分,第一部分為探討氧化鋅晶種層厚度(濺鍍3、5、10分鐘)及水熱法前驅物濃度(12.5 mM、25 mM、37.5 mM)對氧化鋅奈米柱表面形貌及親疏水性的影響。透過X光繞射儀(X-ray diffraction, XRD)分析,隨著濺鍍晶種層時間增加以及退火,晶種層的晶粒大小(Grain size)從23.23 nm增大至33.17 nm,且皆有明顯的(002)晶向。利用光柵光譜儀量測發現氧化鋅奈米柱的最大吸收波長隨著前驅物濃度提升(12.5 mM→25 mM)從371 nm藍移至364 nm。以SEM的影像透過imageJ影像分析軟體,前驅物濃度由12.5 mM增大至25 mM時,其表面覆蓋率從37.77%增大為65.41%,兩者透過硬脂酸處理後接觸角分別為129.63°及109.31°。透過UV光照射實驗,使氧化鋅奈米柱表面接觸角轉換至10°左右。第二部分製備石墨烯/氧化鋅奈米柱複合材料,於紫外光波段吸收度有顯著的提升,且接觸角增加為145.57°,而進行UV光照射後,在20至30分鐘間即轉換為親水,較原先60至70分鐘的轉換時間快。最後,以具多孔性的發泡鎳直接進行化學氣相沉積法合成石墨烯,再透過水熱法合成氧化鋅奈米柱製備出氧化鋅奈米柱/石墨烯/發泡鎳複合氣體擴散電極。純發泡鎳的接觸角約為127.1°,石墨烯/發泡鎳的接觸角約為137.77°,而氧化鋅奈米柱/石墨烯/發泡鎳經UV光照射後,液滴則能夠直接滲入結構,有助於氣體擴散電極的排水機制。
In the proton exchange membrane fuel cell (PEMFC), oxygen, hydrogen ions and electrons reduced at cathodic catalyst layer to produce water, and then through the gas diffusion electrode (GDE) to remove water out of the fuel cell. Therefore, water management in the gas diffusion layer is an important issue. The purpose of this study was to synthesize graphene and zinc oxide nanorods on porous metal nickel foam by chemical vapor deposition and hydrothermal method, respectively. The preparation of converted hyfdrophobic/hydrophilic ZnO NRs/graphene/NiF composite gas diffusion electrode applied on the PEMFC.
The first part of this study was to investigate the effects of the thickness of ZnO seed layer and precursor concentration of hydrothermal method. The morphology of nanorod surface would effect hydrophobicity. The grain size of seed layer increased from 23.23 nm to 33.17 nm with the increase of the sputtering time and annealing. It existed a clear (002) crystal orientation. The maximum absorbance wavelength of ZnO nanorods was decreased from 371 nm to 364 nm with the increase of precursor concentration (12.5 mM→25 mM) with UV/VIS spectrometer. With the image of SEM, the surface coverage increased from 37.77% to 65.41% when the concentration of precursor was increased from 12.5 mM to 25 mM with imageJ image analysis software. The contact angles were 129.63 ° after treatment with stearic acid 109.31°. The surface contact angle of the ZnO nanorods was measured per 10 minutes by UV light irradiation. The second part of the preparation of graphene/ZnO NRs composite material, in the UV light wavelength has a significant increase in the absorbance, and the contact angle increased to 145.57 °.With UV light irradiation was converted to hydrophilic between 20 to 30 minutes, faster than the original 60 to 70 minutes of conversion time. Finally, the graphene was synthesized by direct chemical vapor deposition (CVD) with nickel foam, and then the ZnO NRs/ graphene/NiF composite gas diffusion electrode was prepared by hydrothermal synthesis of ZnO NRs. The contact angle of the pureNiF is about 127.1°, the contact angle of the graphene/NiF is about 137.77 °, and the ZnO NRs/graphene/NiF was exposed with UV light, caused water droplets to permeate the structure, and contribute to the gas diffusion electrode water removed mechanism.
目錄
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章、 緒論 1
1-1. 前言 1
1-2. 研究動機 3
1-3. 論文架構 4
第二章、 理論探討與文獻回顧 6
2-1. 氧化鋅介紹 6
2-1-1. 氧化鋅特性 6
2-1-2. 氧化鋅合成方式 8
2-2. 石墨烯介紹 13
2-2-1. 石墨烯特性 13
2-2-2. 石墨烯製備方法 13
2-3. 燃料電池簡介 17
2-4. 材料親疏水特性 20
2-5. 接觸角理論 20
2-6. 粗糙表面接觸角 21
2-7. 文獻回顧 22
第三章、 實驗方法及儀器設備 29
3-1. 實驗流程 29
3-2. 實驗藥品及耗材 30
3-3. 儀器設備介紹 30
3-3-1. 冷場發射掃描式電子顯微鏡(Cold Field Emission Scanning Electron Microscope, FE-SEM) 30
3-3-2. 拉曼光譜儀(Raman Spectrometer) 31
3-3-3. 光柵光譜儀(UV/Visible Spectrophotometer) 32
3-3-4. X光繞射儀(X-ray diffraction, XRD) 34
3-3-5. 接觸角量測儀(Contact angle measurement) 35
3-4. 實驗步驟及方法 36
3-4-1. 基板清洗 36
3-4-2. 濺鍍氧化鋅晶種層 37
3-4-3. 熱退火 39
3-4-4. 水熱法合成氧化鋅奈米柱 40
3-4-5. 化學氣相沉積法成長石墨烯 42
3-4-6. UV光照射控制親疏水特性 44
第四章、 結果與討論 46
4-1. 晶種層厚度探討 46
4-1-1. UV/VIS光譜分析 46
4-1-2. Raman光譜分析 47
4-1-3. 表面型態分析 50
4-1-4. XRD分析 57
4-2. 水熱法之前驅物濃度探討 59
4-2-1. UV/VIS光譜分析 60
4-2-2. Raman光譜分析 61
4-2-3. 表面型態分析 61
4-2-4. 親疏水轉換分析 66
4-3. 石墨烯/氧化鋅複合材料 68
4-3-1. EDS分析 68
4-3-2. Raman光譜分析 69
4-3-3. UV/VIS光譜分析 70
4-3-4. 親疏水轉換分析 72
4-4. 氧化鋅/石墨烯/發泡鎳複合氣體擴散電極 73
第五章、 結論 77
參考文獻 79


參考文獻
[1]韋文誠, 固態燃料電池技術: 高立, 2013.
[2]肖鋼, 燃料電池技術: 全華圖書, 2010.
[3]賴建銘、林俊男、蔡麗端, "氫能經濟及燃料電池材料應用發展趨勢(上)," 2016.
[4]張寬裕、蕭永嘉、盧建余、張啟原, 燃料電池原理、量測與建模: 鼎茂圖書, 2010.
[5]M. El-Sharkh, N. Sisworahardjo, M. Uzunoglu, O. Onar, and M. Alam, "Dynamic behavior of PEM fuel cell and microturbine power plants," Journal of Power Sources, vol. 164, pp. 315-321, 2007.
[6]J. Cho, H.-S. Kim, and K. Min, "Transient response of a unit proton-exchange membrane fuel cell under various operating conditions," Journal of Power Sources, vol. 185, pp. 118-128, 2008.
[7]L. Hao, H. Yu, J. Hou, W. Song, Z. Shao, and B. Yi, "Transient behavior of water generation in a proton exchange membrane fuel cell," Journal of Power Sources, vol. 177, pp. 404-411, 2008.
[8]Y. Tang, W. Yuan, M. Pan, Z. Li, G. Chen, and Y. Li, "Experimental investigation of dynamic performance and transient responses of a kW-class PEM fuel cell stack under various load changes," Applied Energy, vol. 87, pp. 1410-1417, 2010.
[9]J. Zhang, Y. Tang, C. Song, X. Cheng, J. Zhang, and H. Wang, "PEM fuel cells operated at 0% relative humidity in the temperature range of 23–120 C," Electrochimica Acta, vol. 52, pp. 5095-5101, 2007.
[10]A. Umar and Y.-B. Hahn, Metal oxide nanostructures and their applications vol. 5: American Scientific Publ., 2010.
[11]Z. L. Wang, "Zinc oxide nanostructures: growth, properties and applications," Journal of Physics: Condensed Matter, vol. 16, p. R829, 2004.
[12]Z. Tang, G. K. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, et al., "Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films," Applied Physics Letters, vol. 72, pp. 3270-3272, 1998.
[13]Y. Chen, D. Bagnall, and T. Yao, "ZnO as a novel photonic material for the UV region," Materials Science and Engineering: B, vol. 75, pp. 190-198, 2000.
[14]R. W. Birkmire, "Compound polycrystalline solar cells:: Recent progress and Y2K perspective," Solar Energy Materials and Solar Cells, vol. 65, pp. 17-28, 2001.
[15]S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, "ZnO Schottky ultraviolet photodetectors," Journal of crystal Growth, vol. 225, pp. 110-113, 2001.
[16]C.-W. Nahm, "Electrical properties and stability of praseodymium oxide-based ZnO varistor ceramics doped with Er 2 O 3," Journal of the European Ceramic Society, vol. 23, pp. 1345-1353, 2003.
[17]R. Escudero and R. Escamilla, "Ferromagnetic behavior of high-purity ZnO nanoparticles," Solid State Communications, vol. 151, pp. 97-101, 2011.
[18]B. Lin, Z. Fu, and Y. Jia, "Green luminescent center in undoped zinc oxide films deposited on silicon substrates," Applied Physics Letters, vol. 79, pp. 943-945, 2001.
[19]Y.-B. Hahn, "Zinc oxide nanostructures and their applications," Korean Journal of Chemical Engineering, vol. 28, pp. 1797-1813, 2011.
[20]S. Pearton, D. Norton, K. Ip, Y. Heo, and T. Steiner, "Recent progress in processing and properties of ZnO," Progress in materials science, vol. 50, pp. 293-340, 2005.
[21]Y. Wu and P. Yang, "Direct observation of vapor− liquid− solid nanowire growth," Journal of the American Chemical Society, vol. 123, pp. 3165-3166, 2001.
[22]S. Y. Li, C. Y. Lee, and T. Y. Tseng, "Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor–liquid–solid process," Journal of Crystal Growth, vol. 247, pp. 357-362, 2003.
[23]X. Wang, C. J. Summers, and Z. L. Wang, "Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays," Nano Letters, vol. 4, pp. 423-426, 2004.
[24]B. Yao, Y. Chan, and N. Wang, "Formation of ZnO nanostructures by a simple way of thermal evaporation," Applied Physics Letters, vol. 81, pp. 757-759, 2002.
[25]L. Vayssieres, K. Keis, S.-E. Lindquist, and A. Hagfeldt, "Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO," The Journal of Physical Chemistry B, vol. 105, pp. 3350-3352, 2001.
[26]Y.-C. Wang, C. Leu, and M.-H. Hon, "Preparation of nanosized ZnO arrays by electrophoretic deposition," Electrochemical and solid-state letters, vol. 5, pp. C53-C55, 2002.
[27]M. Zheng, L. Zhang, G. Li, and W. Shen, "Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique," Chemical Physics Letters, vol. 363, pp. 123-128, 2002.
[28]H. J. Fan, W. Lee, R. Scholz, A. Dadgar, A. Krost, K. Nielsch, et al., "Arrays of vertically aligned and hexagonally arranged ZnO nanowires: a new template-directed approach," Nanotechnology, vol. 16, p. 913, 2005.
[29]G. Wu, T. Xie, X. Yuan, Y. Li, L. Yang, Y. Xiao, et al., "Controlled synthesis of ZnO nanowires or nanotubes via sol–gel template process," Solid State Communications, vol. 134, pp. 485-489, 2005.
[30]D. Baik and S. Cho, "Application of sol-gel derived films for ZnO/n-Si junction solar cells," Thin Solid Films, vol. 354, pp. 227-231, 1999.
[31]S. E. Ahn, J. S. Lee, H. Kim, S. Kim, B. H. Kang, K. H. Kim, et al., "Photoresponse of sol-gel-synthesized ZnO nanorods," Applied Physics Letters, vol. 84, pp. 5022-5024, 2004.
[32]L. Znaidi, "Sol–gel-deposited ZnO thin films: A review," Materials Science and Engineering: B, vol. 174, pp. 18-30, 2010.
[33]W.-J. Li, E.-W. Shi, W.-Z. Zhong, and Z.-W. Yin, "Growth mechanism and growth habit of oxide crystals," Journal of crystal growth, vol. 203, pp. 186-196, 1999.
[34]A. Sugunan, H. C. Warad, M. Boman, and J. Dutta, "Zinc oxide nanowires in chemical bath on seeded substrates: role of hexamine," Journal of Sol-Gel Science and Technology, vol. 39, pp. 49-56, 2006.
[35]呂宗昕, 圖解奈米科技與光觸媒: 商周, 2003.
[36]R. Krishna, E. Titus, M. Salimian, O. Okhay, S. Rajendran, A. Rajkumar, et al., "Hydrogen Storage for energy application," in Hydrogen Storage, ed: InTech, 2012.
[37]C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," Science, vol. 321, pp. 385-388, 2008.
[38]R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, et al., "Fine structure constant defines visual transparency of graphene," Science, vol. 320, pp. 1308-1308, 2008.
[39]A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, et al., "Superior thermal conductivity of single-layer graphene," Nano letters, vol. 8, pp. 902-907, 2008.
[40]A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature materials, vol. 6, pp. 183-191, 2007.
[41]A. Martinez, K. Fuse, and S. Yamashita, "Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers," Applied Physics Letters, vol. 99, p. 121107, 2011.
[42]S. Park and R. S. Ruoff, "Chemical methods for the production of graphenes," Nature nanotechnology, vol. 4, pp. 217-224, 2009.
[43]I. K. Moon, J. Lee, R. S. Ruoff, and H. Lee, "Reduced graphene oxide by chemical graphitization," Nature communications, vol. 1, p. 73, 2010.
[44]S. Pei and H.-M. Cheng, "The reduction of graphene oxide," Carbon, vol. 50, pp. 3210-3228, 2012.
[45]G. Eda and M. Chhowalla, "Chemically derived graphene oxide: towards large‐area thin‐film electronics and optoelectronics," Advanced materials, vol. 22, pp. 2392-2415, 2010.
[46]T. Chen, B. Zeng, J. Liu, J. Dong, X. Liu, Z. Wu, et al., "High throughput exfoliation of graphene oxide from expanded graphite with assistance of strong oxidant in modified Hummers method," in Journal of Physics: Conference Series, 2009, p. 012051.
[47]C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, et al., "Electronic confinement and coherence in patterned epitaxial graphene," Science, vol. 312, pp. 1191-1196, 2006.
[48]C. J. Lee, J. Park, and A. Y. Jeong, "Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition," Chemical Physics Letters, vol. 360, pp. 250-255, 2002.
[49]Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S.-S. Pei, "Graphene segregated on Ni surfaces and transferred to insulators," Applied Physics Letters, vol. 93, p. 113103, 2008.
[50]A. Obraztsov, E. Obraztsova, A. Tyurnina, and A. Zolotukhin, "Chemical vapor deposition of thin graphite films of nanometer thickness," Carbon, vol. 45, pp. 2017-2021, 2007.
[51]X. Li, W. Cai, L. Colombo, and R. S. Ruoff, "Evolution of graphene growth on Ni and Cu by carbon isotope labeling," Nano letters, vol. 9, pp. 4268-4272, 2009.
[52]A. Aiyejina and M. Sastry, "PEMFC flow channel geometry optimization: a review," Journal of Fuel Cell Science and Technology, vol. 9, p. 011011, 2012.
[53]賴建銘、林俊男, "車用燃料電池材料及技術開發現況," 2016.
[54]T. Young, "An essay on the cohesion of fluids," Philosophical Transactions of the Royal Society of London, vol. 95, pp. 65-87, 1805.
[55]R. N. Wenzel, "Resistance of solid surfaces to wetting by water," Industrial & Engineering Chemistry, vol. 28, pp. 988-994, 1936.
[56]A. Cassie and S. Baxter, "Wettability of porous surfaces," Transactions of the Faraday society, vol. 40, pp. 546-551, 1944.
[57]L. Huang, S. Lau, H. Yang, E. Leong, S. Yu, and S. Prawer, "Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film," The Journal of Physical Chemistry B, vol. 109, pp. 7746-7748, 2005.
[58]J. Lin, M. Penchev, G. Wang, R. K. Paul, J. Zhong, X. Jing, et al., "Heterogeneous Graphene Nanostructures: ZnO Nanostructures Grown on Large‐Area Graphene Layers," Small, vol. 6, pp. 2448-2452, 2010.
[59]P. S. Kumar, J. Sundaramurthy, D. Mangalaraj, D. Nataraj, D. Rajarathnam, and M. Srinivasan, "Enhanced super-hydrophobic and switching behavior of ZnO nanostructured surfaces prepared by simple solution–immersion successive ionic layer adsorption and reaction process," Journal of colloid and interface science, vol. 363, pp. 51-58, 2011.
[60]J. H. Chun, K. T. Park, D. H. Jo, J. Y. Lee, S. G. Kim, S. H. Park, et al., "Development of a novel hydrophobic/hydrophilic double micro porous layer for use in a cathode gas diffusion layer in PEMFC," international journal of hydrogen energy, vol. 36, pp. 8422-8428, 2011.
[61]M. T. Z. Myint, N. S. Kumar, G. L. Hornyak, and J. Dutta, "Hydrophobic/hydrophilic switching on zinc oxide micro-textured surface," Applied Surface Science, vol. 264, pp. 344-348, 2013.
[62]G. Turrell and J. Corset, Raman microscopy: developments and applications: Academic Press, 1996.
[63]A. Patterson, "The Scherrer formula for X-ray particle size determination," Physical review, vol. 56, p. 978, 1939.
[64]V. Ciupină, S. Zamfirescu, and G. Prodan, "Evaluation of mean diameter values using Scherrer equation applied to electron diffraction images," Nanotechnology–Toxicological Issues and Environmental Safety and Environmental Safety, pp. 231-237, 2007.
[65]M. Guo, P. Diao, and S. Cai, "Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions," Journal of Solid State Chemistry, vol. 178, pp. 1864-1873, 2005.
[66]S. S. Zumdahl, Chemical Principles, 5th edition: Houghton Mifflin Company: Boston, 2003.
[67]T.-H. Kim, D.-Y. Chung, J. Ku, I. Song, S. Sul, D.-H. Kim, et al., "Heterogeneous stacking of nanodot monolayers by dry pick-and-place transfer and its applications in quantum dot light-emitting diodes," Nature communications, vol. 4, p. 2637, 2013.
[68]K. Vanheusden, W. Warren, C. Seager, D. Tallant, J. Voigt, and B. Gnade, "Mechanisms behind green photoluminescence in ZnO phosphor powders," Journal of Applied Physics, vol. 79, pp. 7983-7990, 1996.
[69]C. Arguello, D. L. Rousseau, and S. P. d. S. Porto, "First-order Raman effect in wurtzite-type crystals," Physical Review, vol. 181, p. 1351, 1969.
[70]J. Calleja and M. Cardona, "Resonant Raman scattering in ZnO," Physical Review B, vol. 16, p. 3753, 1977.
[71]M. Rajalakshmi, A. K. Arora, B. Bendre, and S. Mahamuni, "Optical phonon confinement in zinc oxide nanoparticles," Journal of Applied Physics, vol. 87, pp. 2445-2448, 2000.
[72]K. A. Alim, V. A. Fonoberov, and A. A. Balandin, "Origin of the optical phonon frequency shifts in ZnO quantum dots," Applied Physics Letters, vol. 86, p. 053103, 2005.
[73]J. Wang, H. Zhong, Z. Li, and W. Lu, "Raman study of N+-implanted ZnO," Applied physics letters, vol. 88, p. 101913, 2006.
[74]H. Liu, L. Feng, J. Zhai, L. Jiang, and D. Zhu, "Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity," Langmuir, vol. 20, pp. 5659-5661, 2004.
[75]A. C. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, et al., "Raman spectrum of graphene and graphene layers," Physical review letters, vol. 97, p. 187401, 2006.
[76]K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, et al., "Large-scale pattern growth of graphene films for stretchable transparent electrodes," nature, vol. 457, p. 706, 2009.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊