跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/02 21:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張竣翔
研究生(外文):Chun-Hsiang Chang
論文名稱:金屬塗裝製程廢水Fenton降解效能之研究
論文名稱(外文):Study on Fenton Degradation Efficiency for Metal Coating Wastewater
指導教授:洪肇嘉洪肇嘉引用關係
指導教授(外文):Jao-Jia Horng
口試委員:蔡勇斌盧重興
口試日期:2017-06-28
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全衛生工程系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:156
中文關鍵詞:Fenton法金屬塗裝製程廢水降解效率降解途徑
外文關鍵詞:Fenton reactionMetal coating process wastewaterDegradation efficiencyDegradation pathways
相關次數:
  • 被引用被引用:0
  • 點閱點閱:138
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
多數Fenton法研究常先以實驗室合成廢水為目標,但製程廢水成份相對複雜,本研究使用某精密儀器製造廠之金屬塗裝製程廢水進行Fenton反應降解效能實驗,並輔以GC/MS做廢水成份分析,針對降解率、污泥量、降解途徑做綜合探討。
本研究先以田口實驗設計考量Fe2+濃度、H2O2濃度、pH值與溫度四個因子,以降解率及污泥量為目標,最佳降解效率之參數為pH 3.5、Fe2+濃度10 mM、H2O2濃度0.5 M、溫度55℃,COD去除率為86.8%,有些微交互作用影響;最少污泥量因子為pH 3.5、Fe2+濃度1 mM、H2O2濃度10 M、溫度55℃,污泥總固體量為1.739 g/L。後續單因子實驗發現當H2O2/Fe2+比例為100時COD去除率87.3%較佳與污泥量較低4.127 g/L。利用XRD分析污泥主要由有機物、Na2SO4、FeCO3、Na2Fe(SO4)2組成。
為探討因子交互作用反應曲面實驗設計第一部分以pH、Fe2+、H2O2三個因子探討降解率及污泥量與各因子交互作用情形,反應1 h時著重Fe2+濃度(12 mM),濃度高初期反應速率快、降解率高;6 h反應著重H2O2濃度(1.1 M),H2O2殘留會使Fenton反應持續,降解效率後來居上;pH值為3初期效果較好,後期因為反應產生之H+於pH值3.5時較佳。污泥隨Fe2+添加量增加pH也有影響,初始pH越低因後續中和時添加的NaOH需求量多,會增多污泥總固體量。第二部分則以改變金屬塗裝製程廢水有機物濃度,以找出各時間點最小加藥量,使其處理後能符合工業區污水處理廠標準。
利用GC/MS分析本實驗使用之金屬塗裝製程廢水內成份包括甲基異丁基酮、甲苯、乙苯、鄰二甲苯、環己酮以及對二甲苯六種,探討降解途徑首先乙苯、鄰二甲苯、對二甲苯外接C-C單鍵被破壞轉化為甲苯、苯,並破環產生中間產物二甲氧基甲烷,再來則會依分子大小順序由環己酮、甲基異丁基酮、甲氧基乙烯被降解為更小分子甚至完全礦化為二氧化碳及水。

Most Fenton studies often aimed at the laboratory synthetic wastewaters owing to complex constituents in process wastewater. In this study, Fenton reaction was used to treat metal coating process wastewater from a precision machinery factory. GC/MS was used analyze the wastewater composition with the degradation rate, the amount of sludge, and degradation pathways for a comprehensive study.
Four variables were included in the study, including Fe2+ concentration, H2O2 concentration, initial pH and temperature for Taguchi experiment with the targets of the degradation rate and the amount of sludge. The optimum degradation efficiency were achieved with the factors of pH 3.5, Fe2+ 10 mM, H2O2 0.5 M, temperature 55℃ to reach the COD removal rate 86.8%. Some interactions of factors were observed. The optimum factors for few sludge were pH 3.5, Fe2+ 1 mM, H2O2 10 M and temperature 55℃ with the sludge content 1.739 g/L. More experiments found that the optimum H2O2/Fe2+ ratio were 100 with COD removal rate of 87.3% and sludge of 4.127 g/L. The organic matter, Na2SO4, FeCO3, Na2Fe (SO4)2 of sludge were analysis by XRD.
In order to explore the interactions of the factors, the first part of study included three variables of pH, Fe2+ and H2O2 in the response surface method with the degradation rate and the amount of sludge as the targets. When the reaction time was set at 1 hour, the reaction rate and degradation rate was fast for high Fe2+concentration (12 mM). At 6 hours, the concentration of H2O2 (1.1 M) was more important as the residual of H2O2 resulted in increasing the degradation efficiency. In the first hours, the degradation rate was better at pH 3 better and later for pH 3.5 as proton produced. The amount of sludge increased with the addition amount of Fe2+. As adjusting for low initial pH with NaOH, the sludge amount would increase as pH adjusted. The second part of study was to change organic contents in the metal coating process wastewater in order to optimize the Fenton dosage and to meet the effluent standards.
As GC/MS analyzed the contents of the metal coating wastewater included six constituents of methyl isobutyl ketone, toluene, ethylbenzene, o-xylene, cyclohexanone and p-xylene. First, the degradation pathway involved the breakage of external C-C single bond of ethylbenzene, o-xylene, p-xylene toluene and benzene. Then, the further degradation would break the benzene ring to produce intermediate of dimethoxymethane. The following steps would be followed the order of molecular sizes, from cyclohexanone, methyl isobutyl ketone, methoxy ethylene to smaller molecules or even fully mineralized to carbon dioxides and water.

摘要 i
ABSTRACT iii
目錄 v
表目錄 vii
圖目錄 ix
第一章 緒論 1
1.1 研究緣起與動機 1
1.2 研究目的 2
第二章 文獻回顧 4
2.1 Fenton法 4
2.1.1 Fenton反應 4
2.1.2 Fenton反應機制 6
2.1.3 Fenton反應之影響因子 9
2.2 自由基理論 21
2.2.1 氫氧自由基 21
2.2.2 自由基測定方法 27
2.3 Fenton法之應用 33
2.3.1 衍生Fenton法 33
2.3.2 實場運用Fenton法 48
2.4 金屬塗裝製程溶劑成份 53
第三章 研究方法 58
3.1 實驗材料與設備 58
3.1.1 實驗藥品 58
3.1.2 實驗設備 59
3.2 實驗流程 59
3.3 實驗規劃 61
3.4 實驗設計 67
3.5 分析方法 70
第四章 結果與討論 74
4.1 田口實驗設計Fenton法以降解金屬塗裝製程廢水 74
4.1.1 探討TOC及COD去除率 75
4.1.2 探討Fenton鐵污泥總固體量 79
4.1.3 探討H2O2殘餘量 81
4.1.4 Fe濃度單因子實驗 83
4.1.5 污泥成份分析 87
4.2 反應曲面法探討Fenton法降解金屬塗裝製程廢水 91
4.2.1 反應曲面法實驗設計 91
4.2.2 反應曲面法探討TOC去除率及影響參數 93
4.2.3 探討污泥總固體量 101
4.2.4 探討有機物濃度 104
4.3 Fenton法降解金屬塗裝製程廢水之降解趨勢 111
第五章 結論與建議 120
5.1 結論 120
5.2 建議 121
第六章 參考文獻 122
英文參考文獻 122
中文參考文獻 137
附錄 138
附錄一 H2O2定量技術 138
附錄二 田口實驗 139
附錄三 污泥成份分析 140
附錄四 反應曲面法 143


英文參考文獻
Adewuyi, Y. G., (2001), “Sonochemistry: Environmental science and engineering applications”, Ind. Eng. Chem. Res., 40(22), pp. 4681-4715.
Adishkumar, S., Sivajothi, S., and Banu, J. R., (2012), “Coupled solar photofenton process with aerobic sequential batch reactor for treatment of pharmaceutical wastewater”, Desalination and Water Treatment, Vol. 48, Issue 1-3, pp. 89-95.
Anipsitakis G. P., Dionysiou D. D., (2004), “Radical generation by the interaction oftransition metals with common oxidants”, Environ. Sci. Technol., 38(13), pp. 3705-3712.
Asati A., Santra S., Kaittanis C., Perez J. M., (2010), “Surface-charge-dependent cell local-ization and cytotoxicity of cerium oxide nanoparticles”, ACS Nano, 4(9), pp. 5321-5331.
Aytar, P., Gedikli, S., Sam, M., Farizoglu, B., and Cabuk, A., (2013), “Sequential treatment of olive oil mill wastewater with adsorption and biological and photo-Fenton oxidation”, Environmental Science and Pollution Research, Vol. 20, Issue 5, pp. 3060–3067.
Azabou, S., Najjar, W., Bouaziz, M., Ghorbel, A., and Sayadi, S., (2010), “A compact process for the treatment of olive mill wastewater by combining wet hydrogen peroxide catalytic oxidation and biological techniques”, Journal of Hazardous Materials, Vol. 183, Issues 1–3, pp. 62-69.
Bagal, M. V., and Gogate, P. R., (2014), “Wastewater treatment using hybrid treatment schemes based on cavitation and Fenton chemistry: A review”, Ultrasonics Sonochemistry, Vol. 21, Issue 1, pp. 1-14.
Babuponnusami, A., and Muthukumar, K., (2012), “Removal of phenol by heterogenous photo electro Fenton-like process using nano-zero valent iron”, Separation and Purification Technology, Vol. 98, pp. 130-135.
Badawy, M. I., Gohary, F. E., Ghaly, M. Y., and Ali, M. E. M., (2009), “Enhancement of olive mill wastewater biodegradation by homogeneous and heterogeneous photocatalytic oxidation”, Journal of Hazardous Materials, Vol. 169, Issues 1–3, pp. 673-679.
Baus C., Sona M., Brauch H. J., (2007), “Ozonation and combined ozone/H2O2, UV/ozone and UV/H2O2 for treatment of fuel oxygenates MTBE, ETBE, TAME, and DIPE from water – a comparison of removal efficiencies”, Water Science and Technology, Vol. 55, Issue 12, pp. 307-311.
Bautista, P., Mohedano, A. F., Casas, J. A., Zazo, J. A., and Rodriguez, J. J., (2011), “Highly stable Fe/gamma-Al2O3 catalyst for catalytic wet peroxide oxidation.”, Journal of Chemical Technology and Biotechnology, Vol. 86, Issue 4, pp. 497-504.
Bali U., Karagözo˘glu B., (2007), “Performance comparison of Fenton process, ferric coagulation and H2O2/pyridine/Cu(II) system for decolorization of Remazol Turquoise Blue G-133”, Dyes and Pigments, Vol. 74, Issue 1, pp. 73-80.
Babuponnusami, A., and Muthukumar, K., (2011), “Degradation of phenol in aqueous solution by Fenton, sono-Fenton and sono-photo-Fenton methods”, Clean-Soil Air Water, Vol. 39, Issue 2, pp. 142-147.
Barb, W. G., Baxendale, J. H., George, P., Hargrave, R., (1951), “Reactions of ferrous and ferric ions with hydrogen peroxide. Part I.-The ferrous ion reaction”, Transactions of the Faraday Society, Vol. 47, Issue 0, pp. 462-500.
Behnajady M. A., Modirshahla N., Ghanbary F., (2007), “A kinetic model for the decolorization of C.I. Acid Yellow 23 by Fenton process”, Journal of Hazardous Materials, Vol. 148, Issues 1–2, pp. 98-102.
Benitez. F. J., Juan L. A., Francisco J. R., (2002), “Degradation of carbofuran by using ozone, UV radiation and advanced oxidation processes”, Journal of Hazardous Materials, Vol. 89, Issue 1, pp. 51-65.
Bharat L., Sanjeev C., (2007), “Optimization of Fenton-biological treatment scheme for the treatment of aqueous dye solutions”, Journal of Hazardous Materials, Vol 148, Issues 1–2, pp. 459-466.
Bokare A. D., Choi W., (2009), “Zero-valent aluminum for oxidative transformation ofaqueous organic pollutants”, Environ. Sci. Technol., 43(18), pp. 7130-7135.
Bokare A. D., Choi W., (2010), “Chromate-induced activation of hydrogen peroxide foroxidative degradation of aqueous organic pollutants”, Environ. Sci. Technol., 44(19), pp. 7232-7237.
Bokare A. D., Choi W., (2011), “Advanced oxidation process based on the Cr(III)/Cr(VI)redox cycle”, Environ. Sci. Technol. 45(21), pp. 9332-9338.
Bokare A. D., Choi W., (2014), “Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes”, Journal of Hazardous Materials, Vol. 275, pp. 121-135.
Bremner, D. H., Molina, R., Mart´ınez, F., Melero, J. A., and Segura, Y., (2009), “Degradation of phenolic aqueous solutions by high frequency sono-Fenton systems (US–Fe2O3/SBA-15–H2O2)”, Applied Catalysis B: Environmental, Vol. 90, Issues 3–4, pp. 380-388.
Brillas, E., Sires, I., and Oturan, M. A., (2009), “Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry”, Chemical Reviews, 109(12), pp. 6570-6631.
Carp O., Huisman C. L., Reller A., (2004), “Photoinduced reactivity of titanium dioxide”, Progress in Solid State Chemistry, Vol. 32, Issues 1–2, pp. 33-177.
Carra, I., Santos-Juanes, L., Aci´en Fern´andez, F. G., Malato, S., and S´anchez P´erez, J. A., (2014), “New approach to solar photo-Fenton operation. Raceway ponds as tertiary treatment technology”, Journal of Hazardous Materials, Vol. 279, pp. 322-329.
Ca˜nizares, P., Paz, R., S´aez, C., and Rodrigo, M. A., (2009), “Costs of the electrochemical oxidation of wastewaters: A comparison with ozonation and Fenton oxidation processes”, Journal of Environmental Management, Vol. 90, Issue 1, pp. 410-420.
Chakinala, A. G., Bremner, D. H., Gogate, P. R., Namkung, K., and Burgess, A. E., (2008), “Multivariate analysis of phenol mineralisation by combined hydrodynamic cavitation and heterogeneous advanced Fenton processing”, Applied Catalysis B: Environmental, Vol. 78, Issues 1–2, pp. 11-18.
Chu, L., Wang, J., Dong, J., Liu, H., and Sun, X., (2012), “Treatment of coking wastewater by an advanced Fenton oxidation process using iron powder and hydrogen peroxide”, Chemosphere, Vol. 86, Issue 4, pp. 409-414.
Codd R., Dillon C. T., Levina A., Lay P. A., (2001), “Studies on the genotoxicity ofchromium: from the test tube to the cell”, Coordination Chemistry Reviews, Vol. 216–217, pp. 537-582.
Driehaus W., Seith R., Jekel M., (1995), “Oxidation of arsenate(III) with manganese oxides in water treatment”, Water Research, Vol. 29, Issue 1, pp. 297-305.
Dixon W. T., Norman R. O. C., (1964), “Electron spin resonance studies of oxidation. Part IV. Some benzenoid compounds”, Journal of the Chemical Society, 935, 4857-4860.
Feng, J., Hu, X., Yue, P. L., Zhu, H. Y., and Lu, G. Q., (2003), “Discoloration and mineralization of Reactive Red HE-3B by heterogeneous photo-Fenton reaction”, Water Research, Vol. 37, Issue 15, pp.3776-3784.
Fontmorina J. M., Burgos Castilloa R. C., Tangb W. Z., Sillanpääa M., (2016), “Stability of 5,5-dimethyl-1-pyrroline-N-oxide as a spin-trap for quantification of hydroxyl radicals in processes based on Fenton reaction”, Water Research, Vol 99, pp. 24-32.
Garrido-Ramirez, E. G., Theng, B. K. G., and Mora, M. L., (2010), “Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions - A review”, Applied Clay Science, Vol. 47, Issues 3–4, pp. 182-192.
Garcia-Segura, S., Cavalcanti, E. B., and Brillas, E., (2014), “Mineralization of the antibiotic chloramphenicol by solar photoelectro-Fenton: From stirred tank reactor to solar pre-pilot plant”, Applied Catalysis B: Environmental, Vol. 144, pp. 588-598.
Gogate, P. R., (2008), “Treatment of wastewater streams containing phenolic compounds using hybrid techniques based on cavitation: A review of the current status and the way forward”, Ultrasonics Sonochemistry, Vol. 15, Issue 1, pp. 1-15.
Goldstein, S., (1999). “Comments on the Mechanism of the ‘Fenton-like’ Reaction”, American Chemical Society, Vol. 32, No. 7, pp. 547–550.
Gogate, P. R., and Pandit, A. B., (2004), “A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions”, Advances in Environmental Research, Vol. 8, Issues 3–4, pp. 501-551.
Hartmann, M., Kullmann, S., and Keller, H., (2010), “Wastewater treatment with heterogeneous Fenton-type catalysts based on porous materials”, J. Mater. Chem., 20, 9002-9017.
Haber F., Weiss J., (1934), “The catalytic decomposition of hydrogen peroxide by iron salts”, Series A, Mathematical and Physical Sciences, Vol. 147, No. 861, PP. 332-351.
Hermosilla, D., Cortijo, M., and Huang, C. P., (2009), “The role of iron on the degradation and mineralization of organic compounds using conventional Fenton and photo-Fenton processes”, Chemical Engineering Journal, Vol. 155, Issue 3, pp. 637-646.
Hermosilla, D., Merayo, N., Ordonez, R., and Blanco, A., (2012), “Optimization of conventional Fenton and ultraviolet-assisted oxidation processes for the treatment of reverse osmosis retentate from a paper mill”, Waste Management, Vol. 32, Issue 6, pp. 1236-1243.
Hodaifa G., Ochando-Pulido J. M., Rodriguez-Vives S., Martinez-Ferez A., (2013), “Optimization of continuous reactor at pilot scale for olive-oil mill wastewater treatment by Fenton-like process”, Chemical Engineering Journal, Vol. 220, pp. 117-124.
Huu D D., Wu J., (2002), “Biological treatment of wastewater from a polymer coating process”, Chemical Technology and Biotechnology, Vol. 77, lssue 9, pp. 979-1094.
Isarain-Ch´avez, E., Arias, C., Cabot, P. L., Centellas, F., Rodr´ıguez, R. M., Garrido, J. A., and Brillas, E., (2010), ‘”Mineralization of the drug β-blocker atenolol by electro-Fenton and photoelectro-Fenton using an air-diffusion cathode for H2O2 electrogeneration combined with a carbon-felt cathode for Fe2+ regeneration”, Applied Catalysis B: Environmental, Vol. 96, Issues 3–4, pp. 361-369.
Janzen E. G., Nutter Jr. D. E., Davis E. R., Blackburn B. J., Poyer J. L., McCay P. B., (1978), “On spin trapping hydroxyl and hydroperoxyl radicals”, Canadian Journal of Chemistry, 56(17), 2237-2242.
Karthikeyan, S., Titus, A., Gnanamani, A., Mandal, A. B., and Sekaran, G., (2011), “Treatment of textile wastewater by homogeneous and heterogeneous Fenton oxidation processes”, Desalination, Vol. 281, pp. 438-445..
Kavitha, V., and Palanivelu, K., (2005), “Destruction of cresols by Fenton oxidation process”, Water Research, Vol. 39, Issue 13, pp. 3062-3072.
Khoufi, S., Aloui, F., and Sayadi, S., (2009), “Pilot scale hybrid process for olive mill wastewater treatment and reuse”, Chemical Engineering and Processing: Process Intensification, Vol. 48, Issue 2, pp. 643-650.
King N. K., Winfield M. E., (1959) “Oxygen uptake and evolution by iron porphyrin enzymes”, Australian Journal of Chemistry, 12(1), 47-64.
Kolar J., Strlic M., Pihlar B., (2001). “New colourimetric method for determination of hydroxyl radicals during ageing of cellulose” Analytica Chimica Acta, Vol. 431, pp. 313-319.
Kozmér, Z., Arany, E., Alapi, T., Takács, E., Wojnárovits, L., & Dombi, A., (2014), “Determination of the rate constant of hydroperoxyl radical reaction with phenol”, Radiation Physics and Chemistry, 102, 135-138.
Kremer, M. L., (1999). “Mechanism of the Fenton reaction. Evidence for a new intermediate”, Physical Chemistry Chemical Physics, Vol. 1, Issue 15, pp. 3595-3605.
Kremer M. L., Stein G., (1959), “The catalytic decomposition of hydrogen peroxide by ferric perchlorate”, Transactions of the Faraday Society, 55, 959-973.
Kurt U., Avsar Y., Gonullu M. T., (2006), “Treatability of water-based paint wastewater with Fenton process in different reactor types”, Chemosphere, Vol. 64, Issue 9, pp. 1536-1540.
Lien H. L., Wilkin R., (2002), “Reductive activation of dioxygen for degradation ofmethyl tert-butyl ether by bifunctional aluminum”, Environ. Sci. Technol., 36(20), pp. 4436-4440.
Ling S. K., Wang S., Peng Y., (2010), “Oxidative degradation of dyes in water using Co2+/H2O2 and Co2+/peroxymonosulfate”, Journal of Hazardous Materials, Vol. 178, Issues 1–3, pp. 385-389.
Li X., Xiong Z., Ruan X., Xia D., Zeng Q., Xu A., (2012), “Kinetics and mechanism oforganic pollutants degradation with cobalt-bicarbonate-hydrogen peroxidesystem: investigation on the role of substrates”, Applied Catalysis A: General, Vol. 411–412, pp. 24-30.
Luo X., Lehotay D.-C., (1997), “Determination of hydroxyl radical using salicylate as a trapping agent by gas chromatography-mass spectrometry”, Clinical Biochemistry, Vol. 30, pp. 41-46.
Macarena M., Gema P., Zahara M. P., Jose A. Casas., Juan J. R., (2014), “Application of intensified Fenton oxidation to the treatment of sawmill wastewater”, Chemosphere, 34-41
Makino K., Hagi A., Ide H., Murakami A., Nishi M., (1992), “Mechanistic studies on the formation of aminoxyl radicals from 5,5-dimethyl-1-pyrroline-N-oxide in Fenton systems. Characterization of key precursors giving rise to background ESR signals”, Canadian Journal of Chemistry, 70(11), 2818-2827.
Manenti, D. R., Soares, P. A., Silva, T. F. C. V., M´odenes, A. N., Espinoza-Qui˜nones, F. R., Bergamasco, R., Boaventura, R. A. R., and Vilar, V. J. P., (2014), “Performance evaluation of different solar advanced oxidation processes applied to the treatment of a real textile dyeing wastewater”, Environmental Science and Pollution Research, Vol. 22, Issue 2, pp. 833-845.
Marr J. C. A., Hansen J. A., Meyer J. S., Cacela D., Podrabsky T., Lipton J., Bergman H. L., (1998), “Toxicity of cobalt and copper to rainbow trout: application ofa mechanistic model for predicting survival”, Aquatic Toxicology, Vol. 43, Issue 4, pp. 225-238.
Manenti, D. R., M´odenes, A. N., Soares, P. A., Espinoza-Qui˜nones, F. R.,Boaventura, R. A. R., Bergamasco, R., and Vilar, V. J. P., (2014), “Assessment of a multistage system based on electrocoagulation, solar photo-Fenton and biological oxidation processes for real textile wastewater treatment”, Chemical Engineering Journal, Vol. 252, pp. 120-130.
Mamontov E., Egami T., Brezny R., Koranne M., Tyagi S., (2000), “Lattice defects andoxygen storage capacity of nanocrystalline ceria and ceria-zirconia”, J. Phys. Chem. B, 104(47), pp. 11110-11116.
Maezono, T., Tokumura, M., Sekine, M., & Kawase, Y., (2011), “Hydroxyl radical concentration profile in photo-Fenton oxidation process: Generation and consumption of hydroxyl radicals during the discoloration of azo-dye Orange II”, Chemosphere, 82(10), 1422-1430.
Malato, S., Fern´andez-Ib´a˜nez, P., Maldonado, M. I., Blanco, J., and Gernjak, W., (2009), “Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends”, Catalysis Today, Vol. 147, Issue 1, pp. 1-59.
Merz J. H., Waters W. A., (1949), “The oxidation of aromatic compounds by means of the free hydroxyl radical”, Journal of the Chemical Society, 511, 2427-2433.
Moholkar, V. S., Kumar, P. S., and Pandit, A. B., (1999), “Hydrodynamic cavitation for sonochemical effects”, Ultrasonics Sonochemistry, Vol. 6, Issues 1–2, pp. 53-65.
Molina, C. B., Zazo, J. A., Casas, J. A., and Rodriguez, J. J., (2010), “CWPO of 4-CP and industrial wastewater with Al-Fe pillared clays”, Water Science and Technology, 61(8), 2161-2168.
Munoz, M., De Pedro, Z. M., Pliego, G., Casas, J. A., Rodriguez, J. J., (2012), “Chlorinated byproducts from the Fenton-like oxidation of polychlorinated phenols”, Ind. Eng. Chem. Res., 51(40), pp. 13092-13099.
Munoz, M., Pliego, G., De Pedro, Z. M., Casas, J. A., and Rodriguez, J. J, (2014), “Application of intensified Fenton oxidation to the treatment of sawmill wastewater”, Chemosphere, Vol. 109, pp. 34-41.
Navalon, S., Alvaro, M., and Garcia, H., (2010), “Heterogeneous Fenton catalysts based on clays, silicas and zeolites”, Applied Catalysis B: Environmental, Vol. 99, Issues 1-2, pp. 1-26.
Nidheesh, P., Gandhimathi, R., and Ramesh, S., (2013), “Degradation of dyes from aqueous solution by Fenton processes: a review”, Environmental Science and Pollution Research, Vol. 20, Issue 4, pp. 2099-2132.
Nidheesh, P. V., and Gandhimathi, R., (2012), “Trends in electro-Fenton process for water and wastewater treatment: An overview”, Desalination, Vol. 299, pp. 1-15.
Nieto-Juarez J. I., Pierzchla K., Sienkiewicz A., Kohn T., (2010), “Inactivation of MS2 col-iphage in Fenton and Fenton-like systems: role of transition metals, hydrogenperoxide and sunlight”, Environ. Sci. Technol., 44(9), pp. 3351-3356.
Oturan, M. A., Aaron, J., (2014), “Advanced oxidation processes in water/wastewater treatment: principles and applications. A Review”, Critical Reviews in Environmental Science and Technology, Vol. 44, Issue 23, pp. 2577-2641.
Oturan, M. A., Sir´es, I., Oturan, N., P´erocheau, S., Laborde, J., and Tr´evin, S., (2008), “Sonoelectro-Fenton process: A novel hybrid technique for the destruction of organic pollutants in water”, Journal of Electroanalytical Chemistry, Vol. 624, Issues 1–2, pp. 329-332.
Ortiz de la Plata, G. B., Alfano, O. M., and Cassano, A. E., (2008), “Optical properties of goethite catalyst for heterogeneous photo-Fenton reactions: Comparison with a titanium dioxide catalyst”, Chemical Engineering Journal, Vol. 137, Issue 2, pp. 396-410.
Ozdemir, C., Tezcan, H., Sahinkaya, S., Kalipci, E., (2010), “Pretreatment of olive oil mill wastewater by two different applications of Fenton oxidation processes”, Clean-Soil Air Water, Vol. 38, Issue 12, pp. 1152-1158.
Papoutsakis, S., Miralles-Cuevas, S., Gondrexon, N., Baup, S., Malato, S., and Pulgarin, C., (2015), “Coupling between high-frequency ultrasound and solar photo-Fenton at pilot scale for the treatment of organic contaminants: An initial approach”, Ultrasonics Sonochemistry, Vol. 22, pp. 527-534.
Parag R. G., Aniruddha B. P., (2004), “A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions”, Advances in Environmental Research 8, 501-551.
Pliego, G., Xekoukoulotakis, N., Venieri, D., Zazo, J. A., Casas, J. A., Rodriguez, J. J., and Mantzavinos, D., (2014), “Complete degradation of the persistent antidepressant sertraline in aqueous solution by solar photo-Fenton oxidation”, Journal of Chemical Technology and Biotechnology, Vol. 89, Issue 6, pp. 816-818.
Pliego, G., Zazo, J. A., Casas, J. A., and Rodriguez, J. J., (2013), “Case study of the application of Fenton process to highly polluted wastewater from power plant”, Journal of Hazardous Materials, Vol. 252–253, pp. 180-185.
Pliego G, Zazo J. A., Garcia--Muñoz P., Munoz M., Casas J. A., Rodriguez J. J., (2015), “Trends in the Intensification of the Fenton Process for Wastewater Treatment: An Overview”, Critical Reviews in Environmental Science and Technology, Vol 45, Issue 24, pp. 2611-2692.
Pourbaix M., (1974), “Applications of electrochemistry in corrosion science and in practice”, Corrosion Science, Vol. 14, Issue 1, pp. 25-82.
Pradhan, A. A., and Gogate, P. R., (2010), “Degradation of p-nitrophenol using acoustic cavitation and Fenton chemistry”, Journal of Hazardous Materials, Vol. 173, Issues 1–3, pp. 517-522.
Prousek, J., (1995), “Fenton reaction after a century”, Chemicke Listy, Vol. 89, Issue 1, pp. 11-21.
Pignatello, J. J., (1992), “Dark and photoassisted iron (III)-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide”, Environ. Sci. Technol., 26(5), pp 944-951.
Ramachandran, G., and Kumarasamy, T., (2013), “Degradation of textile dyeing wastewater by a modified solar photo-Fenton process using steel scrap/H2O2.”, Clean-Soil Air Water, Vol. 41, Issue 3, pp. 267-274.
Rey, A., Faraldos, M., Bahamonde, A., Casas, J. A., Zazo, J. A., and Rodriguez, J. J., (2008), “Role of the activated carbon surface on catalytic wet peroxide oxidation”, Ind. Eng. Chem. Res., 47(21), pp. 8166-8174.
Sashkina, K. A., Labko, V. S., Rudina, N. A., Parmon, V. N., Parkhomchuk, E. V., (2013), “Hierarchical zeolite FeZSM-5 as a heterogeneous Fenton-type catalyst”, Journal of Catalysis, Vol. 299, pp. 44-52.
S´anchez P´erez, J. A., Rom´an S´anchez, I. M., Carra, I., Cabrera Reina, A., Casas L´opez, J. L., and Malato, S., (2013), “Economic evaluation of a combined photo-Fenton/MBR process using pesticides as model pollutant. Factors affecting costs”, Journal of Hazardous Materials, Vol. 244–245, pp. 195-203.
Salem I. A., El-Maazawi M. S., (2000), “Kinetics and mechanism of color removal ofmethylene blue with hydrogen peroxide catalyzed by some supported alu-mina surfaces”, Chemosphere, Vol. 41, Issue 8, pp. 1173-1180.
Segura, Y., Martinez, F., Melero, J. A., Molina, R., Chand, R., and Bremner, D. H., (2012), “Enhancement of the advanced Fenton process (Fe0/H2O2) by ultrasound for the mineralization of phenol”, Applied Catalysis B: Environmental, Vol. 113–114, pp. 100-106.
Segura, Y., Mart´ınez, F., and Melero, J. A., (2013), “Effective pharmaceutical wastewater degradation by Fenton oxidation with zero-valent iron”, Applied Catalysis B: Environmental, Vol. 136–137, pp. 64-69.
Segura, Y., Molina, R., Martinez, F., and Melero, J. A., (2009), “Integrated heterogeneous sono-photo Fenton processes for the degradation of phenolic aqueous solutions”, Ultrasonics Sonochemistry, Vol. 16, Issue 3, pp. 417-424.
Shen X., Tian J., Li J., Li X., Chen Y., (1992), “Formation of the excited ferryl species following fenton reaction”, Vol. 13, Issue 5, pp. 585-592.
Shen J. H., Horngb J. J., Wanga Y. S., Zengb Y. R., (2017), “The use of reactive index of hydroxyl radicals to investigate the degradation of acid orange 7 by Fenton process”, Chemosphere, Vol. 182, pp. 364-372.
Shih, Y., Su, H., Huang, Y., (2013), “Photoelectro-Fenton mineralization of phenol through optimization of ferrous regeneration”, Environmental Science and Pollution Research, Vol. 20, Issue 9, pp. 6184-6190.
Sir´es, I., Garrido, J. A., Rodr´ıguez, R. M., Brillas, E., Oturan, N., and Oturan, M. A., (2007), “Catalytic behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial chlorophene”, Applied Catalysis B: Environmental, Vol. 72, Issues 3–4, pp. 382-394.
Stephen R. C., Mihaela I. S., James R. B., Ali S. A., (2000), “UV/H2O2 Treatment of Methyl tert-Butyl Ether in Contaminated Waters”, Environ. Sci. Technol, 34(4), pp. 659-662.
Tang W. Z., An H., (1995), “UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous solutions”, Chemosphere, Vol. 31, Issue 9, pp. 4157-4170.
Tang, W. Z., and Huang, C. P., (1996), “2,4-Dichlorophenol oxidation kinetics by Fenton’s reagent”, Environmental Technology, Vol. 17, Issue 12, pp. 1371-1378.
Tokumura, Masahiro, et al., (2011), “Iron redox cycling in hydroxyl radical generation during the photo-Fenton oxidative degradation: dynamic change of hydroxyl radical concentration”, Applied Catalysis B: Environmental, Vol. 106, pp. 565-576.
Tseng J. M., Huang C. P., (1991), “Removal of chlorophenols from water by photocatalytic oxidation”, Water Science and Technology, Vol. 23, Issue 1-3, 377-387.
Vilar V. J. P., Rocha E. M. R., Mota F. S., Amélia F., Isabel S., Boaventura R. A. R., (2011), “Treatment of a sanitary landfill leachate using combined solar photo-Fenton and biological immobilized biomass reactor at a pilot scale”, Water Research, Vol. 45, Issue 8, pp. 2647-2658.
Von Sonntag, C., (2006), “Free-radical-induced DNA damage and its repair”, A Chemical Perspective. Springer, Heidelberg.
Wang Y., Shen X., Chen F., (2014), “Improving the catalytic activity of CeO2/H2O2 sys-tem by sulfation pretreatment of CeO2”, Journal of Molecular Catalysis A: Chemical, Vol. 381, pp. 38-45.
Wang, C., Chou, W., Chung, M., and Kuo, Y., (2010), “COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode”, Desalination, Vol. 253, Issues 1–3, pp. 129-134.
Walling C., Amarnath K., (1982), “Oxidation of mandelic acid by Fenton's reagent”, J. Am. Chem. Soc., 104(5), pp. 1185-1189.
Zapata, A., Malato, S., Sanchez-Perez, J. A., Oller, I., and Maldonado, M. I., (2010), “Scale-up strategy for a combined solar photo-Fenton/biological system for remediation of pesticide-contaminated water”, Catalysis Today, Vol. 151, Issues 1–2, pp. 100-106.
Zazo J. A., Pliego G., Blasco S., Casas J. A., Rodriguez J. J., (2011), “Intensification of the Fenton process by increasing the temperature”, Ind. Eng. Chem. Res., 50(2), pp. 866-870.
Zepp, R. G., Faust, B. C., Hoigne, J., (1992), “Hydroxyl radical formation in aqueous reactions (pH 3–8) of iron(II) with hydrogen peroxide: the photo-Fenton reaction”, Environ. Sci. Technol, 26(2), pp. 313-319.
Zhang C., Jiang Y., Lia Y., Hua Z., Zhou L., Zhou M., (2013), “Three-dimensional electrochemical process for wastewater treatment: A general review”, Chemical Engineering Journal, Vol. 228, pp. 455-467.
Zhaokun X., Jinyan C., Dan Y., Bo L., Ping Y., (2017), “Coagulation-flocculation as pre-treatment for micro-scale Fe/Cu/O3 process (CF-mFe/Cu/O3) treatment of the coating wastewater from automobile manufacturing”, Chemosphere, Vol. 166, pp.343-351.
Zhou M., Diwu Z., Panchuk-Voloshina N., Haugland R. P., (1997), “A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases”, Analytical Biochemistry, Vol. 253, Issue 2, pp. 162-168.


中文參考文獻
張芳淑,1995,“Fenton反應之最適化控制因子探討”,淡江大學,水資源及環境工程學系,博士論文。
鄭佳倩,2007,“以自由基捕捉/螢光法量測光催化反應中氫氧自由基之生成”,國立高雄第一科技大學,環境與安全衛生工程研究所,碩士論文。
林哲民,2012,“以染料AO7探討Fenton程序生成自由基之研究”,國立雲林科技大學環境與安全衛生工程系,碩士論文。
林哲民,2000,“利用 UV/H2O2、O3及UV/O3光化學氧化法處理反應性染料廢水之研究”,逢甲大學,環境工程與科學研究所,碩士論文。
曾彥儒,2015,“以Fenton法探討自由基與有機物之反應機制”,國立雲林科技大學,環境與安全衛生工程系,碩士論文。
王淑娟,2006,“液相光催化反應之氫氧自由基生成量測-以甲醇為自由基捕捉劑”,國立高雄第一科技大學,環境與安全衛生工程系,碩士論文。
吳致誠,2002,“UV/TiO2 程序中氫氧自由基之生成研究”,國立中興大學,環境工程系,碩士論文。
阮釋逸,2013,“香豆素捕捉氫氧自由基的螢光分析方法研究”,國立雲林科技大學,環境與安全衛生工程系,實務專題。
阮釋逸,2016,“Fenton法降解數種具磺酸基偶氮染料之分解途徑研究”,國立雲林科技大學,環境與安全衛生工程系,碩士論文。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top