跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/13 20:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林庭煥
研究生(外文):Lin, Ting-Huan
論文名稱:自適應模糊滑模PI控制在XY平台軌跡應用
論文名稱(外文):The Application of Adaptive Fuzzy Sliding PI Controller for XY Stage
指導教授:毛偉龍毛偉龍引用關係
指導教授(外文):Wei-Lung Mao
口試委員:蘇國嵐鄭錦聰
口試委員(外文):Kuo-Lan SuJin-Tsong Jeng
口試日期:2017-01-11
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:126
中文關鍵詞:XYZ平台軌跡控制自適應模糊滑模控制MATLAB
外文關鍵詞:XY PlatformTrajectory ControlAdaptive Fuzzy Sliding ControlMATLAB
相關次數:
  • 被引用被引用:7
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
在現今精密平台慢慢有許多機器取代於人工,如何有更好的控制法則讓平台有良好的軌跡追蹤,是值得研究與探討。在本論文中,提出了XY雙軸控制平台系統的高精度軌跡跟蹤控制的自適應模糊滑模PI控制器,自適應模糊滑模的切換函數改用PI控制器,傳統的控制器依照原本的滑模切換方法設計,PI的控制器依照模糊估計參數設計出來。自適應模糊滑模PI控制理論對於參數的不確定性和外界負載干擾進行推導並分析對於系統的穩定性分析。然而使用Lyapunov穩定性與Projection algorithm方法,Lyapunov穩定性定理用來證明系統的漸進穩定性和所有不確定的參數在閉迴路的系統,而Projection algorithm 方法是先確定數值並預先指定的估測參數的邊界。且提出近似於伺服馬達的非線性數學方程式,並已實際XY平台的參數進行對照。經過模擬測試在以實際平台的情形,會依照提出的方法和非線性馬達數學方程式進行模擬與實際XY平台做軌跡測試。另外使用MATLAB的程式,分別在模擬方面使用的是MATLAB Simulink S-function的方式,實作方面使用的是MATLAB的Simulink Embedded function的方式測試。分別以圓形、三角形、正方形、星形、葉子形、窗形,六種圖形的軌跡進行測試,且實驗結果來看,模擬和XY平台的軌跡追蹤情形呈現很好的軌跡追蹤,另外在實際XY平台的未知的受控體也能夠得到良好的軌跡追蹤情形。然後傳統滑模控制器和滑模PI控制器的數值結果,並把結果經由MATLAB程式計算,算出平均追蹤誤差和追蹤誤差之標準差,進行數值比較都有更小,且收斂速度有更好的情況。
Motion control is an essential part of industrial machinery and manufacturing system. It is worth to design the precision platform with a good tracking performance. In this thesis, an adaptive fuzzy sliding PI controller is proposed for trajectory tracking control in biaxial X-Y motion stage system. The adaptive fuzzy sliding surface is replaced by PI controller. The traditional fuzzy controller is designed in accordance with the sliding surface. The PI control is used to reduce the input chattering and improve the steady state performance. The tradition sliding fuzzy controller is designed in accordance with the sliding surface. The PI fuzzy controller is devised in accordance with the fuzzy estimated parameters. The proposed fuzzy control structures can be used to compensate the parameter uncertainty and external load disturbance. Lyapunov stability theorem has been used to prove asymptotic stability of the entire system and all the uncertain parameters, the projection algorithm are the pre-specified boundaries of the estimated parameters. The nonlinear state equations are established and developed for the XY platform to simulate the tracking trajectories. The tracking performances according to the proposed methods are simulated and tested by using MATLAB/Simulink software. The simulation and experimental results on circle, triangle, square, star, four-leaf, and window reference contours are presented to show that the proposed controller indeed accomplish the better the tracking performances with regard to model uncertainties. It is observed that the convergence of parameters and tracking errors can be faster and smaller compared with the sliding fuzzy control in terms of average tracking error and tracking error standard deviation.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 viii
圖目錄 x
第一章、緒論 1
1.1 前言 1
1.2 研究動機與目的 1
1.3 文獻探討 2
1.4 研究方法 3
1.5 論文架構 4
第二章、運動控制平台系統架構 6
2.1 運動控制卡 6
2.1.1 數位轉類比卡 PCI-1716 6
2.1.2 專用端子板 PCLD-8710 7
2.1.3 數位轉類比卡PCI-1240U 7
2.1.4 專用端子板ADAM-3952 8
2.2 光學尺 9
2.2.1 增量型的直線編碼器 9
2.2.2 光學尺原理 10
2.2.3 編碼器 10
2.3 光電感測器(極限開關) 11
2.4 馬達驅動器 12
2.4.1 驅動器_MR-J2S-40A 規格 12
2.4.2 驅動器_EXD2020M 規格 13
2.5 馬達 14
2.5.1 馬達規格_HC-KFS43 14
2.5.2 馬達規格_ASM17H236H-2004B2 15
2.6 交流伺服馬達數學模型 16
2.6.1 非線性模型 16
2.7 數學模擬工具_MATLAB 18
2.7.1 MATLAB環境介紹 18
2.7.2 Real-Time-Workshop(RTW)工具箱 18
2.7.3 S-function 19
第三章、控制方法 21
3.1 自適應控制 21
3.2 自適應模糊滑模方法 21
3.2.1 問題描述 21
3.2.2 控制器的設計 22
3.2.3 模糊系統 22
3.2.4 傳統控制器的設計 23
3.2.5 PI控制器的設計 25
3.3 圖形軌跡規劃 31
3.3.1 簡介 31
3.3.2 圓形軌跡 31
3.3.3 三角形軌跡 32
3.3.4 正方形軌跡 33
3.3.5 星形軌跡 34
3.3.6 葉子形軌跡 35
3.3.7 窗形軌跡 37
第四章、實驗結果 40
4.1 實驗方式 40
4.2 模擬結果 44
4.2.1 模擬的參數 44
4.2.2 模擬的圖形 47
4.2.3 模擬的數據統計 71
4.3 實驗結果 74
4.3.1 實驗的參數 74
4.3.1 實作的圖形 76
4.3.2 實作的數據統計 104
第五章、結論與未來展望 108
5.1 結論 108
5.2 未來展望 108
參考文獻 109

[1]L.X Wang, A course in Fuzzy System and Control, Pearson, 2010.
[2]Slotine J.J, Applied nonlinear control, 1991.
[3]劉金琨,“滑模變結構控制MATLAB仿真”,清華大學出版社,北京,2005。
[4]Pengbing Zhao, Yaoyao Shi, Jin Huang, “Proportional-Integral Based Fuzzy Sliding Mode Control of the Milling Head” Control Engineering Practice, Vol.53,pp.1-13, 2016.
[5]Jing Hua, Li-Xia An, Yi-Min Li “Bionic Fuzzy Sliding Mode Control and Robustness Analysis” Applied Mathematical Modelling, Vol.39, pp.4482-4493, 2015.
[6]J. Wang, A.B. Rad, P.T. Chan “Indirect Adaptive Fuzzy Sliding Mode Control: Part I: Fuzzy Switching” Fuzzy Sets and Systems,Vol.122,pp.21-30,2001.
[7]P.T Chan, A. B. Rad , J. Wang “Indirect Adaptive Fuzzy Sliding Mode Control: Part II: Parameter Projection and Supervisory Control” Fuzzy Sets and Systems,Vol.122 ,pp.31-43,2001.
[8]M. Ghaemi, M. R. Akbarzadeh-t “Indirect Adaptive Interval Type-2 Fuzzy PI Sliding Mode Control for a Class of Uncertain Nonlinear Systems”, Iranian Journal of Fuzzy Systems Vol.11, pp.1-21, 2014.
[9]L.X. Wang, “Stable Adaptive Fuzzy Control of Nonliner System”, IEEE Trans. Fuzzy Systems, Vol.1, pp.146-155,1933.
[10]Saoudi Kamel, Harmas Mohamed Naguib, Ayad Mouloud , Rezki Mohamed “An Indirect Adaptive Type-2 Fuzzy Sliding Mode PSS Design to Damp Power System Oscillations” IEEE Trans. Tunisia-December pp.18-20,2015.
[11]Byung-Jae Choi, Seong-Woo Kwak, Byung Kook Kim, “Design of a Single-Input Fuzzy Logic Control and its Properties” Fuzzy Sets and Systems. Vol.106,pp. 299-308,1999.
[12]B.S. Chen, C.H. Lee, Y.C. Chang, “ Tracking Design of Uncertain Nonlinear SISO Systems: Adaptive Fuzzy Approach”, IEEE Trans. Fuzzy Systems, Vol. 4, pp. 32-43, 1996.
[13]孫義欽, “MATLAB與嵌入式控制器之整合控制應用”, 碩士論文, 國立中山大學機械與機電工程研究所, 2004.
[14]F. C. Teng, “Real-time control using Matlab Simulink”, IEEE International Conference on Systems, Man, and Cybernetics, Vol. 4, pp. 2697–2702, 2000.
[15]P. S. Shiakolas and D. Piyabongkarn, “On the development of a real-time digital control systemusing xPC-Target and a magnetic levitation device”, Proceedings of the 40th IEEE Conference on Decision and Co1ntrol, Vol. 2, pp. 1348 –1353, 2001.
[16]李書維, “以FPGA為基礎發展簡易型CPU及在XYZ平台適應性模糊控制器之應用,”碩士,南台科技大學電機工程系,2009。
[17]D. Hanafi, M. Tordon and J. Katupitiya, “An Active Axis Control System for a Conventional CNC Machine”, Advanced Intelligent Mechatronics, 2003. AIM 2003. Proceedings. 2003 IEEE/ASME International Conference, Vol.2, 1188-1193, 2003.
[18]F. J. Lin, H. J. Shieh, P. H. Shieh and P. H. Shen, “An Adaptive Recurrent-Neural-Network Motion Controller for X–Y Table in CNC Machine”, IEEE Transactions on Systems, Man, And Cybernetics-Part B: Cybernetics, Vol. 36, No. 2, April 2006.
[19]L. Gang, J. Youngmin, G. Rong and L. Hao, “Notice of Retraction Trajectory dynamic control for CNC machining based on velocity”, Information Management and Engineering (ICIME), 2010 The 2nd IEEE International Conference, pp276 – 280, 16-18 April 2010.
[20]E. C. Park, H. Lim, and C. H. Choi, “Position Control of X–Y Table at Velocity Reversal Using Presliding Friction Characteristics”, IEEE Transactions on Control Systems Technology, Vol. 11, No. 1, January 2003.
[21]Z. H. Jiang, S. Nie and T. Ishita, “A Neural Network and Linear Feedback Based Trajectory Control Method for Robot Manipulators”, Intelligent Control and Automation, 2008. WCICA 2008. 7th World Congress, pp. 1603-1608, 25-27 June 2008.
[22]K.S. Narendra, A.M. Annaswamy, Stable Adaptive Systems, Prentice-Hall, Englewood Cliffs, NJ, 1989.
[23]PCI-1710 series User’s Manual,Advantech Co,Ltd.
[24]PCLD-8710 Wiring Terminal Board User’s manual.
[25]PCI-1240U User Manual.
[26]ADAM-3952PMA_DS.
[27]Mercury-II-5000-Data-Sheet,MicroE System.
[28]精密機械概論–光學尺篇(X)
[29]Slot-type Photomicrosensor (Non-modulated)EE-SX47/67, OMRON Corporation Industrial Automation Company.
[30]MELSERVO-J2-Super, MITSUBISHI ELECTRIC CORPORATION.
[31]2 相微步進小型驅動器(2 PHASE MICRO STEP DRIVER) EXD2020M-N 使用說明書, V1.0_C100518,大內實業有限公司。
[32]SMMC STEPPING MOTOR Datasheet,司麥德國際股份有限公司。
[33]Real-Time Workshop For Use with Simulink,Version 6,The MathWorks.
[34]Simulink Model-Based and System-Based Design,Version 5,The MathWorks.
[35]H.K. Khalil, “Nonlinear System “, Prentice-Hall, Upper Saddle River, NJ, 1996.
[36]泛用伺服馬達應用技術(第二版), 顏嘉男, 全華。
[37]機電整合控制-多軸運動設計與應用,施慶隆、李文猶, 全華。
[38]Embedded MATLA User’s Guide, The Mathwork.
[39]S.I. Han, J.M. Lee, “Adaptive dynamic surface control with sliding mode control and RWNN for robust positioning of a linear motion stage”, Mechatronics, Vol. 22, pp. 222-238, 2012.
[40]陳佳漢, “多軸平台運動軌跡控制,” 碩士論文, 國立雲林科技大,2014.
[41]F.-J. Lin, P.-H. Shieh and P.-H. Shen, “Robust recurrent-neural-network sliding-mode control for the X-Y table of a CNC machine” IEEE Proc. Vol. 153, No. 1, 2006.
[42]蕭偉城, “適應性模糊控制在XY平台應用,” 碩士論文, 國立雲林科技大,2016.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top