|
參考文獻 [1]韋文誠, 固態燃料電池技術: 高立, 2013. [2]肖鋼, 燃料電池技術: 全華圖書, 2010. [3]賴建銘、林俊男、蔡麗端, "氫能經濟及燃料電池材料應用發展趨勢(上)," 2016. [4]張寬裕、蕭永嘉、盧建余、張啟原, 燃料電池原理、量測與建模: 鼎茂圖書, 2010. [5]M. El-Sharkh, N. Sisworahardjo, M. Uzunoglu, O. Onar, and M. Alam, "Dynamic behavior of PEM fuel cell and microturbine power plants," Journal of Power Sources, vol. 164, pp. 315-321, 2007. [6]J. Cho, H.-S. Kim, and K. Min, "Transient response of a unit proton-exchange membrane fuel cell under various operating conditions," Journal of Power Sources, vol. 185, pp. 118-128, 2008. [7]L. Hao, H. Yu, J. Hou, W. Song, Z. Shao, and B. Yi, "Transient behavior of water generation in a proton exchange membrane fuel cell," Journal of Power Sources, vol. 177, pp. 404-411, 2008. [8]Y. Tang, W. Yuan, M. Pan, Z. Li, G. Chen, and Y. Li, "Experimental investigation of dynamic performance and transient responses of a kW-class PEM fuel cell stack under various load changes," Applied Energy, vol. 87, pp. 1410-1417, 2010. [9]J. Zhang, Y. Tang, C. Song, X. Cheng, J. Zhang, and H. Wang, "PEM fuel cells operated at 0% relative humidity in the temperature range of 23–120 C," Electrochimica Acta, vol. 52, pp. 5095-5101, 2007. [10]A. Umar and Y.-B. Hahn, Metal oxide nanostructures and their applications vol. 5: American Scientific Publ., 2010. [11]Z. L. Wang, "Zinc oxide nanostructures: growth, properties and applications," Journal of Physics: Condensed Matter, vol. 16, p. R829, 2004. [12]Z. Tang, G. K. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, et al., "Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films," Applied Physics Letters, vol. 72, pp. 3270-3272, 1998. [13]Y. Chen, D. Bagnall, and T. Yao, "ZnO as a novel photonic material for the UV region," Materials Science and Engineering: B, vol. 75, pp. 190-198, 2000. [14]R. W. Birkmire, "Compound polycrystalline solar cells:: Recent progress and Y2K perspective," Solar Energy Materials and Solar Cells, vol. 65, pp. 17-28, 2001. [15]S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, "ZnO Schottky ultraviolet photodetectors," Journal of crystal Growth, vol. 225, pp. 110-113, 2001. [16]C.-W. Nahm, "Electrical properties and stability of praseodymium oxide-based ZnO varistor ceramics doped with Er 2 O 3," Journal of the European Ceramic Society, vol. 23, pp. 1345-1353, 2003. [17]R. Escudero and R. Escamilla, "Ferromagnetic behavior of high-purity ZnO nanoparticles," Solid State Communications, vol. 151, pp. 97-101, 2011. [18]B. Lin, Z. Fu, and Y. Jia, "Green luminescent center in undoped zinc oxide films deposited on silicon substrates," Applied Physics Letters, vol. 79, pp. 943-945, 2001. [19]Y.-B. Hahn, "Zinc oxide nanostructures and their applications," Korean Journal of Chemical Engineering, vol. 28, pp. 1797-1813, 2011. [20]S. Pearton, D. Norton, K. Ip, Y. Heo, and T. Steiner, "Recent progress in processing and properties of ZnO," Progress in materials science, vol. 50, pp. 293-340, 2005. [21]Y. Wu and P. Yang, "Direct observation of vapor− liquid− solid nanowire growth," Journal of the American Chemical Society, vol. 123, pp. 3165-3166, 2001. [22]S. Y. Li, C. Y. Lee, and T. Y. Tseng, "Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor–liquid–solid process," Journal of Crystal Growth, vol. 247, pp. 357-362, 2003. [23]X. Wang, C. J. Summers, and Z. L. Wang, "Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays," Nano Letters, vol. 4, pp. 423-426, 2004. [24]B. Yao, Y. Chan, and N. Wang, "Formation of ZnO nanostructures by a simple way of thermal evaporation," Applied Physics Letters, vol. 81, pp. 757-759, 2002. [25]L. Vayssieres, K. Keis, S.-E. Lindquist, and A. Hagfeldt, "Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO," The Journal of Physical Chemistry B, vol. 105, pp. 3350-3352, 2001. [26]Y.-C. Wang, C. Leu, and M.-H. Hon, "Preparation of nanosized ZnO arrays by electrophoretic deposition," Electrochemical and solid-state letters, vol. 5, pp. C53-C55, 2002. [27]M. Zheng, L. Zhang, G. Li, and W. Shen, "Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique," Chemical Physics Letters, vol. 363, pp. 123-128, 2002. [28]H. J. Fan, W. Lee, R. Scholz, A. Dadgar, A. Krost, K. Nielsch, et al., "Arrays of vertically aligned and hexagonally arranged ZnO nanowires: a new template-directed approach," Nanotechnology, vol. 16, p. 913, 2005. [29]G. Wu, T. Xie, X. Yuan, Y. Li, L. Yang, Y. Xiao, et al., "Controlled synthesis of ZnO nanowires or nanotubes via sol–gel template process," Solid State Communications, vol. 134, pp. 485-489, 2005. [30]D. Baik and S. Cho, "Application of sol-gel derived films for ZnO/n-Si junction solar cells," Thin Solid Films, vol. 354, pp. 227-231, 1999. [31]S. E. Ahn, J. S. Lee, H. Kim, S. Kim, B. H. Kang, K. H. Kim, et al., "Photoresponse of sol-gel-synthesized ZnO nanorods," Applied Physics Letters, vol. 84, pp. 5022-5024, 2004. [32]L. Znaidi, "Sol–gel-deposited ZnO thin films: A review," Materials Science and Engineering: B, vol. 174, pp. 18-30, 2010. [33]W.-J. Li, E.-W. Shi, W.-Z. Zhong, and Z.-W. Yin, "Growth mechanism and growth habit of oxide crystals," Journal of crystal growth, vol. 203, pp. 186-196, 1999. [34]A. Sugunan, H. C. Warad, M. Boman, and J. Dutta, "Zinc oxide nanowires in chemical bath on seeded substrates: role of hexamine," Journal of Sol-Gel Science and Technology, vol. 39, pp. 49-56, 2006. [35]呂宗昕, 圖解奈米科技與光觸媒: 商周, 2003. [36]R. Krishna, E. Titus, M. Salimian, O. Okhay, S. Rajendran, A. Rajkumar, et al., "Hydrogen Storage for energy application," in Hydrogen Storage, ed: InTech, 2012. [37]C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," Science, vol. 321, pp. 385-388, 2008. [38]R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, et al., "Fine structure constant defines visual transparency of graphene," Science, vol. 320, pp. 1308-1308, 2008. [39]A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, et al., "Superior thermal conductivity of single-layer graphene," Nano letters, vol. 8, pp. 902-907, 2008. [40]A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature materials, vol. 6, pp. 183-191, 2007. [41]A. Martinez, K. Fuse, and S. Yamashita, "Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers," Applied Physics Letters, vol. 99, p. 121107, 2011. [42]S. Park and R. S. Ruoff, "Chemical methods for the production of graphenes," Nature nanotechnology, vol. 4, pp. 217-224, 2009. [43]I. K. Moon, J. Lee, R. S. Ruoff, and H. Lee, "Reduced graphene oxide by chemical graphitization," Nature communications, vol. 1, p. 73, 2010. [44]S. Pei and H.-M. Cheng, "The reduction of graphene oxide," Carbon, vol. 50, pp. 3210-3228, 2012. [45]G. Eda and M. Chhowalla, "Chemically derived graphene oxide: towards large‐area thin‐film electronics and optoelectronics," Advanced materials, vol. 22, pp. 2392-2415, 2010. [46]T. Chen, B. Zeng, J. Liu, J. Dong, X. Liu, Z. Wu, et al., "High throughput exfoliation of graphene oxide from expanded graphite with assistance of strong oxidant in modified Hummers method," in Journal of Physics: Conference Series, 2009, p. 012051. [47]C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, et al., "Electronic confinement and coherence in patterned epitaxial graphene," Science, vol. 312, pp. 1191-1196, 2006. [48]C. J. Lee, J. Park, and A. Y. Jeong, "Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition," Chemical Physics Letters, vol. 360, pp. 250-255, 2002. [49]Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S.-S. Pei, "Graphene segregated on Ni surfaces and transferred to insulators," Applied Physics Letters, vol. 93, p. 113103, 2008. [50]A. Obraztsov, E. Obraztsova, A. Tyurnina, and A. Zolotukhin, "Chemical vapor deposition of thin graphite films of nanometer thickness," Carbon, vol. 45, pp. 2017-2021, 2007. [51]X. Li, W. Cai, L. Colombo, and R. S. Ruoff, "Evolution of graphene growth on Ni and Cu by carbon isotope labeling," Nano letters, vol. 9, pp. 4268-4272, 2009. [52]A. Aiyejina and M. Sastry, "PEMFC flow channel geometry optimization: a review," Journal of Fuel Cell Science and Technology, vol. 9, p. 011011, 2012. [53]賴建銘、林俊男, "車用燃料電池材料及技術開發現況," 2016. [54]T. Young, "An essay on the cohesion of fluids," Philosophical Transactions of the Royal Society of London, vol. 95, pp. 65-87, 1805. [55]R. N. Wenzel, "Resistance of solid surfaces to wetting by water," Industrial & Engineering Chemistry, vol. 28, pp. 988-994, 1936. [56]A. Cassie and S. Baxter, "Wettability of porous surfaces," Transactions of the Faraday society, vol. 40, pp. 546-551, 1944. [57]L. Huang, S. Lau, H. Yang, E. Leong, S. Yu, and S. Prawer, "Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film," The Journal of Physical Chemistry B, vol. 109, pp. 7746-7748, 2005. [58]J. Lin, M. Penchev, G. Wang, R. K. Paul, J. Zhong, X. Jing, et al., "Heterogeneous Graphene Nanostructures: ZnO Nanostructures Grown on Large‐Area Graphene Layers," Small, vol. 6, pp. 2448-2452, 2010. [59]P. S. Kumar, J. Sundaramurthy, D. Mangalaraj, D. Nataraj, D. Rajarathnam, and M. Srinivasan, "Enhanced super-hydrophobic and switching behavior of ZnO nanostructured surfaces prepared by simple solution–immersion successive ionic layer adsorption and reaction process," Journal of colloid and interface science, vol. 363, pp. 51-58, 2011. [60]J. H. Chun, K. T. Park, D. H. Jo, J. Y. Lee, S. G. Kim, S. H. Park, et al., "Development of a novel hydrophobic/hydrophilic double micro porous layer for use in a cathode gas diffusion layer in PEMFC," international journal of hydrogen energy, vol. 36, pp. 8422-8428, 2011. [61]M. T. Z. Myint, N. S. Kumar, G. L. Hornyak, and J. Dutta, "Hydrophobic/hydrophilic switching on zinc oxide micro-textured surface," Applied Surface Science, vol. 264, pp. 344-348, 2013. [62]G. Turrell and J. Corset, Raman microscopy: developments and applications: Academic Press, 1996. [63]A. Patterson, "The Scherrer formula for X-ray particle size determination," Physical review, vol. 56, p. 978, 1939. [64]V. Ciupină, S. Zamfirescu, and G. Prodan, "Evaluation of mean diameter values using Scherrer equation applied to electron diffraction images," Nanotechnology–Toxicological Issues and Environmental Safety and Environmental Safety, pp. 231-237, 2007. [65]M. Guo, P. Diao, and S. Cai, "Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions," Journal of Solid State Chemistry, vol. 178, pp. 1864-1873, 2005. [66]S. S. Zumdahl, Chemical Principles, 5th edition: Houghton Mifflin Company: Boston, 2003. [67]T.-H. Kim, D.-Y. Chung, J. Ku, I. Song, S. Sul, D.-H. Kim, et al., "Heterogeneous stacking of nanodot monolayers by dry pick-and-place transfer and its applications in quantum dot light-emitting diodes," Nature communications, vol. 4, p. 2637, 2013. [68]K. Vanheusden, W. Warren, C. Seager, D. Tallant, J. Voigt, and B. Gnade, "Mechanisms behind green photoluminescence in ZnO phosphor powders," Journal of Applied Physics, vol. 79, pp. 7983-7990, 1996. [69]C. Arguello, D. L. Rousseau, and S. P. d. S. Porto, "First-order Raman effect in wurtzite-type crystals," Physical Review, vol. 181, p. 1351, 1969. [70]J. Calleja and M. Cardona, "Resonant Raman scattering in ZnO," Physical Review B, vol. 16, p. 3753, 1977. [71]M. Rajalakshmi, A. K. Arora, B. Bendre, and S. Mahamuni, "Optical phonon confinement in zinc oxide nanoparticles," Journal of Applied Physics, vol. 87, pp. 2445-2448, 2000. [72]K. A. Alim, V. A. Fonoberov, and A. A. Balandin, "Origin of the optical phonon frequency shifts in ZnO quantum dots," Applied Physics Letters, vol. 86, p. 053103, 2005. [73]J. Wang, H. Zhong, Z. Li, and W. Lu, "Raman study of N+-implanted ZnO," Applied physics letters, vol. 88, p. 101913, 2006. [74]H. Liu, L. Feng, J. Zhai, L. Jiang, and D. Zhu, "Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity," Langmuir, vol. 20, pp. 5659-5661, 2004. [75]A. C. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, et al., "Raman spectrum of graphene and graphene layers," Physical review letters, vol. 97, p. 187401, 2006. [76]K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, et al., "Large-scale pattern growth of graphene films for stretchable transparent electrodes," nature, vol. 457, p. 706, 2009.
|