跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/01 02:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃合勝
研究生(外文):HUANG, HE-SHENG
論文名稱:複合材料I型梁的三點抗彎破壞行為
論文名稱(外文):Failure Behavior of Composite I-Beams Under Three-Point Bending
指導教授:黃順發黃順發引用關係
指導教授(外文):HWANG, SHUN-FA
口試委員:陳育德何智廷
口試委員(外文):CHEN, YU-DEHE, JHIH-TING
口試日期:2017-07-19
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:62
中文關鍵詞:複合材料I型梁三點抗彎
外文關鍵詞:compositeI beamthree point bending
相關次數:
  • 被引用被引用:3
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
工程界中時常可以見到鋼製I型梁,且因其I字的外型,不僅可以減少梁製造時的成本及重量,其特點是斷面受壓面積增加,抗彎矩能力及穩定性也同時增加。本篇則是以單方向碳纖維進行疊層,使用真空輔助樹脂轉注成形(Vacuum Assistant Resin Transfer Molding)的方式製作I型梁,探討I型梁三點彎曲的受力情況,以疊層的角度和跨距為研究重點。針對最大負載值的部分,疊層角度[90°/0°/90°/0°]s和疊層角度[45°/-45°/90°/0°]s的I型梁,在跨距200 mm時,最大負載實驗平均值分別為11,333 N、9,398 N,在跨距270 mm時,最大負載實驗平均值分別為10,496 N、9,194 N,同樣的跨距,當試件的最外面兩層纖維角度從90度、0度更為換45度、-45度, I型梁的最大負載值會略為下降,但卻能有效幫助試件在第二階段和第三階段縮小其負載的降低幅度,使其負載的遞減幅度更為平緩。疊層角度[90°/0°/90°/0°]s在跨距200 mm時的實驗平均值為11,333 N,在跨距270 mm時的實驗平均值為10,496 N;疊層角度[45°/-45°/90°/0°]s在跨距200 mm時的實驗平均值為9,398 N,在跨距270 mm時的實驗平均值為9,114 N,當跨距從200 mm增加至270 mm時,I型梁的最大負載值會略微降低,在第一階段的剛性也會略微降低,其在第二階段和第三階段的負載值無明顯差異。同時,本研究亦使用有限元素分析來模擬複合材料I型梁受到三點彎曲試驗,並預測其最大負載。結果顯示,疊層角度[90°/0°/90°/0°]s的數值模擬和實驗之間的最大相對誤差為16.2%,疊層角度[45°/-45°/90°/0°]s的數值模擬和實驗之間的最大相對誤差為8.9%。有限元素模型準確地描述了最大負載之前的結構剛度,與最大負載值,實驗和分析結果之間具有良好的相關性。
In engineering, I beams made of steel are often seen. I beam can not only reduce weight but also lower costs because of its shape. The feature of its shape can increase the area to bear the force and reinforce the ability to resist bending force. Also it is more stable. Unidirectional carbon fiber was laminated and the I-beams were fabricated using Vacuum Assistant Resin Transfer Molding process. This composite I-beam subjected to three-point bending is investigated. The focus is on the stacking angle in the laminated beam and the span. The result shows that when the stacking angle is changed from [90°/0°/90°/0°]s to [45°/-45°/90°/0°]s, the peak force of three-point bending decreases from 11,333 N to 9,398 N for the span of 200 mm. In the span of 270 mm, the peak force of three-point bending decreases from 10,496 N to 9,194 N. In the same span, when the outer-most two layer stacking angle of the I beam is changed from 90 degree and 0 degree to 45 degree and -45 degree, the peak force of the I beam will decrease slightly. However, this will help reducing the decline of residual strength of the specimen in the second and third stages during the loading process. When the stacking angle is [90°/0°/90°/0°]s and the span is varied from 200 mm to 270 mm, the peak force is decreased from 11,333 N to 10,496 N. When the stacking angle is [45°/-45°/90°/0°]s and the span is from 200 mm to 270 mm, the peak force is slightly decreased from 9,398 N to 9,114 N. In addition, the stiffness in the first stage will be slightly reduced, and there will be no significant difference in the peak force of the second stage and the third stage. Furthermore, finite element analysis is used to simulate the composite I-beam subjected to three-point bending test and predicte its peak force. The results show that the maximum relative error between the numerical simulation of the stacking angle [90°/0°/90°/0°]s and the experiment is 16.2%, and the maximum relative error between the numerical simulation of the stack angle [45°/-45°/90°/0°]s and the experiment is 8.9%. The finite element model accurately predicts the peak force value and the structural stiffness before the peak force. Good correlation is achieved between experimental and numerical results.
摘要 i
ABSTRACT ii
目錄 iii
表目錄 v
圖目錄 vi
符號說明 ix
1、緒論 1
1.1 前言 1
1.2文獻回顧 2
1.3研究目的 10
1.4論文大綱 10
2、實驗過程及方法 12
2.1機械性質 12
2.2複合材料I型梁試件之製作 13
2.2.1 單方向碳纖維布疊層 13
2.2.2 複合材料I型梁疊層 14
2.2.3 真空輔助樹脂轉注成型 16
2.2.4 熱壓成型 18
2.2.5 試件的切割與修邊 19
2.3 複合材料I型梁三點抗彎實驗 20
3、有限元素分析 22
3.1 概述 22
3.2 元素 22
3.3 纖維角度的設定 23
3.4 分析模型建立 24
3.5 材料參數設定 25
3.6 接觸條件設定 27
4、結果與討論 29
4.1 實驗結果 29
4.1.1 角度探討 29
4.1.2 跨距探討 35
4.2 分析結果 38
4.2.1 角度探討 38
4.2.2 跨距探討 39
4.3 實驗與分析比較 43
5、結論與建議 47
5.1結論 47
5.2建議 48
參考文獻 49

[1]Jiang Bo Bai, R. Ajit Shenoi, Xin Yao Yun, Jun Jiang Xiong, 2017, “Progressive damage modelling of hybrid RTM-made composite Π-joint under four-point flexure using mixed failure criteria,” Composite Structures, Vol.159, pp. 327-334.
[2]Chuyang Luo, Junjiang Xiong, 2012, “Static Pull and Push Bending Properties of RTM-made TWF Composite Tee-joints,” Chinese Journal of Aeronautics, Vol.25, pp. 198-207.
[3]Adrian C. Orifici, Rodney S. Thomson, Israel Herszberg, Tanchum Weller, Richard Degenhardt, Javid Bayandor, 2008, “An analysis methodology for failure in postbuckling skin–stiffener interfaces,” Composite Structures, Vol.86, pp. 186-193.
[4]Julien Bertolini, Bruno Castanie, Jean Jacques Barrau, Jean Philippe Navarro, 2008, “An experimental and numerical study on omega stringer debonding,” Composite Structures, Vol.86, pp. 233-242.
[5]Hai Wu, Jiayu Xiao, Suli Xing, Siwei Wen, Fubiao Yang, Jinshui Yang, 2015, “Numerical and experimental investigation into failure of T700/bismaleimide composite T-joints under tensile loading,” Composite Structures, Vol.130, pp. 63-74.
[6]Allan C. Manalo, Thiru Aravinthan, Warna Karunasena, 2010, “Flexural behaviour of glue-laminated fibre composite sandwich beams,” Composite Structures, Vol.92, pp. 2703-2711.
[7]Lian Hong Gen, Lin Ye, Yu Wing Mai, 1999, “Simulations of mechanical performance of pultruded I-beams with various flange-web conjunctions,” Composites: Part B, Vol.30, pp. 423-429.
[8]Yousif A. Khalid, Faris A. Ali, Barkawi B. Sahari, Elsadig Mahdi A. Saad, 2005, “Performance of composite I-beams under axial compression and bending load modes,” Materials and Design, Vol.26, pp. 127-135.
[9]Ghang Zhou, J. Hood, 2006, “Design, manufacture and evaluation of laminated carbon/epoxy I-beams in bending,” Composites: Part A, Vol.36, pp. 506-517.
[10]Kevin D. Potter, Richard Davies, M. Barrett, A. Godbehere, Lee Bateup, Michael Wisnom, Andrew Mills, 2001, “Heavily loaded bonded composite structure: design, manufacture and test of `I' beam specimens,” Composite Structures, Vol.51, pp. 389-399.
[11]LS-DYNA Keyword User's Manual, Version 971, Livermore Software Technology Corporation, Livermore, USA, 2006.
[12]邱鈺泰,2014,複合材料I型梁的分析與實驗,國立雲林科技大學碩士論文。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top