跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/23 16:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇育賢
研究生(外文):SU, YUH-SHAN
論文名稱:含二噻吩基吡咯、咔唑和三聯苯基胺電致變色電極材料於高光學對比電致變色元件之應用
論文名稱(外文):Applications of Dithienylpyrrole-, Carbazole-, and Tris(biphenyl-4-yl)amine-based Electrochromic Materials in High-contrast Electrochromic Devices
指導教授:吳知易
指導教授(外文):WU, TZI-YI
口試委員:陳雲劉貴生林淵淙粘譽薰吳知易
口試委員(外文):CHEN, YUNLIOU, GUEY-SHENGLIN, YUAN-CHUNGNIEN, YU-HSUNWU, TZI-YI
口試日期:2017-06-23
學位類別:博士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:210
中文關鍵詞:電化學聚合光學對比著色效率電致變色元件
外文關鍵詞:electrochemical polymerizationoptical contrastspectroelectrochemistrycoloration efficiencyelectrochromic devices
相關次數:
  • 被引用被引用:4
  • 點閱點閱:388
  • 評分評分:
  • 下載下載:107
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討含二噻吩基吡咯、咔唑和三聯苯基胺衍生物之材料的光學與電化學性質,採用定電位法電聚合出PMPS、PMPO、PANIL、PDTC、PS2CBP、PCEC與PTTBA高分子薄膜,並挑選共聚材料電化學聚合成P(MPS-co-TTPA)、P(MPO-co-TTPA)、P(ANIL-co-TTPA)、P(DTC-co-DTP)、P(S2CBP-co-TTBA)與P(CEC-co-BSe),將高分子薄膜分別置於離子液體與組裝成元件進行光學與電化學性質測試。
PMPS、PMPO與PANIL三組材料中,PMPS顯示於600 nm有最佳之穿透度變化(ΔTmax = 54.74%)與最佳的著色效率(max= 298.28 cm2·C−1),並進一步將三組材料組成元件後,PMPO/PProDOT-Et2元件顯示於626 nm有最佳之穿透度變化(ΔTmax =41.13%)與著色效率(max= 674.675 cm2·C−1)。
第二部分研究將MPS、MPO與ANIL分別與TTPA共聚,在可見光範圍(約500 nm-600 nm)穿透度變化有大幅的提升( PMPS均聚物ΔTmax =18.62 %,P(MPS-co-TTPA)共聚物ΔTmax =40.82%),在加入TTPA共聚後三組共聚物的轉換時間也都較均聚物來的短,三組共聚物與陰極材料組成元件後之穿透度變化也明顯優於均聚物組成的元件。
於第三部分中挑選DTC、S2CBP、CEC與TTBA進行聚合與測試性質,其中PDTC於離子液體中顯示良好的穿透度變化(ΔTmax =58.79 % at 578 nm,ΔTmax =66.04 % at 856 nm),並進一步將四組陽極材料與陰極組成元件後,比較三組carbazole結構發現PCEC/PProDOT-Et2元件於586 nm有最佳的穿透度變化與著色效率(ΔTmax=38.25%,max = 369.85 cm2 C-1),而PTTBA/PProDOT-Et2元件於590 nm有良好的穿透度變化(ΔTmax= 54.47%)。
進一步挑選材料與DTC、S2CBP、CEC共聚,其中P(DTC-co-DTP)/PProDOT-Et2元件有最多種之顏色變化,於-0.6 V時為土黃色,而電壓提升至0 V為橄欖綠色,+0.2V時呈現葉綠色,+0.6 V時呈現鐵灰色,+0.8 V時呈現灰藍色,而電壓高於+1.2 V時則呈現深藍色,P(S2CBP-co-TTBA)/PProDOT-Et2元件與PS2CBP/PProDOT-Et2元件相比,穿透度有明顯提升(34.45%提升至45.77%),而P(CEC-co-BSe)/PProDOT-Et2元件則表現較為不佳,穿透度變化從原本38.25%下修至22.75%。此外這些電致色變元件皆有良好的光學記憶及穩定性。

In this study, dithienylpyrrole-, carbazole-, tris(biphenyl-4-yl)amine-based electrochromic materials, and their copolymers were investigated using electrochemical analyzer and UV-Visible spectrophotometer.
PMPS film showed higher ∆Tmax (54.47% at 940 nm) than those of the PMPO and PANIL films in an ionic liquid solution. Electrochromic devices (ECDs) employ PMPS, PMPO, and PANIL as anodic layers and poly(3,4-(2,2-diethypropylenedioxy)thiophene)(PProDOT-Et2) as a cathodic layer were constructed. PMPO/PProDOT-Et2 ECD showed the highest ∆Tmax (41.13%) and coloration efficiency (674.67 cm2C-1) at 626 nm.
In the second part, P(MPS-co-TTPA), P(MPO-co-TTPA), and P(ANIL-co-TTPA) were copolymerized electrochemically. P(MPS-co-TTPA), P(MPO-co-TTPA), and P(ANIL-co-TTPA) showed higher optical contrast and shorter switch time than those of PMPS, PMPO, and PANIL, respectively.
In the third part, PDTC, PS2CBP, PCEC, and PTTBA were electrosynthesized using electrochemical polymerization. The PDTC film showed higher optical contrast (ΔTmax =58.79 % at 578 nm and ΔTmax =66.04 % at 856 nm) than those of PS2CBP, PCEC, and PTTBA films in an ionic liquid solution. PCEC/PProDOT-Et2 ECD showed higher optical contrast (ΔTmax=38.25% ) than that of PDTC/PProDOT-Et2 ECD. PTTBA/PProDOT-Et2 ECD showed high optical contrast(ΔTmax= 54.47%) and coloration efficiency (563.81 cm2C-1).
In the fourth part, P(DTC-co-DTP)/PProDOT-Et2 ECD showed about six type colors. P(S2CBP-co-TTBA)/ PProDOT-Et2 ECD exhibited higher optical contrast (ΔTmax= 45.77%) than that of PS2CBP/PProDOT-Et2 ECD (ΔTmax= 34.45%), whereas P(CEC-co-BSe)/PProDOT-Et2 ECD dispalyed lower optical contrast (ΔTmax= 22.75%) than that of PCEC/PProDOT-Et2 ECD (ΔTmax= 38.25%).

目錄
摘要 i
Abstrast iii
誌謝 v
目錄 vi
表目錄 x
圖目錄 xiii
第一章 緒論 1
1-1 前言 1
1-2 研究動機: 3
1-3 電致變色簡介: 4
1-3-1 電致變色的種類: 5
1-3-2 電致變色應用領域: 6
1-3-3 電致變色元件結構: 9
1-3-4 電致變色重要參數介紹: 10
第二章 文獻回顧 12
第三章 實驗部分 17
3-1研究架構: 17
3-2 實驗藥品: 18
3-3實驗儀器 19
3-4 ITO玻璃前處理: 19
3-5實驗裝置: 20
3-5-1電化學聚合: 20
3-5-2薄膜在液態環境下的電化學與光學性質測試 21
3-5-2元件的電化學與光學性質測試 22
3-6離子液體合成: 24
3-7 高分子電解質膜的製備: 26
3-8 陰極材料合成 27
第四章 含二噻吩基吡咯之相似化合物合成與基本性質 29
4-1 前言與文獻回顧 29
4-2 實驗步驟 33
4-2-1 有機導電高分子合成 33
4-2-2 電化學聚合: 36
4-3 結果與討論 38
4-3-1 單體高分子之起始電位與電化學性質 38
4-3-2 高分子薄膜電化學性質分析 40
4-3-3 高分子薄膜在液態電解質下的光學性質 42
4-3-4 高分子薄膜之穿透度變化、轉換時間與著色效率 49
4-4 高分子薄膜元件光學性質探討 52
4-4-1 高分子薄膜元件 In-situ UV-vis 光學吸收性質 52
4-4-2高分子薄膜元件之穿透度變化、轉換時間與著色效率 58
4-4-3高分子薄膜元件之電化學穩定性 61
4-4-4高分子薄膜元件之光學記憶 63
4-5 小結 65
第五章 含二噻吩基吡咯化合物與共聚物之基本性質 66
5-1 前言與文獻回顧 66
5-2 實驗步驟 70
5-2-1 有機導電高分子電化學共聚 70
5-3-1 共聚高分子之起始電位與電化學性質 74
5-3-2 共聚高分子薄膜電化學性質分析 76
5-3-3 共聚高分子薄膜在液態電解質下的光學性質 78
5-3-4共聚高分子薄膜之穿透度變化、轉換時間與著色效率 85
5-4 共聚高分子薄膜元件光學性質探討 89
5-4-1 共聚高分子薄膜元件 In-situ UV-vis 光學吸收性質 89
5-4-2共聚物高分子薄膜元件之穿透度變化、轉換時間與著色效率 95
5-4-3共聚高分子薄膜元件之電化學穩定性 98
5-4-4高分子薄膜元件之光學記憶 100
5-5小結 100
第六章 以咔唑為主鏈之相似化合物與含三聯苯基胺脂之材料基本性質 102
6-1 前言與文獻回顧 102
6-2 實驗步驟 105
6-2-1 電化學聚合 105
6-3 結果與討論 108
6-3-1 單體高分子之起始電位與電化學性質 108
6-3-2 高分子薄膜電化學性質分析 110
6-3-3 高分子薄膜在液態電解質下的光學性質 113
6-3-4高分子薄膜之穿透度變化、轉換時間與著色效率 119
6-4高分子薄膜元件光學性質探討 124
6-4-1高分子薄膜元件 In-situ UV-vis 光學吸收性質 124
6-4-2高分子薄膜元件之穿透度變化、轉換時間與著色效率 130
6-4-3共聚高分子薄膜元件之電化學穩定性 133
6-4-4高分子薄膜元件之光學記憶 135
6-5小結 137
第七章 以咔唑為主鏈化合物與共聚物之基本性質 138
7-1 前言與文獻回顧 138
7-2 實驗步驟 142
7-2-1 電化學聚合 142
7-3 結果與討論 145
7-3-1 共聚高分子之起始電位與電化學性質 145
7-3-2 共聚高分子薄膜電化學性質分析 149
7-3-3 共聚高分子薄膜在液態電解質下的光學性質 151
7-3-4共聚高分子薄膜之穿透度變化、轉換時間與著色效率 157
7-4共聚高分子薄膜元件光學性質探討 161
7-4-1共聚高分子薄膜元件 In-situ UV-vis 光學吸收性質 161
7-4-2共聚高分子薄膜元件之穿透度變化、轉換時間與著色效率 167
7-4-3共聚共聚高分子薄膜元件之電化學穩定性 171
7-4-4共聚高分子薄膜元件之光學記憶 173
7-5小結 175
第八章 結論 176
參考文獻 178


[1]黃胤展,以射頻磁控濺鍍法沉積氧化鉬薄膜之結構與電致色變性質研究,國 立成功大學(2010),材料系碩士論文。
[2]鍾欣樺,含茚及1,2,5-噻二唑之聚二噻吩一吡咯電致色變材料合成與光學及 電化學性質探討,國立雲林科技大學(2015),化材系碩士論文。
[3]何國川,電化學與無窗時代,化工,第37卷第3期(1990),32-42頁。
[4]王文欣,含三氟甲氧基、噻吩及呋喃之聚二噻吩ㄧ吡咯電致色變材料合成、 光學與電化學性質探討,國立雲林科技大學(2016),化材系碩士論文。
[5]S. Koyuncu, O. Usluer, M. Can, S. Demic, S. Icli, N. Serdar Sariciftci, Electrochromic and electroluminescent devices based on a novel branched quasi-dendric fluorene-carbazole-2,5-bis(2-thienyl)-1H-pyrrole system, Journal of Materials Chemistry, 21 (2011) 2684-2693.
[6]H.N. Ashtiani, A. Bahari, S. Ghasemi, A dual electrochromic film based on nanocomposite of copolymer and WO3 nanoparticles: enhanced electrochromic coloration efficiency and switching response, Journal of Electroanalytical Chemistry, 774 (2016), 14-21.
[7]S. Koyuncu, O. Usluer, M. Can, S. Demic, S. Icli, N. Serdar Sariciftci, Electrochromic and electroluminescent devices based on a novel branched quasi-dendric fluorene-carbazole-2,5-bis(2-thienyl)-1H-pyrrole system, Journal of Materials Chemistry, 21 (2011) 2684-2693.
[8]S. Tarkuc, E. Sahmetlioglu, C. Tanyeli, I.M. Akhmedov, L. Toppare, Electrochromic properties of a soluble conducting polymer of 1-benzyl-2,5-di(thiophene-2-yl)-1H-pyrrole, Sensors and Actuators B: Chemical, 121 (2007) 622-628.
[9]W. Steinkopf, R. Leitsmann, K.H. Hofmann, Studien in der thiophenreihe. LVII. Über α-polythienyle, Justus Liebigs Annalen der Chemie, 546 (1941) 180-199.
[10]S. Tarkuc, E. Sahmetlioglu, C. Tanyeli, I.M. Akhmedov, L. Toppare, A soluble conducting polymer: 1-Phenyl-2,5-di(2-thienyl)-1H-pyrrole and its electrochromic application, Electrochimica Acta, 51 (2006) 5412-5419.
[11]G.S. Liou, C.W. Chang, Highly stable anodic electrochromic aromatic polyamides containing N,N,N’,N’-tetraphenyl-p-phenylenediamine moieties: synthesis, electrochemical, and electrochromic properties, Macromolecules, 41 (2008) 1667-1674.
[12]K.G. von Eschwege, Synthesis and kinetics of electronically altered photochromic dithizonatophenylmercury(II) complexes, Journal of Photochemistry and Photobiology A: Chemistry, 252 (2013) 159-166.
[13]X. Cheng, J. Zhao, C. Cui, Y. Fu, X. Zhang, Star-shaped conjugated systems derived from thienyl-derivatized poly(triphenylamine)s as active materials for electrochromic devices, Journal of Electroanalytical Chemistry, 677-680 (2012) 24-26.
[14]H.E. Oğuztürk, S. Tirkes, A.M. Önal, Electrochemical synthesis of new conjugated polymers based on carbazole and furan units, Journal of Electroanalytical Chemistry, 750 (2015) 1-8.
[15]C. Xu, J. Zhao, M. Wang, Z. Wang, C. Cui, Y. Kong, X. Zhang, Electrosynthesis and characterization of a neutrally colorless electrochromic material from poly(1,3-bis(9H-carbazol-9-yl)benzene) and its application in electrochromic devices, Electrochimica Acta, 75 (2012) 28-34.
[16]S. Koyuncu, B. Gultekin, C. Zafer, H. Bilgili, M. Can, S. Demic, I. Kaya, S. Icli, Electrochemical and optical properties of biphenyl bridged-dicarbazole oligomer films: Electropolymerization and electrochromism, Electrochimica Acta, 54 (2009) 5694-5702.
[17]B. Wang, J. Zhao, R. Liu, J. Liu, Q. He, Electrosyntheses, characterizations and electrochromic properties of a copolymer based on 4,4’-di(N-carbazoyl)biphenyl and 2,2’-bithiophene, Solar Energy Materials & Solar Cells, 95 (2011) 1867-1874.
[18]T.Y. Wu, J.L. Li, Electrochemical synthesis, optical, electrochemical and electrochromic characterizations of indene and 1,2,5-thiadiazole-based poly(2,5-dithienylpyrrole) derivatives, RSC Advances,6 (2016) 15988-15998.
[19]T.Y. Wu, H.H. Chung, Applications of tris(4-(thiophen-2-yl)phenyl)amineand dithienylpyrrole-based conjugated copolymers in high-contrast electrochromic devices, polymers, 8 (2016) 206.
[20]J.R. Platt, Electrochromism, a possible change of color producible in dyes by an electric field, The Journal of Chemical Physics, 34 (1961) 862-863.
[21]S.K. Deb, A novel electrophotographic system, Applied Optics, 8 (1969) 192-195.
[22]F.B. Koyuncu, An ambipolar electrochromic polymer based on carbazole and naphthalene bisimide: Synthesis and electro-optical properties, Electrochimica Acta, 68 (2012) 184-191.
[23]P.R. Somani, S. Radhakrishnan, Electrochromic materials and devices: present and future, Materials Chemistry and Physics, 77 (2003) 117-133.
[24]何明長,電致色變系統簡介(1993) 化工40 No.42,64-67頁。
[25]龔宇睿,電致變色材料發展趨勢(2014/06),123-124頁。
[26]A. Aydin, I. Kaya, Syntheses, characterizations and electrochromic applications of polymers derived from carbazole containing thiophene rings in side chain with electrochemical and FeCl3 methods, Organic Electronics, 14 (2013) 730-743.
[27]C. Cui, C. Xu, L. Xu, J. Zhao, R. Liu, Q. He, H. Wang, Electrosynthesis and characterization of a multielectrochromic copolymer of 1,4-bis(2-thienyl)-naphthalene with 2,2’-bithiophene, Optical Materials, 33 (2011) 1792-1799.
[28]W. Kuo, T. Y. Wu, M. W. Huang, Electrochromic characterizations of copolymers base on 4,4’-bis(N-carbazole)-1,1‘-biphenyl and indole-6-carboxylic acid and their application in electrochromic devices, Journal of the Taiwan Institute of Chemical Engineers, 68 (2016) 481-488.
[29]曾聖中,溶膠凝膠法製備氧化鎢/多壁奈米碳管薄膜之性質研究,逢甲大學(2010),材料系碩士論文。
[30]J. Yano, K. Noguchi, S. Yamasaki, S. Yamazaki, Novel color change of electrochromic iridium oxide in a matrix aramid resin film, Electrochemistry Communications, 6 (2004) 110-114.
[31]V.K. Thakur, G. Ding, J. Ma, P.S. Lee, X. Lu, Hybird materials and polymer electrolytes for electrochromic device applications, Advanced Materials 24 (2012) 4071-4096.
[32]J.S.E.M. Svensson, C.G. Granqvist, Electrochromic coatings for “smart windows”, Solar Energy Materials, 12 (1985) 391-402.
[33]王俊凱,以電子束蒸鍍及電化學陽極化處理製備電致色變氧化鎢薄膜之研究,國立成功大學(2013),材料系碩士論文。
[34]電致變色墨片http://www.mitrmotorsoprts.com.tw/proview.php?&fkid=16&skid=32&pdid=521
[35]蔡子湛,以溶膠凝膠法製備多孔氧化鉭薄膜及其應用於全固態電致色變元件之研究,國立成功大學(2012),材料系碩士論文。
[36]吳姿蓉,電子束蒸鍍製備氧化鎳薄膜之電致色變性質研究,國立成功大學(2008),材料系碩士論文。
[37]S. Chen, Q. Gao, J. Zhao, C. Cui, W. Yang, X. Zhang, Electrosyntheses, characterizations and electrochromic properties of a novel copolymer of 4,4’-di(n-carbazoyl)biphenyl with 4H-cyclopenta[2,1-b:3,4-b’]dithiophene, International Journal of Electrochemical Science, 7 (2012) 5256-5272.
[38]何銘軒,含雙噻吩環戊烷之紅色與綠色共軛高分子用於電致變色材料上之研究,國立中央大學(2010),化學系碩士論文。
[39]A.A. Argun, P.H. Aubert, B.C. Thompson, I. Schwendeman, C.L. Gaupp, J. Hwang, N.J. Pinto, D.B. Tanner, A.G. MacDiarmid, J.R. Reynolds, Multicolored electrochromism in polymers: structures and devices, Chemistry of Materials, 16 (2004) 4401-4412.
[40]P.M. Beaujuge, J.R. Reynolds, Color control in π-conjugated organic polymers for use in electrochromic devices, Chemical Reviews, 110 (2010) 268-320.
[41]張凱信,二噻吩基吡咯衍生物系列電致變色材料與新穎雙陽離子離子液體之合成及其物化與電化學性質探討,國立成功大學(2012),化學系碩士論文。
[42]C.L. Gaupp, D.M. Welsh, J.R. Reynolds, Poly(ProDOT-Et2): A high-contrast, high-coloration efficiency electrochromic polymer, Macromolecular Rapid Communications, 23 (2002) 885-889.
[43]S.P. Mishra, K. Krishnamoorthy, R. Sahoo, A. Kumar, Synthesis and characterization of monosubstituted and disubstituted poly(3,4-propylenedioxythiophene) derivatives with high electrochromic contrast in the visible region, Journal of Polymer Science: Part A: Polymer Chemistry, 43 (2005) 419-428.
[44]J.H. Huang, C.Y. Hsu, C.W. Hu, C.W. Chu, K.C. Ho, The influence of charge trapping on the electrochromic performance of poly(3,4-alkylenedioxythiophene) derivatives, ACS Applied Materials & Interfaces, 2 (2010) 351-359.
[45]M. İçli-Özkut, J. Mersini, A.M. Önal, A. Cihaner, Substituent and heteroatom effects on the electrochromic properties of similar systems, Journal of Polymer Science Part A: Polymer Chemistry, 50 (2012) 615-621.
[46]M.T. Otley, F.A. Alamer, Y. Zhu, A. Singhaviranon, X. Zhang, M. Li, A. Kumar, G. A. Sotzing, A crylated poly(3,4-propylenedioxythiophene) for enhancement of lifetime and optical properties for single-layer electrochromic devices, American Chemical Society Applied Materials & Interface, 6 (2014) 1734-1739.
[47]Y.A. Udum, H.B. Yıldız, H. Azak, E. Sahin, O. Talaz, A. Çırpan, L. Toppare, Synthesis and spectroelectrochemistry of dithieno(3,2-b:2′,3′-d)pyrrole derivatives, Journal of Applied Polymer Science, 131 (2014) 40701.
[48]A. Fernicola, S. Panero, B. Scrosati, Proton-conducting membranes based on protic ionic liquids, Journal of Power Sources, 178 (2008) 591-595.
[49]L.N. Sim, S.R. Majid, A.K. Arof, Characteristics of PEMA/PVdF-HFP blend polymeric gel films incorporated with lithium triflate salt in electrochromic device, Solid State Ionics, 209-210 (2012) 15-23.
[50]D.M. Welsh, L.J. Kloeppner, L. Madrigal, M.R. Pinto, B.C. Thompson, K.S. Schanze, K.A. Abboud, D. Powell, J.R. Reynolds, Regiosymmetric dibutyl-substituted poly(3,4-propylenedioxythiophene)s as highly electron-rich electroactive and luminescent polymers, Macromolecules, 35 (2002) 6517-6525.
[51]P. Camurlu, C. Gűltekin, Z. Bicil, Fast switching, high contrast multichromic polymers from alkyl-derivatizeddithienylpyrrole and 3,4-ethylenedioxythiophene, Electrochimica Acta, 61 (2012) 50-56.
[52]B. Yigitsoy, S. Varis, C. Tanyeli, I.M. Akhmedov, L. Toppare, A soluble conducting polymer of 2,5-di(thiophen-2-yl)-1-p-tolyl-1H-pyrrole and its electrochromic device, Thin Solid Films, 515 (2007) 3898-3904.
[53]A. Arslan, Ö. Türkarslan, C. Tanyeli, İ.M. Akhmedov, L. Toppare, Electrochromic properties of a soluble conducting polymer: Poly(1-(4-fluorophenyl)-2,5-di(thiophen-2-yl)-1H-pyrrole), Materials Chemistry and Physics, 104 (2007) 410-416.
[54]A. Cihaner, F. Algı, An electrochromic and fluorescent polymer based on 1-(1-naphthyl)-2,5-di-2-thienyl-1H-pyrrole, Journal of Electroanalytical Chemistry, 614 (2008) 101-106.
[55]E. Sefer, H. Bilgili, B. Gultekin, M. Tonga, S. Koyuncu, A narrow range multielectrochromism from 2,5-di-(2-thienyl)-1Hpyrrole polymer bearing pendant perylenediimide moiety, Dyes and Pigments, 113 (2015) 121-128.
[56]K.H. Chang, H.P. Wang, T.Y. Wu, I.W. Sun, Optical and electrochromic characterizations of four 2,5-dithienylpyrrole-based conducting polymer films, Electrochimica Acta, 119 (2014) 225-235.
[57]B. Hu, W. Luo, L. Jin, Z. Liu, M. Wang, L. Zhou, C. Li, Electrochemical and spectroelectrochemical properties of poly(carbazole-EDOT)s derivatives functionalized with benzonitrile and phthalonitrile units, ECS Journal of Solid State Science and Technology, 5 (2016) P21-P26.
[58]Hu, Y. Zhang, X. Lv, M. Ouyang, Z. Fu, C. Zhang, Electrochemical and electrochromic properties of two novel polymers containing carbazole and phenyl-methanone units, Journal of Electroanalytical Chemistry, 689 (2013) 291-296.
[59]J.H. Chen, W.Z. Li, D.Z. Wang, S.X. Yang, J.G. Wen, Z.F. Ren, Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors, Carbon, 40 (2002) 1193-1197.
[60]A. Cihaner, F. Algı, Processable electrochromic and fluorescent polymers based on n-substituted thienylpyrrole, Electrochimica Acta, 54 (2008) 665-670.
[61]A. Cihaner, O. Mert, A.S. Demir, A novel electrochromic and fluorescent polythienylpyrrole bearing 1,1-bipyrrole, Electrochimica Acta, 54 (2009) 1333-1338.
[62]S. Varis, M. Ak, C. Tanyeli, I.M. Akhmedov, L. Toppare, A soluble and multichromic conducting polythiophene derivative, European Polymer Journal, 42 (2006) 2352-2360.
[63]Y.H. Kim, J. Hwang, J.I. Son, Y.B. Shim, Synthesis, electrochemical, and spectroelectrochemical properties of conductive poly[2,5-di-(2-thienyl)-1H-pyrrole-1-(p-benzoic acid)], Synthetic Metals,160 (2010) 413-418.
[64]E. Rendea, C.E. Kilic, Y.A. Udume, D. Toffoli, L. Toppare, Electrochromic properties of multicolored novel polymer synthesized via combination of benzotriazole and n-functionalized 2,5-di(2-thienyl)-1H-pyrrole units, Electrochimica Acta, 138 (2014) 454-463.
[65]T. Soganci, S. Soyleyici, H.C. Soyleyici, M. Ak, Optoelectrochromic characterization and smart windows application of bi-functional amide substituted thienyl pyrrole derivative, Polymer, 118 (2017) 40-48.
[66]B. Carbas, A. Kivrak, E. Teke, M. Zora, A.M. Önal, Electrochemical polymerization of a new low-voltage oxidized thienylenepyrrole derivative and its electrochromic device application, Journal of Electroanalytical Chemistry, 729 (2014) 15-20.
[67]E. Yildiz, P. Camurlu, C. Tanyeli, I. Akhmedov, L. Toppare, A soluble conducting polymer of 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)benzenamine and its multichromic copolymer with EDOT, Journal of Electroanalytical Chemistry, 612 (2008) 247-256.
[68]M. Aka, C. Tanyeli, I.M. Akhmedov, L. Toppare, Optoelectrochemical properties of the copolymer of 2,5-di(4-methylthiophen-2-yl)-1-(4-nitrophenyl)-1H-pyrrole monomer with 3,4-ethylenedioxythiophene, Thin Solid Films, 516 (2008) 4334-4341.
[69]B. Yigitsoy, S. Varis, C. Tanyeli, I.M. Akhmedov, L. Toppare, Electrochromic properties of a novel low band gap conductive copolymer, Electrochimica Acta, 52 (2007) 6561-6568.
[70]P. Camurlu, N. Karagoren, Clickable, versatile poly(2,5-dithienylpyrrole) derivatives, Reactive and Functional Polymers, 73 (2013) 847-853.
[71]Y. Pang, H. Xu, X. Li, H. Ding, Y. Cheng, G. Shi, L. Jin, Electrochemical synthesis, characterization, and electrochromic properties of poly(3-chlorothiophene) and its copolymer with 3-methylthiophene in a room temperature ionic liquid, Electrochemistry Communications, 8 (2006) 1757-1763.
[72]S. Kiralp, P. Camurlu, G. Gunbas, C. Tanyeli, I. Akhmedov, L. Toppare, Electrochromic properties of a copolymer of 1,4-di[2,5-di(2-thienyl)-1H-1-pyrrolyl]benzene with EDOT, Journal of Applied Polymer Science, 112 (2009) 1082-1087.
[73]S. Varis, M. Ak, C. Tanyeli, I.M. Akhmedov, L. Toppare, Synthesis and characterization of a new soluble conducting polymer and its electrochromic device, Solid State Sciences, 8 (2006) 1477-1483.
[74]M.P. Algia, Z. Öztas, S. Tirkes, A. Cihaner, F. Algi, A new electrochromic copolymer based on dithienylpyrrole and EDOT, Organic Electronics, 14 (2013) 1094-1102.
[75]Z. Bicil, P. Camurlu, B. Yucel, B. Becer, Multichromic, ferrocene clicked poly(2,5-dithienylpyrrole)s, Journal of Polymer Research, 20 (2013) 228.
[76]N. Guven, P. Camurlu, Electrosyntheses of anthracene clicked poly(thienylpyrrole)s and investigation of their electrochromic properties, Polymer 73 (2015) 122-130.
[77]S. Varis, M. Ak, I.M. Akhmedov, C. Tanyeli, L. Toppare, A novel multielectrochromic copolymer based on 1-(4-nitrophenyl)-2,5-di(2-thienyl)-1H-pyrrole and EDOT, Journal of Electroanalytical Chemistry, 603 (2007) 8-14.
[78]P. Camurlu, C. Gűltekin, A comprehensive study on utilization of N-substituted poly(2,5-dithienylpyrrole) derivatives in electrochromic devices, Solar Energy Materials & Solar Cells, 107 (2012) 142-147.
[79]P. Camurlu, S. Tarkuc, E. Sahmetlioğlu, I.M. Akhmedov, C. Tanyeli, L. Toppare, Multichromic conducting copolymer of 1-benzyl-2,5-di(thiophen-2-yl)-1H-pyrrole with EDOT, Solar Energy Materials & Solar Cells, 92 (2008) 154-159.
[80]S. Tarkuc, E. Sahmetlioglu, C. Tanyeli, I.M. Akhmedov, L. Toppare, Electrochromic properties of poly (1-(phenyl)-2,5-di(2-thienyl)-1H-pyrrole-co-3,4-ethylenedioxy thiophene) and its application in electrochromic devices, Optical Materials, 30 (2008) 1489-1494.
[81]B. Wang, J. Zhao, J. Xiao, C. Cui, R. Liu, Synthesis and electropolymerization of 9H-carbazol-9-ylpyrene and its electrochromic properties and electrochromic device application, International Journal of Eelectrochemical Sience, 7 (2012) 2781-2795.
[82]M. Ouyang, P. Wang, W. Yu, S. Huang, J. Sun, B. Hu, X. Lv, Z. Fu, C. Zhang, Ferrocene-functionalized poly(6-(3,6-di(thiophen-2-yl)-9H-carbazol-9-yl)-hexyl ferrocenecarboxylate): effect of the ferrocene on electrochromic properties, Journal of The Electrochemical Society, 161 (2014) H337-H345.
[83]S. Koyuncua, C. Zafer, E. Sefer, F.B. Koyuncu, S. Demic, İ. Kaya, E. Ozdemir, S. Icli, A new conducting polymer of 2,5-bis(2-thienyl)-1H-(pyrrole) (SNS) containing carbazole subunit: electrochemical, optical and electrochromic properties, Synthetic Metals, 159 (2009) 2013-2021.
[84]A. Kocaeren, Electrochemical synthesis and electrochromic application of a novel polymer based on carbazole, Organic Electronics, 24 (2015) 219-226.
[85]S.H. Hsiao, J.C. Hsueh, Electrochemical synthesis and electrochromic properties of new conjugated polycarbazoles from di(carbazol-9-yl)-substituted triphenylamine and N-phenylcarbazole derivatives, Journal of Electroanalytical Chemistry, 758 (2015) 100-110.
[86]M. Ak, L. Toppare, Synthesis of star-shaped pyrrole and thiophene functionalized monomers and optoelectrochemical properties of corresponding copolymers, Materials Chemistry and Physics, 114 (2009) 789-794.
[87]M. Ouyang, G. Wang, C. Zhang, A novel electrochromic polymer containing triphenylamine derivative and pyrrole, Electrochimica Acta, 56 (2011) 4645-4649.
[88]C. Xu, J. Zhao, M. Wang, C. Cui, R. Liu, Electrosynthesis and characterization of a donor–acceptor type electrochromic material from poly(4,7-dicarbazol-9-yl-2,1,3-benzothiadia-zole) and its application in electrochromic devices, Thin Solid Films 527 (2013) 232-238.
[89]A. Oral, S. Koyuncu, I. Kaya, Polystyrene functionalized carbazole and electrochromic device application, Synthetic Metals, 159 (2009) 1620-1627.
[90]E. Sefer, F.B. Koyuncu, E. Oguzhan, S. Koyuncu, A new near-infrared switchable electrochromic polymer and its device application, Journal of Polymer Science: Part A: Polymer Chemistry, 48 (2010) 4419-4427.
[91]X. Yang, M. Wang, J. Zhao, C. Cui, S. Wang, J. Liu, Multichromic polymers containing alternating bithiophenes derivatives and 4-cyanotriphenylamine unit and their application for electrochromic devices, Journal of Electroanalytical Chemistry, 714-715 (2014) 1-10.
[92]G. Wang, X. Fu, J. Huang, C. Wu, L. Wu, Q. Du, Synthesis of a new star-shaped 4,4’-bipyridine derivativeand its multicolor solid electrochromic devices, Organic Electronics, 12 (2011) 1216-1222.
[93]C. Xu, J. Zhao, C. Cui, M. Wang, Y. Kong, X. Zhang, Triphenylamine-based multielectrochromic material and its neutral green electrochromic devices, Journal of Electroanalytical Chemistry, 682 (2012) 29-36.
[94]M. Ouyang, Z. Fu, X. Lv, B. Hu, P. Wang, S. Huang, Y. Dai, C. Zhang, A multichromic copolymer based on 4-(9H-carbazol-9-yl)-N,N-diphenylaniline and 3,4-ethylenedioxythiophene prepared via electrocopolymerization, Journal of The Electrochemical Society, 160 (2013) H787-H792.
[95]D. Is, F.B. Koyuncu, S. Koyuncu, E. Ozdemir, A new imine coupled pyrroleecarbazoleepyrrole polymer: Electro–optical properties and electrochromism, Polymer 51 (2010) 1663-1669.
[96]K. Wang, W. Yang, Y. Hua, Y. Kai, Y. Shi, Preparations and characterizations of tunable and multicolored electrochromic copolymers derived from a novel star-shaped monomer and BEDOT-V, Electrochimica Acta, 137 (2014) 627-633.
[97]B. Koyuncu, S. Koyuncu, E. Ozdemir, A new donor–acceptor carbazole derivative: Electrochemical polymerization and photo-induced charge transfer properties, Synthetic Metals, 161 (2011) 1005-1013.
[98]B. Hu, X. Zhang, B. Tian, Y. Qi, X. Lai, L. Jin, Synthesis, electrochemical and spectroelectrochemical properties of carbazole derivatives with ferrocene groups, Journal of Electroanalytical Chemistry, 788 (2017) 29-37.
[99]S. Chen, Q. Gao, J. Zhao, C. Cui, W. Yang, X. Zhang, Electrochemical synthesis and characterization of a new electrochromic copolymer based on 2,2’-bithiophene and tris[4-(2-thienyl)phenyl]amine, International Journal of Electrochemical Science, 7 (2012) 9095-9112.
[100]X. Cheng, J. Zhao, Y. Fu, C. Cui, X. Zhang, Electrosynthesis and characterization of a multielectrochromic copolymer of tris[4-(2-thienyl)phenyl]amine with 3,4-ethylenedioxythiophene, Journal of The Electrochemical Society, 160 (2013) G6-G13.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊