跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/22 01:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:游輝倫
研究生(外文):Yu, Hui-Lun
論文名稱:發泡材填充編織複合材料圓管衝擊破壞之探討
論文名稱(外文):Impact Fracture of Foam-Filled Braided Composite Tube
指導教授:黃順發黃順發引用關係
指導教授(外文):Hwang, Shun-Fa
口試委員:陳育德何智廷
口試委員(外文):CHEN, YU-DEHE, JHIH-TING
口試日期:2017-07-19
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:75
中文關鍵詞:編織碳纖維複合材料圓管衝擊分析漸進式破壞能量吸收發泡材 料
外文關鍵詞:Braided carbon fiber composite tubeImpact analysisProgressive failureEnergy absorption capacityFoam material
相關次數:
  • 被引用被引用:1
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
近年來,汽車工業廣泛地開發輕型材料取代以往的金屬材料以達到節能減碳省油的目標。在汽車潰縮區的部分,起初是以輕型合金為主流,但仍有許多減重空間,因此才轉向於開發碳纖維複合材料。潰縮區是汽車受到撞擊時用來吸收衝擊能量的區域,一般來說它必須要具備穩定的破懷來達到吸收能量的效果。要讓結構穩定地破壞,必須選擇能均勻受力的形狀,因此,碳纖維複合材料圓管為最佳選擇。為了加強能量吸收的特性,本研究在圓管內部添加了發泡材料,並觀察其受軸向動態軸向衝擊之特性,探討能量吸收能力。
本研究將三種發泡材料與兩種管徑之編織碳纖維複合材料圓管組合並搭配導引機制進行軸向衝擊實驗,探討其負載能力、能量吸收能力與破壞型態,並利用LS-DYNA顯示有限元素分析模擬實驗之過程,最後將分析結果與實驗結果進行比較。實驗結果顯示,在管徑28.5 mm部分,空心管與填充PU、PSF發泡材在負載值與能量吸收值都略為接近,而填充PE發泡材之圓管則是略高於其他三者,其分析結果亦有相同之趨勢,最大誤差值為-10.6%;在管徑75 mm部分,實驗與分析皆因為衝擊能量不夠,導致圓管無太大損傷,因而將衝擊能量增加並進行分析。分析結果顯示,四種圓管雖然有破壞但差異性不大,在潰縮距離與能量吸收部分,空管則略低於其他三者。
綜合實驗與分析結果得知,填充PE發泡材料能有效提升管徑28.5 mm圓管之能量吸收特性,而在管徑75 mm圓管方面,三種發泡材料則沒有太顯著的效果,表示隨著衝擊能量的增加,發泡材料的能量吸收特性會越不明顯。此外,分析的負載值以及破壞型態與實驗相近,代表該有限元素分析模型仍有相當的可信度。

In recent years, metal materials are replaced by light materials that achieve energy conservation and carbon reduction in the automotive industry. In crumple area, light alloys are the main materials, but they still have more space for weight loss. Therefore, carbon fiber composite materials are considered. When a collision occurs, crumple area is a part that can absorb impact energy. In generally speaking, the impact energy will be absorbed by stable failure, and the structure should be subjected to a uniform force. From these viewpoints, carbon fiber composite tube is one of the best choices. In this study, foam materials will be filled inside the tube to increase the energy absorption capacity. This study will also focus on observing the characteristics of foam material-filled braided composite tube under the impact test, and discussing the energy absorption capacity.
Three kind of different foam materials are filled in two different diameters of the braid carbon fiber composite tubes and tested by axial impact in this study. The load capacity, specific energy absorption and fracture mode are focused. In addition, finite element analysis LS-DYNA is used to simulate experimental process and compare with the experimental results. The experimental results of the tube in 28.5 mm diameter show that the hollow tube and tubes with PU and PSF foam material are close to each other in load value and energy absorption value, while the tube with PE foam material has higher value than the other three. The results of the simulation also have the same trend, and the max error is -10.6%. In the 75 mm diameter of the tube, both of the experimental result and the simulation result show the chosen impact energy is not enough to make the tube crushed. Hence, the energy is increased and re-analyzed. Although the impact energy is increased, the simulation indicates that the crushed conditions of these four specimens are similar. The hollow tube is lower than the other three in crush distance and energy absorption value.
As a summary of the experiment and simulation results, PE foam material can effectively improve the energy absorption capacity of the 28.5 mm diameter tube. In the 75 mm diameter of the tube, these three foam materials have no significant effect. As the impact energy increases, the energy absorption characteristics of the foam material will become less noticeable. In addition, the load value and fracture mode from the simulation and experiment are almost the same. Therefore, the analysis model has considerable credibility.

摘要 i
ABSTRACT ii
目錄 iii
表目錄 vi
圖目錄 vii
符號說明 x
1.緒論 1
1.1前言 1
1.2文獻回顧 2
1.3研究目的 1
1.4論文架構 1
2.實驗過程及方法 2
2.1碳纖維單方向複合材料之機械性質 2
2.2碳纖維複合材料圓管製作 3
2.2.1製作圓管前置處理 3
2.2.2圓管浸泡樹脂 5
2.2.3模具預熱與熱壓成型 7
2.2.4圓管品質探討 9
2.2.5圓管脫模與試片切割 10
2.2.6圓管纖維夾角量測 12
2.3發泡材料選用 12
2.4碳纖維複合材料圓管衝擊實驗與原理 14
2.4.1圓管試片之幾何尺寸 14
2.4.2比能量吸收 15
2.4.3圓管衝擊實驗 15
3.有限元素分析 17
3.1分析模型建立 17
3.2邊界條件設定 18
3.2.1拘束條件設定 18
3.2.2衝擊塊初速度設定 19
3.3接觸條件設定 19
3.4材料參數設定 20
3.4.1應力應變曲線 20
3.4.2材料卡設定 21
3.4.3殼元素角度與厚度設定 24
4.結果與討論 26
4.1數據處理 26
4.2實驗結果 27
4.2.1管徑28.5 mm圓管衝擊實驗結果 28
4.2.2管徑75 mm圓管衝擊實驗結果 34
4.3分析結果 36
4.3.1管徑28.5 mm圓管衝擊分析結果 36
4.3.2管徑75 mm圓管衝擊分析結果 39
4.3.2管徑75 mm圓管加嚴分析結果 41
4.4實驗與分析比較 43
5. 結論與建議 49
5.1結論 49
5.2建議 50
參考文獻 51


[1]Carla Jane McGregor, Reza Vaziri, Anoush Poursartip, Xinran Xiao, 2007, “Simulation of progressive damage development in braided composite tubes under axial compression,” Composites Part A: Applied Science and Manufacturing, Vol. 38, pp. 2247-2259.
[2]Carla McGregor, Reza Vaziri, Xinran Xiao, 2010, “Finite element modelling of the progressive crushing of braided composite tubes under axial impact,” International Journal of Impact Engineering, Vol. 37, pp. 662-672.
[3]Deepak Siromani, Jonathan Awerbuch, Tein-Min Tan, 2014, “Finite element modeling of the crushing behavior of thin-walled CFRP tubes under axial compression,” Composites: Part B, Vol. 64, pp. 50-58.
[4]Deepak Siromani, Gary Henderson, Doug Mikita, Kevin Mirarchi, Ryan Park, John Smolko, Jonathan Awerbuch, Tein-Min Tan, 2014, “An experimental study on the effect of failure trigger mechanisms on the energy absorption capability of CFRP tubes under axial compression,” Composites Part A: Applied Science and Manufacturing, Vol. 64, pp. 25-35.
[5]Haipeng Han, Farid Taheri, Neil Pegg, You Lu, 2007, “A numerical study on the axial crushing response of hybrid pultruded and ±45° braided tubes,” Composite Structures, Vol. 80, pp. 253-264.
[6]Jiancheng Huang, Xinwei Wang, 2009, “Numerical and experimental investigations on the axial crushing response of composite tubes,” Composite Structures, Vol. 91, pp. 222-228.
[7]Qiang Liu, Huanlin Xing, Yang Ju, Zhengyan Ou, 2014, “Quasi-static axial crushing and transverse bending of double hat shaped CFRP tubes,” Composite Structures, Vol. 117, pp. 1-22.
[8]Rafea Dakhil Hussein, Dong Ruan, Guoxing Lu, Igor Sbarski, 2016, “Axial crushing behaviour of honeycomb-filled square carbon fibre reinforced plastic (CFRP) tubes,” Composite Structures, Vol. 140, pp. 166-179.
[9]T. Hou, Garth Morgan Kendall Pearce, Gangadhara B. Prusty, Donald Wainwright Kelly, 2015, “Pressurised composite tubes as variable load energy absorbers,” Composite Structures, Vol. 120, pp. 346-357.
[10]Xinran Xiao, Mark Edward Botkin, Nancy Lee Johnson, 2009, “Axial crush simulation of braided carbon tubes using MAT58 in LS-DYNA,” Thin-Walled Structures , Vol. 47, pp. 740-749.
[11]LS-DYNA Keyword User's Manual, Version 971, Livermore Software Technology Corporation, Livermore, USA, 2006.
[12]張育銓,2016,編織碳纖維PU樹脂複合材料圓管衝擊破壞之探討,國立雲林科技大學碩士論文。
[13]陳盈儀,2014,樓板表面吸音材料的隔音分析與實驗,國立雲林科技大學碩士論文。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top