跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/12 02:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柯甯尹
研究生(外文):KO, NING-YIN
論文名稱:以雙烷基二甲基溴化銨(DXDAB)及硬脂酸(SA)開發陰陽離子型液胞做為薑黃素載體之應用
論文名稱(外文):Development of catanionic vesicles composed of dialkyldimethylammonium bromides (DXDAB) and stearic acid (SA) as carriers for curcumin.
指導教授:周宗翰
指導教授(外文):CHOU, TZUNG-HAN
口試委員:張鑑祥郭勇志楊宏達
口試委員(外文):CHANG, CHIEN-HSIANGKUO,YUNG-CHIHYANG, HONG-TA
口試日期:2017-06-13
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:169
中文關鍵詞:界面活性劑D活性藥物C藥物載體
外文關鍵詞:surfactant Dactive drug Cdrug carrier
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本研究由不同比例界面活性劑D,與界面活性劑A形成膠體分散液。並藉由動態光散射儀(dynamic light scattering, DLS)分析界面活性劑D/A奈米聚集體之粒徑及電位,且透過穿透射電子顯微鏡(transmission electron microscope, TEM)、螢光偏極(fluorescence polarization, FL)測量及微分式掃描熱卡計(differential scanning calorimetry, DSC),分別觀察界面活性劑D/A奈米聚集體其結構、結構中的分子排列情況,及研究奈米聚集體的相變行為。之後,藉由氣/液界面上之Langmuir單層與螢光顯微鏡技術,研究界面活性劑D與界面活性劑A之側向交互作用。實驗結果發現界面活性劑D及界面活性劑A於界面活性劑A莫耳比例為0.1至0.5 (XA=0.1~0.5)時混合界面活性劑D/A分散液可形成穩定之奈米聚集體分散液。此外,活性藥物C是非常不穩定且易於水溶液環境中降解的成分。因此我們欲將界面活性劑D/A奈米聚集體作為其載體,期望能改善活性藥物C的化學穩定性。結果顯示,界面活性劑D/A-C.分散液包覆活性藥物C的包覆效率達到95%以上,且界面活性劑D/A奈米聚集體能提高活性藥物C的穩定性。再藉由人工皮膚體外滲透研究,指出界面活性劑D/A-C.分散液具有藥物累積於人工皮膚內之能力。因此,界面活性劑D/A奈米聚集體有潛力成為藥物載體。
In this study, colloidal properties of mixtures composed of cationic surfactant D and anionic surfactant A are investigated. Particle size and zeta-potential of mixed surfactant D/A nano-aggregates were determined by dynamic light scattering analysis. Transmission electron microscope has been used for structural observation of mixed surfactant D/A dispersions directly. Fluorescence polarization examination was to study the molecular arrangement in the nano-aggreates and differential scanning calorimetry was used to investigate the phase transition behavior of mixed surfactant D/A nano-aggregates. Besides, the lateral interactions between surfactant D and surfactant A in the monolayer domains were investigated by a Langmuir monolayer technique with a fluorescence microscope. The experiment results suggest that surfactant D and surfactant A can form mixed surfactant D/A nano-aggregates as the molar ratio of surfactant A from 0.1 to 0.5. Active drug C is highly instable and very susceptible to degradation in aqueous solution. Therefore, we use surfactant D/A nano-aggregates as carrier to improve chemical stability of active drug C. Results showed that entrapment efficiencies of mixed surfactant D/A nano-aggregates were reached 95%. mixed surfactant D/A vesicles could promote the drug accumulation in artificial skin. Therefore, mixed surfactant D/A vesicles could potentially be a good drug carrier.
摘要 i
Abstract ii
Graphical abstract iii
誌謝 iv
目錄 v
表目錄 ix
圖目錄 x
符號說明 xvi
縮寫說明 xix
第一章 緒論 1
1-1前言 1
1-2研究動機與目的 2
第二章 文獻回顧 3
2-1膠體分散液 3
2-2陰陽離子液胞 3
2-3陰陽離子液胞特性 4
2-3-1雙碳鏈陽離子界面活性劑 5
2-3-2單碳鏈陰離子界面活性劑 5
2-4單分子層與雙層結構之相關性及發展 6
2-5氣/液界面上螢光單分子層顯微鏡觀察 7
2-6活性藥物C結構特徵 8
2-7活性藥物C之應用及發展 8
第三章 實驗設備與方法 13
3-1實驗藥品 13
3-2實驗方法 14
3-2-1膠體分散液製備流程 14
3-2-2動態光散射儀分析 14
3-2-3穿透式電子顯微鏡型態觀察 16
3-2-4螢光偏極化量測 16
3-2-5微分掃描熱卡計分析 17
3-2-6 Langmuir單分子層技術 18
3-2-7包覆活性藥物C分散液製備程序 23
3-2-8藥物包覆效率 23
第四章 結果與討論 31
4-1混合界面活性劑D/A分散液物理特徵 31
4-1-1混合界面活性劑D/A分散液之粒徑、分散度及界面電位 31
4-1-2混合界面活性劑D/A分散液型態觀察 32
4-1-3混合界面活性劑D/A分散液相變行為 32
4-1-4混合界面活性劑D/A分散液螢光偏極值分析 33
4-2混合界面活性劑D/A於氣/液界面上之單分子層行為 33
4-2-1混合界面活性劑D/A單分子層表面壓-每分子佔據面積等溫線分析 33
4-2-2混合界面活性劑D/A單分子層之壓縮模數分析 34
4-2-3混合界面活性劑D/A單分子層之熱力學分析 34
4-2-4混合界面活性劑D/A單分子層型態觀察 35
4-3混合界面活性劑D/A分散液物理特徵 36
4-3-1混合界面活性劑D/A分散液粒之徑、分散度及界面電位 36
4-3-2混合界面活性劑D/A分散液型態觀察 36
4-3-3混合界面活性劑D/A分散液相變行為 37
4-3-4混合界面活性劑D/A分散液螢光偏極值分析 38
4-4混合界面活性劑D/A於氣/液界面上之單分子層行為 38
4-4-1混合界面活性劑D/A單分子層表面壓-每分子佔據面積等溫線分析 38
4-4-2混合界面活性劑D/A單分子層之壓縮模數分析 39
4-4-3混合界面活性劑D/A單分子層之熱力學分析 39
4-4-4混合界面活性劑D/A單分子層型態觀察 40
4-5混合界面活性劑D/A分散液物理特徵 41
4-5-1混合界面活性劑D/A分散液之粒徑、分散度及界面電位 41
4-5-2混合界面活性劑D/A分散液型態觀察 41
4-5-3混合界面活性劑D/A分散液相變行為 42
4-5-4混合界面活性劑D/A分散液螢光偏極值分析 43
4-6混合界面活性劑D/A於氣/液界面上之單分子層行為 43
4-6-1混合界面活性劑D/A單分子層表面壓-每分子佔據面積等溫線分析 43
4-6-2混合界面活性劑D/A單分子層之壓縮模數分析 43
4-6-3混合界面活性劑D/A單分子層之熱力學分析 44
4-6-4混合界面活性劑D/A單分子層型態觀察 45
4-7包覆活性藥物C混合界面活性劑D/A分散液之物性分析 46
4-7-1混合界面活性劑D/A分散液粒徑、電位及包覆效率 46
4-7-2混合界面活性劑D/A系統包覆活性藥物C前後分散液之粒徑、電位的比較 47
4-7-3混合界面活性劑D/A分散液型態觀察 48
4-8包覆活性藥物C混合界面活性劑D/A分散液之化學穩定性 48
4-8-1活性藥物C水溶液儲存於25oC下之化學穩定性 48
4-8-2包覆活性藥物C混合界面活性劑D/A分散液儲存於25oC下之化學穩定性 49
第五章 結論 135
參考文獻 136

Adati, R. D., & Feitosa, E. (2015). The assembly of dialkyldimethylammonium bromide cationic lipids as vesicles or monolayers in presence of poly(ethylene glycol). Thermochimica acta, 613, 71-76.
Aditya, N. P., Hamilton, I. E., & Norton, I. T. (2017). Amorphous nano-curcumin stabilized oil in water emulsion: Physico chemical characterization. Food chemistry, 224, 191-200.
Aiello, C., Andreozzi, P., La Mesa, C., & Risuleo, G. (2010). Biological activity of SDS-CTAB cat-anionic vesicles in cultured cells and assessment of their cytotoxicity ending in apoptosis. Colloids and surfaces B: biointerfaces, 78(2), 149-154.
Arouri, A., & Mouritsen, O. G. (2013). Membrane-perturbing effect of fatty acids and lysolipids. Progress in lipid research, 52(1), 130-140.
Baba, T., Minamikawa, H., Hato, M., Motoki, A., Hirano, M., Zhou, D., & Kawasaki. K. (1999). Synthetic phytanyl-chained glycolipid vesicle membrane as a novel matrix for functional reconstitution of cyanobacterial photosystem II complex. Biochemical and biophysical research communications, 265, 734-738.
Boudier, A., Castagnos, P., Soussan, E., Beaune, G., Belkhelfa, H., Menager, C., Cabuil, V., Haddioui, L., Roques, C., Rico-Lattes, I., & Blanzat, M. (2011). Polyvalent catanionic vesicles: exploring the drug delivery mechanisms. International journal of pharmaceutics, 403(1-2), 230-236.
Carvalho, C. A., Olivares-Ortega, C., Soto-Arriaza, M. A., & Carmona-Ribeiro, A. M. (2012). Interaction of gramicidin with DPPC/D bilayer fragments. Biochimica et biophysica acta, 1818(12), 3064-3071.
Caschera, F., Stano, P., & Luisi, P. L. (2010). Reactivity and fusion between cationic vesicles and fatty acid anionic vesicles. Journal of colloid and interface science, 345(2), 561-565.
Chen, J., He, Z. M., Wang, F. L., Zhang, Z. S., Liu, X. Z., Zhai, D. D., & Chen, W. D. (2016). Curcumin and its promise as an anticancer drug: An analysis of its anticancer and antifungal effects in cancer and associated complications from invasive fungal infections. European journal of pharmacology, 772, 33-42.
Chen, W. J., Zhai, L. M., Li, G. Z., Li, B. Q., & Xu, J. (2004). Spontaneous vesicle formation and vesicle-tubular microstructure transition in aqueous solution of a poly-tailed cationic and anionic surfactants mixture. Journal of colloid and interface science, 278(2), 447-452.
Comelles, F., Ribosa, I., Gonzalez, J. J., & Garcia, M. T. (2015). Catanionic surfactant formation from the interaction of the cationic surfactant hexadecyltrimethylammonium bromide (CTAB) and the ionic liquid 1-butyl-3-methylimidazolium octyl sulfate (bmim-octyl SO4) in aqueous solution. Colloids and surfaces A: Physicochemical and engineering aspects, 484, 136-143.
Coppola, L., Youssry, M., Nicotera, I., & Gentile, L. (2009). Rheological investigation of thermal transitions in vesicular dispersion. Journal of colloid and interface science, 338(2), 550-557.
Dai, C., Yang, Z., Yang, H., Liu, Y., Fang, J., Chen, W., Li, W., & Zhao, M. (2016). Micelle-to-vesicle transition induced by β-cyclodextrin in mixed catanionic surfactant solutions. Colloids and surfaces A: Physicochemical and engineering aspects, 498, 1-6.
Deepa, K., Sheeja, T., Rosana, O., Srinivasan, V., Krishnamurthy, K., & Sasikumar, B. (2017). Highly conserved sequence of ClPKS11 encodes a novel polyketide synthase involved in curcumin biosynthesis in turmeric (Curcuma longa L.). Industrial crops and products, 97, 229-241.
De Sousa, F. F., Freire, P. T., de Menezes, A. S., Pinheiro, G. S., Cardoso, L. P., Alcantara, P., Jr., Moreira, S. G., Melo, F. E., Mendes Filho, J., & Saraiva, G. D. (2015). Low-temperature phase transformation studies in the stearic acid: C form. Spectrochimica acta part A: molecular and biomolecular spectroscopy, 148, 280-288.
Đorđević, V., Belščak-Cvitanović, A., Drvenica, I., Komes, D., Nedović, V., & Bugarski, B. (2017). Nanoscale nutrient delivery systems. 87-139.
Evgeniy, V. D., Sergey, N. S., Sergey, A. Y., & Igor, V. Y. (2007). Self-assembly effect during the adsorption of polynucleotides on stearic acid langmuir-blodgett monolayer. Biomacromolecules, 8, 2258-2261.
Fadus, M. C., Lau, C., Bikhchandani, J., & Lynch, H. T. (2016). Curcumin: An age-old anti-inflammatory and anti-neoplastic agent. Journal of traditional and complementary medicine, 1-8.
Gallier, S., Shaw, E., Cuthbert, J., Gragson, D., Singh, H., & Jiménez-Flores, R. (2013). Hydrolysis of milk phospholipid and phospholipid–protein monolayers by pancreatic phospholipase A2. Food research international, 54(1), 718-725.
Ganguly, R., Kunwar, A., Dutta, B., Kumar, S., Barick, K. C., Ballal, A., Aswal, V. K., & Hassan, P. A. (2017). Heat-induced solubilization of curcumin in kinetically stable pluronic P123 micelles and vesicles: An exploit of slow dynamics of the micellar restructuring processes in the aqueous pluronic system. Colloids and surfaces B: Biointerfaces, 152, 176-182.
Goto, M., Ishida, S., Ito, Y., Tamai, N., Matsuki, H., & Kaneshina, S. (2011). Thermotropic and barotropic phase transitions of dialkyldimethylammonium bromide bilayer membranes: effect of chain length. Langmuir, 27(10), 5824-5831.
Goto, T. E., & Caseli, L. (2014). The interaction of mefloquine hydrochloride with cell membrane models at the air-water interface is modulated by the monolayer lipid composition. Journal of colloid and interface science, 431, 24-30.
Gradzielski, M. (2004). Vesicle gels—phase behaviour and process of formation. Current opinion in colloid & interface science, 9(1-2), 149-153.
Haris, P., Mary, V., Aparna, P., Dileep, K. V., & Sudarsanakumar, C. (2017). A comprehensive approach to ascertain the binding mode of curcumin with DNA. Spectrochimica acta part A: molecular and biomolecular spectroscopy, 175, 155-163.
Hossain, M. M., & Kato, T. (2000). Line tension induced instability of condensed domains formed in adsorbed monolayers at the air-water interface. Langmuir, 16, 10175-10183.
Hu, F. Q., Jiang, S. P., Du, Y. Z., Yuan, H., Ye, Y. Q., & Zeng, S. (2005). Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Colloids and surfaces B: Biointerfaces, 45(3-4), 167-173.
Jia, J., Song, N., Gai, Y., Zhang, L., & Zhao, Y. (2016). Release-controlled curcumin proliposome produced by ultrasound-assisted supercritical antisolvent method. The journal of supercritical fluids, 113, 150-157.
Jiang, S., Han, J., Li, T., Xin, Z., Ma, Z., Di, W., Hu, W., Gong, B., Di, S., Wang, D., & Yang, Y. (2017). Curcumin as a potential protective compound against cardiac diseases. Pharmacological research, 119, 373-383.
Juskowiak, B., & Paczesny, J. (2012). The interaction between G-quadruplex-forming oligonucleotide and cationic surfactant monolayer at the air/water interface. Journal of colloid and interface science, 365(1), 150-155.
Juskowiak, B., & Swiatkowska, A. (2013). Study of the G-quadruplex–dipalmitoylphosphatidylcholine interactions at the air/water interface. Colloids and surfaces A: Physicochemical and engineering aspects, 417, 250-255.
Kadota, K., Okamoto, D., Sato, H., Onoue, S., Otsu, S., & Tozuka, Y. (2016). Hybridization of polyvinylpyrrolidone to a binary composite of curcumin/alpha-glucosyl stevia improves both oral absorption and photochemical stability of curcumin. Food chemistry, 213, 668-674.
Kaminski, G. A., Sierakowski, M. R., Pontarolo, R., & de Freitas, R. A. (2015). Comparison between the interactions of the cationic surfactant D with xanthan and galactomannan. Carbohydrate polymers, 115, 478-484.
Kepczynski, M., Lewandowska, J., Witkowska, K., Kedracka-Krok, S., Mistrikova, V., Bednar, J., Wydro, P., & Nowakowska, M. (2011). Bilayer structures in dioctadecyldimethylammonium bromide/oleic acid dispersions. Chemistry and physics of lipids, 164(5), 359-367.
Khoury, E. E., & Patra, D. (2016). Length of hydrocarbon chain influences location of curcumin in liposomes: Curcumin as a molecular probe to study ethanol induced interdigitation of liposomes. Journal of photochemistry and photobiology B: Biology, 158, 49-54.
Kogure, K., Nakamura, C., Okuda, O., Hayashi, K., & Ueno, M. (1997). Effect of dicetylphosphate or stearic acid on spontaneous transfer of protein from influenza virus-infected cells to dimyristoylphosphatidylcholine liposomes. Biochimica et biophysica acta, 1329, 174–182.
Kuo, A. T., Li, W. T., Tseng, C. Y., Hsiao, F. W., & Chang, C. H. (2014). Probing the alkyl chain length effects on molecular packing characteristics of mixed ion pair amphiphile/double-chained cationic surfactant vesicular bilayers with the Langmuir monolayer approach. Colloids and surfaces A: Physicochemical and engineering aspects, 454, 23-31.
Kurniawansyah, F., Quachie, L., Mammucari, R., & Foster, N. R. (2017). Improving the dissolution properties of curcumin using dense gas antisolvent technology. International journal of pharmaceutics, 521(1-2), 239-248.
Kusumoto, K., & Ishikawa, T. (2010). Didodecyldimethylammonium bromide (DDAB) induces caspase-mediated apoptosis in human leukemia HL-60 cells. Journal of controlled release, 147(2), 246-252.
Lai, L., Mei, P., Wu, X.-M., Chen, L., & Liu, Y. (2016). Interfacial dynamic properties and dilational rheology of mixed anionic and cationic Gemini surfactant systems at air–water interface. Colloids and surfaces A: Physicochemical and engineering aspects, 509, 341-350.
Lang, A., Salomon, N., Wu, J. C., Kopylov, U., Lahat, A., Har-Noy, O., Ching, J. Y., Cheong, P. K., Avidan, B., Gamus, D., Kaimakliotis, I., Eliakim, R., Ng, S. C., & Ben-Horin, S. (2015). Curcumin in combination with mesalamine induces remission in patients with mild-to-moderate ulcerative colitis in a randomized controlled trial. Clinical gastroenterology and hepatology, 13(8), 1444-1449.
Lee, C. H., Yang, Y. M., & Chang, C. H. (2014). Enhancing physical stability of positively charged catanionic vesicles in the presence of calciumchloride via cholesterol-induced fluidic bilayer characteristic. Colloid and polymer science.
Lee, J., & Chang, C. H. (2014). DNA association-enhanced physical stability of catanionic vesicles composed of ion pair amphiphile with double-chain cationic surfactant. Colloids and surfaces B: Biointerfaces, 121, 171-177.
Li, H., Xin, X., Kalwarczyk, T., Hołyst, R., Chen, J., & Hao, J. (2013). Structural evolution of reverse vesicles from a salt-free catanionic surfactant system in toluene. Colloids and surfaces A: Physicochemical and engineering aspects, 436, 49-56.
Li, R., Chen, Q., Zhang, D., Liu, H., & Hu, Y. (2008). Mixed monolayers of Gemini surfactants and stearic acid at the air/water interface. Journal of colloid and interface science, 327(1), 162-168.
Li, S., Fang, C., Zhang, J., Liu, B., Wei, Z., Fan, X., Sui, Z., & Tan, Q. (2016). Catanionic lipid nanosystems improve pharmacokinetics and anti-lung cancer activity of curcumin. Nanomedicine, 12(6), 1567-1579.
Liang, C. H., & Chou, T. H. (2009). Effect of chain length on physicochemical properties and cytotoxicity of cationic vesicles composed of phosphatidylcholines and dialkyldimethylammonium bromides. Chemistry and physics of lipids, 158(2), 81-90.
Lin, S. S., Lai, K. C., Hsu, S. C., Yang, J. S., Kuo, C. L., Lin, J. P., Ma, Y. S., Wu, C. C., & Chung, J. G. (2009). Curcumin inhibits the migration and invasion of human A549 lung cancer cells through the inhibition of matrix metalloproteinase-2 and -9 and vascular endothelial growth factor (VEGF). Cancer letters, 285(2), 127-133.
Lincopan, N., Espindola, N. M., Vaz, A. J., da Costa, M. H., Faquim-Mauro, E., & Carmona-Ribeiro, A. M. (2009). Novel immunoadjuvants based on cationic lipid: Preparation, characterization and activity in vivo. Vaccine, 27(42), 5760-5771.
Lohan, S. B., Icken, N., Teutloff, C., Saeidpour, S., Bittl, R., Lademann, J., Fleige, E., Haag, R., Haag, S. F., & Meinke, M. C. (2016). Investigation of cutaneous penetration properties of stearic acid loaded to dendritic core-multi-shell (CMS) nanocarriers. International journal of pharmaceutics, 501(1-2), 271-277.
Lucci, P., Saurina, J., & Núñez, O. (2017). Trends in LC-MS and LC-HRMS analysis and characterization of polyphenols in food. TrAC trends in analytical chemistry, 88, 1-24.
Mandalapu, D., Saini, K. S., Gupta, S., Sharma, V., Yaseen Malik, M., Chaturvedi, S., Bala, V., Hamidullah, Thakur, S., Maikhuri, J. P., Wahajuddin, M., Konwar, R., Gupta, G., & Sharma, V. L. (2016). Synthesis and biological evaluation of some novel triazole hybrids of curcumin mimics and their selective anticancer activity against breast and prostate cancer cell lines. Bioorganic & medicinal chemistry letters, 26(17), 4223-4232.
Margina, D., Gradinaru, D., Manda, G., Neagoe, I., & Ilie, M. (2013). Membranar effects exerted in vitro by polyphenols-quercetin, epigallocatechin gallate and curcumin - on HUVEC and Jurkat cells, relevant for diabetes mellitus. Food and chemical toxicology, 61, 86-93.
Mercado, F. V., Maggio, B., & Wilke, N. (2011). Phase diagram of mixed monolayers of stearic acid and dimyristoylphosphatidylcholine. Effect of the acid ionization. Chemistry and physics of lipids, 164(5), 386-392.
Morigaki, K., & Walde, P. (2007). Fatty acid vesicles. Current opinion in colloid & interface science, 12(2), 75-80.
Morselli Ribeiro, M. D. M., Barrera Arellano, D., & Ferreira Grosso, C. R. (2012). The effect of adding oleic acid in the production of stearic acid lipid microparticles with a hydrophilic core by a spray-cooling process. Food research international, 47(1), 38-44.
Moussa, Z., Chebl, M., & Patra, D. (2017). Interaction of curcumin with 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine liposomes: Intercalation of rhamnolipids enhances membrane fluidity, permeability and stability of drug molecule. Colloids and surfaces B: Biointerfaces, 149, 30-37.
Oh, J. M., Choi, J. M., Lee, J. Y., Oh, S. J., Kim, B. H., & Kim, S. K. (2014). Role of NADPH oxidase-4 in saturated fatty acid-induced insulin resistance in SK-Hep-1 cells. Food and chemical toxicology, 63, 128-135.
Oliveira, A. C., Raemdonck, K., Martens, T., Rombouts, K., Simon-Vazquez, R., Botelho, C., Lopes, I., Lucio, M., Gonzalez-Fernandez, A., Real Oliveira, M. E., Gomes, A. C., & Braeckmans, K. (2015). Stealth monoolein-based nanocarriers for delivery of siRNA to cancer cells. Acta biomaterialia, 25, 216-229.
Oliveira, I. M., Silva, J. P., Feitosa, E., Marques, E. F., Castanheira, E. M., & Real Oliveira, M. E. (2012). Aggregation behavior of aqueous dioctadecyldimethylammonium bromide/monoolein mixtures: a multitechnique investigation on the influence of composition and temperature. Journal of colloid and interface science, 374(1), 206-217.
Oliveira, T. R., Benatti, C. R., & Lamy, M. T. (2011). Structural characterization of the interaction of the polyene antibiotic Amphotericin B with D bicelles and vesicles. Biochimica et biophysica acta, 1808(11), 2629-2637.
Oliveira, R. G., & Maggio, B. (2002). Compositional domain immiscibility in whole myelin monolayers at the air-water interface and Langmuir-Blodgett films. Biochimica et biophysica acta, 1561 238-250.
Peng, S., Zou, L., Liu, W., Li, Z., Liu, W., Hu, X., Chen, X., & Liu, C. (2017). Hybrid liposomes composed of amphiphilic chitosan and phospholipid: Preparation, stability and bioavailability as a carrier for curcumin. Carbohydrate polymers, 156, 322-332.
Rogerson, M. L., Robinson, B. H., Bucak, S., & Walde, P. (2006). Kinetic studies of the interaction of fatty acids with phosphatidylcholine vesicles (liposomes). Colloids and surfaces B: Biointerfaces, 48(1), 24-34.
Romão, R. I. S., Martinho, J. M. G., & Gonçalves da Silva, A. M. P. S. (2014). Interaction of a double hydrophilic block copolymer with lipid monolayers at the air–water interface. Thin solid films, 550, 621-629.
Rozenfeld, J. H., Oliveira, T. R., Lamy, M. T., & Carmona-Ribeiro, A. M. (2011). Interaction of cationic bilayer fragments with a model oligonucleotide. Biochimica et biophysica acta, 1808(3), 649-655.
Segota, S., & Tezak, D. (2006). Spontaneous formation of vesicles. Advances in colloid and interface science, 121(1-3), 51-75.
Severino, P., Pinho, S. C., Souto, E. B., & Santana, M. H. (2011). Polymorphism, crystallinity and hydrophilic-lipophilic balance of stearic acid and stearic acid-capric/caprylic triglyceride matrices for production of stable nanoparticles. Colloids and surfaces B: Biointerfaces, 86(1), 125-130.
Silva, A. M. G. D., Romão, R. S., Lucero Caro, A., & Rodrı́guez Patino, J. M. (2004). Memory effects on the interfacial characteristics of dioctadecyldimethylammonium bromide monolayers at the air–water interface. Journal of colloid and interface science, 270(2), 417-425.
Sohrabi, B., Eivazzadeh, S., Sharifi, A., & Azadbakht, R. (2015). Self-assembled catanionic surfactant mixtures in aqueous/ionic liquid systems. Journal of molecular liquids, 211, 754-760.
Song, Z., Yuan, W., Zhu, R., Wang, S., Zhang, C., & Yang, B. (2017). Study on the interaction between curcumin and CopC by spectroscopic and docking methods. International journal of biological macromolecules, 96, 192-199.
Sou, K., Inenaga, S., Takeoka, S., & Tsuchida, E. (2008). Loading of curcumin into macrophages using lipid-based nanoparticles. International journal of pharmaceutics, 352(1-2), 287-293.
Souguir, H., Salaün, F., Douillet, P., Vroman, I., & Chatterjee, S. (2013). Nanoencapsulation of curcumin in polyurethane and polyurea shells by an emulsion diffusion method. Chemical engineering journal, 221, 133-145.
Suga, K., Yokoi, T., Kondo, D., Hayashi, K., Morita, S., Okamoto, Y., Shimanouchi, T., & Umakoshi, H. (2014). Systematical characterization of phase behaviors and membrane properties of fatty acid/didecyldimethylammonium bromide vesicles. Langmuir, 30(43), 12721-12728.
Syed, H. K., Liew, K. B., Loh, G. O., & Peh, K. K. (2015). Stability indicating HPLC-UV method for detection of curcumin in Curcuma longa extract and emulsion formulation. Food chemistry, 170, 321-326.
Teixeira, A. C., Fernandes, A. C., Garcia, A. R., Ilharco, L. M., Brogueira, P., & Goncalves da Silva, A. M. (2007). Microdomains in mixed monolayers of oleanolic and stearic acids: thermodynamic study and BAM observation at the air-water interface and AFM and FTIR analysis of LB monolayers. Chemistry and physics of lipids, 149(1-2), 1-13.
Tondre, C., & Caillet, C. (2001) Properties of the amphiphilic films in mixed cationic-anionic vesicles: a comprehensive view from a literature analysis. Advances in colloid and interface science, 93, 115-134.
Vega Mercado, F., Maggio, B., & Wilke, N. (2012). Modulation of the domain topography of biphasic monolayers of stearic acid and dimyristoyl phosphatidylcholine. Chemistry and physics of lipids, 165(2), 232-237.
Tseng, W. C., Haselton, R. F., & Giorgio, T. D. (1999). Mitosis enhances transgene expression of plasmid delivered by cationic liposomes. Biochimica et biophysica acta, 1445, 53-64.
Wang, L., Liu, R., Hu, Y., Liu, J., & Sun, W. (2016). Adsorption behavior of mixed cationic/anionic surfactants and their depression mechanism on the flotation of quartz. Powder technology, 302, 15-20.
Wang, L., Lu, N., Zhao, L., Qi, C., Zhang, W., Dong, J., & Hou, X. (2016). Characterization of stress degradation products of curcumin and its two derivatives by UPLC–DAD–MS/MS. Arabian journal of chemistry.
Wu, K. C., Huang, Z. L., Yang, Y. M., Chang, C. H., & Chou, T. H. (2007). Enhancement of catansome formation by means of cosolvent effect: Semi-spontaneous preparation method. Colloids and surfaces A: Physicochemical and engineering aspects, 302(1-3), 599-607.
Yallapu, M. M., Khan, S., Maher, D. M., Ebeling, M. C., Sundram, V., Chauhan, N., Ganju, A., Balakrishna, S., Gupta, B. K., Zafar, N., Jaggi, M., & Chauhan, S. C. (2014). Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer. Biomaterials, 35(30), 8635-8648.
Yang, L., Zheng, Z., Qian, C., Wu, J., Liu, Y., Guo, S., Li, G., Liu, M., Wang, X., & Kaplan, D. L. (2017). Curcumin-functionalized silk biomaterials for anti-aging utility. Journal of colloid and interface science, 496, 66-77.
Yoon, M. J., Kim, E. H., Lim, J. H., Kwon, T. K., & Choi, K. S. (2010). Superoxide anion and proteasomal dysfunction contribute to curcumin-induced paraptosis of malignant breast cancer cells. Free radical biology & medicine, 48(5), 713-726.
Zhang, J., Xu, G., Zhou, Y., Zhou, T., & Zhai, X. (2013). Polyhedral vesicles with crystalline bilayers formed from catanionic surfactant mixtures of fluorocarbon and hydrocarbon amphiphiles. Journal of colloid and interface science, 407, 318-326.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top