跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/11 20:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃郁淇
研究生(外文):HUANG, YU-CHI
論文名稱:共軛高分子摻雜白金作為染料敏化太陽能電池對電極之光電和電化學特性探討
論文名稱(外文):Optical and Electrochemical Characterization of Dye-Sensitized Solar Cells Using Conjugated Polymer-Doped Platinum as Counter Electrodes
指導教授:吳知易
指導教授(外文):WU, TZI-YI
口試委員:周榮泉郭仲文李立鼎
口試委員(外文):CHOU, JUNG-CHUANKUO, CHUNG-WENLEE, LI-TING
口試日期:2017-07-18
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:123
中文關鍵詞:染料敏化太陽能電池導電高分子對電極電解液掃描式電子顯微鏡低照度循環伏安法
外文關鍵詞:dye-sensitized solar cellsconductive polymerscounter electrodeselectrolytesscanning electron microscopydifferent light intensitiescyclic voltammetry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本研究論文包含兩個研究重點: (1)新型PProDOT衍生物對電極;(2)新型離子液體電解液。第一部分係用電化學聚合法備製導電高分子PProDOT衍生物poly(3,3-dibenzyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine) (PProDOT-Bz2)、poly(3,3-dibutyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine) (PProDOT-Bu2)與poly(3-(allyloxymethyl)-3-ethyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine)(PProDOT-DB)。三種導電高分子PProDOT-Bz2、PProDOT-Bu2、PProDOT-DB摻雜少量白金作為染料敏化太陽能電池之對電極;藉以降低白金含量,製備低成本之染料敏化太陽能電池。由實驗結果可得知,添加導電高分子PProDOT-Bz2可使電荷轉移電阻(Charge Transfer Resistance, Rct)降低並提升電催化特性,進而提升光電轉換效率。最佳備製條件為0.05 C/cm2 PProDOT-Bz2與濺鍍30 s白金之複合對電極,其光電轉換效率可達3.50%;相當於濺鍍360 s白金對電極。另一方面,本研究亦合成兩種新型離子液體1-ethyl-1-(2-(2-(2-methoxyethoxy)ethoxy)ethyl)-piperidinium iodide (EMEEPII-1)與1-ethyl-1-(2-(2-methoxyethoxy)ethyl)-piperidinium iodide (EMEEPII-2)並作為染料敏化太陽能電池之電解液,並探討染料敏化太陽能電池於不同照度下,其光電特性之影響。由實驗結果可得知,當添加離子液體EMEEPII-1電解液之染料敏化太陽能電池,於30 mW/cm2之光照強度下其光電轉換效率可達4.50%。綜合上述結果,此論文備製之染料敏化太陽能電池新型PProDOT衍生物複合對電極及離子液體電解液,具備良好開發潛力備製低成本、簡易備製及可應用於不同光照強度之染料敏化太陽能電池。

The research of this thesis contains two research topics: (1) novel PProDOT derivative counter electrodes; (2) novel ionic liquid electrolytes. Three types of PProDOT-derivatives poly(3,3-dibenzyl-3,4-dihydro-2H-thieno [3,4-b][1,4]dioxepine) (PProDOT-Bz2), poly(3,3-dibutyl-3,4-dihydro-2H-thieno [3,4-b][1,4]dioxepine) (PProDOT-Bu2) and poly(3-(allyloxymethyl)-3-ethyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine) (PProDOT-DB) were synthesized by electrochemical polymerization. PProDOT-Bz2, PProDOT-Bu2 and PProDOT-DB were doped with a small amount of platinum as the counter electrodes of dye-sensitized solar cells to decrease the platinum content and fabricate low cost dye-sensitized solar cells. According to the experimental results, the charge transfer resistances (Rct) of the counter electrodes comprising conductive polymer PProDOT-Bz2 and Pt with sputtering time of 30 s composite film were lower than that of Pt counter electrode with the sputtering time of 30 s, and further result in improving η. The best power conversion efficiency of the DSSC based on 0.05 C/cm2 PProDOT-Bz2/30 s Pt counter electrode is 3.50%, which is equivalent to that of Pt counter electrode with the sputtering time of 360 s. On the other hand, two novel ionic liquids 1-ethyl-1-(2-(2-methoxyethoxy) ethoxy)ethyl)-piperidinium iodide (EMEEPII-1) and 1-ethyl-1-(2-(2-methoxyethoxy)ethyl)piperidinium iodide (EMEEPII-2) was used as the electrolytes of dye-sensitized solar cells; the effect on the photovoltaics properties of dye-sensitized solar cells by the addition of ionic liquids EMEEPII-1 and EMEEPII-2 under different light intensities were systematically investigated. The power conversion efficiency of EMEEPII-1-based electrolyte is up to 4.50% under 30 mW/cm2 light intensity. Based on the above results, the novel PProDOT-derivatives counter electrodes and ionic liquid electrolytes have a great developed potential to prepare low cost, simple process DSSCs and can be applied to DSSCs under different light intensities.


Contents
摘要 i
ABSTRACT ⅱ
誌謝 iv
Contents vi
List of Tables x
List of Figures xii

Chapter 1 Introduction 1
1.1 Background 1
1.2 Overview of this thesis 2

Chapter 2 Theory and literature review 5
2.1 Introduction of Dye-Sensitized Solar Cell 5
2.2 Working Mechanism of Solar Cell 6
2.3 Composition of Dye-Sensitized Solar Cell 7
2.3.1 Substrate 7
2.3.2 Photoanode 8
2.3.3 Dye 8
2.3.4 Counter Electrode 9
2.3.5 Electrolyte 12
2.4 Overview of Ionic Liquids 13
2.4.1 Introduction of Ionic Liquid 13
2.4.2 Viscosity of Ionic Liquids 13
2.4.3 Density of Ionic Liquids 14
2.4.4 Conductivity of Ionic Liquids 14
2.4.5 Application of Ionic Liquids 14
2.5 Principles of Electrochemical Polymerization 15
2.6 Motivation 15

Chapter 3 Experimental 17
3.1 Flowchart of Fabrication Processes 17
3.2 Materials 18
3.2.1 Synthesis of PProDOT-derivatives 20
3.2.2 Synthesis of Ionic Liquid EMEEPII-1 and EMEEPII-226
3.3 Experimental and Measurement Instruments 30
3.3.1 Nuclear Magnetic Resonance Spectroscopy (NMR) 31
3.3.2 Radio Frequency Sputtering System 32
3.3.3 Furnace 33
3.3.4 Electrochemical Impedance Spectroscopy (EIS) 34
3.3.5 Electrochemical Analyzer 35
3.3.6 Field emission Scanning Electron Microscopy (FE-SEM) 36
3.3.7 Solar Simulator Measurement System 38
3.4 Experimental Procedures 39
3.4.1 Substrate Cleaning 39
3.4.2 Counter Electrode 39
3.4.3 Preparation of Electrolytes 41
3.4.4 Preparation of TiO2 Film 42
3.4.5 Preparation of Dye Solution 42
3.4.6 Assembly of the Dye-Sensitized Solar Cells 42

Chapter 4 Results and Discussion 44
4.1 Characteristics and Analyses of Conjugated Polymer
Counter Electrodes 44
4.1.1 Electrochemical Polymerizations of Conjugated Polymer
Counter Electrodes 44
4.1.2 Surface Morphologies of Conjugated Polymer Counter
Electrodes 46
4.1.3 Photovoltaic Characteristics of Conjugated Polymer
Counter Electrodes 54
4.2 Characteristics and Analyses of Conjugated Polymer/Pt
Composite Films 58
4.2.1 Surface Morphologies of DSSCs with Different
Conjugated Polymer/Pt Composite Films 58
4.2.2 Photovoltaic Characteristics of DSSCs with Different
Conjugated Polymer/Pt Composite Films 65
4.2.3 Electrochemical Impedance Spectroscopy of DSSCs with
Different Conjugated Polymer/Pt Composite Film 69
4.2.4 Cyclic Voltammetry of DSSCs with Different Conjugated
Polymer/Pt Composite Films 75
4.3 Characteristics and Analyses of Different Ionic
liquids-based Electrolytes 78
4.3.1 Basic properties of Different Ionic liquid 78
4.3.2 Photovoltaic Characteristics of DSSCs with Different
Ionic liquids-based electrolytes 86
4.3.3 Electrochemical Impedance Spectroscopy of DSSCs with
Different Ionic liquids-based electrolytes 90
4.4 Photocurrent-Voltage Characteristics of DSSCs with Conjugated Polymer CEs and Ionic liquids-based electrolytes under Different Light Intensities 93

Chapter 5 Conclusions 98

Chapter 6 Future Prospects 99

References 100



[1]J. K. Kaldellis and D. Apostolou, "Life cycle energy and carbon footprint of offshore wind energy. Comparison with onshore counterpart," Renewable Energy, vol. 108, pp. 72-84, Aug. 2017.
[2]N. F. Yah, A. N. Oumer and M. S. Idris, "Small scale hydro-power as a source of renewable energy in Malaysia: A review," Renewable and Sustainable Energy Reviews, vol. 72, pp. 228-239, May 2017.
[3]N. Khan, A. Kalair, N. Abas and A. Haider, "Review of ocean tidal, wave and thermal energy technologies," Renewable and Sustainable Energy Reviews, vol. 72, pp. 590-604, May 2017.
[4]S. K. Sansaniwal, K. Pal, M. A. Rosen and S. K. Tyagi, "Recent advances in the development of biomass gasification technology: A comprehensive review," Renewable and Sustainable Energy Reviews, vol. 72, pp. 363-384, May 2017.
[5]M. Z. H. Khan, M. R. Al-Mamun, P. K. Halder, and M. A. Aziz, "Performance improvement of modified dye-sensitized solar cells," Renewable and Sustainable Energy Reviews, vol. 71, pp. 602-617, May 2017.
[6]M. Gratzel, "Powering the planet," Nature, vol. 403, pp. 363-364, Jan. 2000.
[7]M. Liu, M. B. Johnston and H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, vol. 501, pp. 395-398, Sep. 2013.
[8]陳思蒨,"染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討," 國立中央大學化學研究所,碩士論文,2011。
[9]M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, "Solar cell efficiency tables (version 48)," Progress in Photovoltaics: Research and Applications, vol. 24, pp. 905-913, May 2016.
[10]https://www.nrel.gov/pv/.
[11]B. O'Regan and M. Gratzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," Nature, vol. 353, pp. 737-740, Oct. 1991.
[12]S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, F. E. CurchodBasile, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, Md. K. Nazeeruddin and M. Gratzel, "Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers," Nature Chemistry, vol. 6, pp. 242-247, Dec. 2013.
[13]K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. I. Fujisawa and M. Hanaya, "Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes," Chemical Communications, vol. 51, pp. 15894-15897, Sep. 2015.
[14]F. Bella, S. Galliano, M. Falco, G. Viscardi, C. Barolo, M. Grätzel and C. Gerbald, "Approaching truly sustainable solar cells by the use of water and cellulose derivatives," Green Chemistry, vol. 19, pp. 1043-1051, Dec. 2016.
[15]M. Grätzel, "Dye-sensitized solar cells," Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 4, pp. 145-153, Oct. 2003.
[16]Z. Bai, Y. Hu, S. Yan, W. Shan and C. Wei, "Preparation of mesoporous SiO2/Bi2O3/TiO2 superhydrophilic thin films and their surface self-cleaning properties," RSC Advances, vol. 7, pp. 1966-1974, Jan. 2017.
[17]F. Tan, T. Li, N. Wang, S. K. Lai, C. C. Tsoi, W. Yu and X. Zhang, "Rough gold films as broadband absorbers for plasmonic enhancement of TiO2 photocurrent over 400–800 nm," Scientific Reports, vol. 6, srep33049, 10 pages, Sep. 2016.
[18]Y. Qin and Q. Peng, "Ruthenium sensitizers and their applications in dye-sensitized solar cells," International Journal of Photoenergy, vol. 2012, srep, 21 pages, Oct. 2012.
[19]J. Theerthagiri, A. R. Senthil, J. Madhavan and T. Maiyalagan, "Recent progress in non-platinum counter electrode materials for dye-sensitized solar cells," ChemElectroChem, vol. 2, pp. 928-945, Apr. 2015.
[20]C. Bora, C. Sarkar, K. J. Mohan and S. Dolui, "Polythiophene/graphene composite as a highly efficient platinum-free counter electrode in dye-sensitized solar cells," Electrochimica Acta, vol. 157, pp. 225-231, Jan. 2015.
[21]S. Yun, P. D. Lund and A. Hinsch, "Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells," Energy & Environmental Science, vol. 8, pp. 3495-3514, Oct. 2015.
[22]A. Kay and M. Grätzel, "Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder," Solar Energy Materials and Solar Cells, vol. 44, pp. 99-117, Oct. 1996.
[23]I. P. Liu, Y.-C. Hou, C.-W. Li and Y.-L. Lee, "Highly electrocatalytic counter electrodes based on carbon black for cobalt(iii)/(ii)-mediated dye-sensitized solar cells," Journal of Materials Chemistry A, vol. 5, pp. 240-249, Nov. 2016.
[24]P. Vijayakumar, M. Senthil Pandian, A. Pandikumar and P. Ramasamy, "A facile one-step synthesis and fabrication of hexagonal palladium-carbon nanocubes (H-Pd/C NCs) and their application as an efficient counter electrode for dye-sensitized solar cell (DSSC)," Ceramics International, vol. 43, pp. 8466-8474, Aug. 2017.
[25]G. Wang, C. Yan, S. Hou and W. Zhang, "Low-cost counter electrodes based on nitrogen-doped porous carbon nanorods for dye-sensitized solar cells," Materials Science in Semiconductor Processing, vol. 63, pp. 190-195, Jun. 2017.
[26]I. Y. Y. Bu and L. Y. Kao, "Flame synthesis of highly graphitic carbon nano-sphere using cobalt-based catalyst," International Journal of Nanomanufacturing, vol. 13, pp. 161-169, Jan. 2017.
[27]J. Ma, W. Shen, C. Li, J. Zheng and F. Yu, "Graphene cryogel-based counter electrode materials freeze-dried using different solution media for dye-sensitized solar cells," Chemical Engineering Journal, vol. 319, pp. 155-162, Mar. 2017.
[28]S. Ghasemi, S. R. Hosseini and F. Mousavi, "Electrophoretic deposition of graphene nanosheets: A suitable method for fabrication of silver-graphene counter electrode for dye-sensitized solar cell," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 520, pp. 477-487, May 2017.
[29]Z. Zhou, S. Sigdel, J. Gong, B. Vaagensmith, H. Elbohy, H. Yang, S. Krishnan, X. F. Wu and Q. Qiao, "Graphene-beaded carbon nanofibers with incorporated Ni nanoparticles as efficient counter-electrode for dye-sensitized solar cells," Nano Energy, vol. 22, pp. 558-563, Mar. 2016.
[30]S. S. Nemala, P. Kartikay, S. Prathapani, H. L. M. Bohm, P. Bhargava, S. Bohm and S. Mallick, "Liquid phase high shear exfoliated graphene nanoplatelets as counter electrode material for dye-sensitized solar cells," J Colloid Interface Sci, vol. 499, pp. 9-16, Mar. 2017.
[31]L. Kavan, P. Liska, S. M. Zakeeruddin and M. Grätzel, "Low-temperature fabrication of highly-efficient, optically-transparent (FTO-free) graphene cathode for co-mediated dye-sensitized solar cells with acetonitrile-free electrolyte solution," Electrochimica Acta, vol. 195, pp. 34-42, Feb. 2016.
[32]H. Yuan, J. Liu, Q. Jiao, Y. Li, X. Liu, D. Shi, Q. Wu, Y. Zhao and H. Li, "Sandwich-like octahedral cobalt disulfide/reduced graphene oxide as an efficient Pt-free electrocatalyst for high-performance dye-sensitized solar cells," Carbon, vol. 119, pp. 225-234, Apr. 2017.
[33]F. Miao, R. Miao, B. Tao, Z. Jin, J. Yu, P. K. Chu, F. Liu, L. Shao, C. Li and X. Zhu, "Vertically-oriented few-layer graphene supported by silicon microchannel plates as a counter electrode in dye-sensitized solar cells," Organic Electronics, vol. 45, pp. 74-80, Feb. 2017.
[34]G. Kang, J. Choi and T. Park, "Pt-free counter electrodes with carbon black and 3D network epoxy polymer composites," Scientific Reports, vol. 6, srep22987, 9 pages, Mar. 2016.
[35]R. Kumar, S. S. Nemala, S. Mallick and P. Bhargava, "Synthesis and characterization of carbon based counter electrode for dye sensitized solar cells (DSSCs) using sugar free as a carbon material," Solar Energy, vol. 144, pp. 215-220, Jan. 2017.
[36]S. S. Jeon, C. Kim, T. H. Lee, Y. W. Lee, K. Do, J. Ko and S. S. Im, "Camphorsulfonic acid-doped polyaniline transparent counter electrode for dye-sensitized solar cells," The Journal of Physical Chemistry C, vol. 116, pp. 22743-22748, Oct. 2012.
[37]Y. C. Shih, H. L. Lin and K. F. Lin, "Electropolymerized polyaniline/graphene nanoplatelet/multi-walled carbon nanotube composites as counter electrodes for high performance dye-sensitized solar cells," Journal of Electroanalytical Chemistry, vol. 794, pp. 112-119, Jun. 2017.
[38]Y. Qiu, S. Lu, S. Wang, X. Zhang, S. He and T. He, "High-performance polyaniline counter electrode electropolymerized in presence of sodium dodecyl sulfate for dye-sensitized solar cells," Journal of Power Sources, vol. 253, pp. 300-304, Dec. 2013.
[39]L. Chen, C. X. Guo, Q. Zhang, Y. Lei, J. Xie, S. Ee, G. Guai, Q. Song and C. M. Li, "Graphene quantum-dot-doped polypyrrole counter electrode for high-performance dye-sensitized solar cells," ACS Applied Materials & Interfaces, vol. 5, pp. 2047-2052, Mar. 2013.
[40]S. Y. Heo, J. K. Koh, J. K. Kim, C. S. Lee and J. H. Kim, "Three-dimensional conducting polymer films for Pt-free counter electrodes in quasi-solid-state dye-sensitized solar cells," Electrochimica Acta, vol. 137, pp. 34-40, Jun. 2014.
[41]Z. Li, J. Xu, L. Chen, R. Zhang, X. Yang and J. Xia, "Influence of sheet resistance effect on poly(3,4-ethylenedioxythiophene) counter electrode for dye-sensitized solar cell," Electrochimica Acta, vol. 242, pp. 219-226, Jul. 2017.
[42]H. Li, Y. Xiao, G. Han and W. Hou, "Honeycomb-like poly(3,4-ethylenedioxythiophene) as an effective and transparent counter electrode in bifacial dye-sensitized solar cells," Journal of Power Sources, vol. 342, pp. 709-716, Jan. 2017.
[43]Y. C. Li, S. R. Jia, Z. Y. Liu, X. Q. Liu, Y. Wang, Y. Cao, X. Q. Hu, C. L. Peng and Z. Li, "Fabrication of PEDOT films via a facile method and their application in Pt-free dye-sensitized solar cells," Journal of Materials Chemistry A, vol. 5, pp. 7862-7868, Mar. 2017.
[44]H. Kim, G. Veerappan and J. H. Park, "Conducting polymer coated non-woven graphite fiber film for dye-sensitized solar cells: superior Pt- and FTO-free counter electrodes," Electrochimica Acta, vol. 137, pp. 164-168, Jun. 2014.
[45]R. Han, S. Lu, Y. Wang, X. Zhang, Q. Wu and T. He, "Influence of monomer concentration during polymerization on performance and catalytic mechanism of resultant poly(3,4-ethylenedioxythiophene) counter electrodes for dye-sensitized solar cells," Electrochimica Acta, vol. 173, pp. 796-803, May. 2015.
[46]P. Y. Chen, C. T. Li, C. P. Lee, R. Vittal and K. C. Ho, "PEDOT-decorated nitrogen-doped graphene as the transparent composite film for the counter electrode of a dye-sensitized solar cell," Nano Energy, vol. 12, pp. 374-385, Jan. 2015.
[47]C. R. Ke, C. C. Chang and J. M. Ting, "Modified conducting polymer films having high catalytic activity for use as counter electrodes in rigid and flexible dye-sensitized solar cells," Journal of Power Sources, vol. 284, pp. 489-496, Mar. 2015.
[48]C. P. Lee, K. Y. Lai, C. A. Lin, C. T. Li, K. C. Ho, C. I. Wu, S. P. Lau and J. H. He, "A paper-based electrode using a graphene dot/PEDOT:PSS composite for flexible solar cells," Nano Energy, vol. 36, pp. 260-267, Jun. 2017.
[49]W. Maiaugree, P. Pimparue, W. Jarernboon, S. Pimanpang, V. Amornkitbamrung and E. Swatsitang, "NiS(NPs)-PEDOT-PSS composite counter electrode for a high efficiency dye sensitized solar cell," Materials Science and Engineering: B, vol. 220, pp. 66-72, Jue. 2017.
[50]H. Seo, M. K. Son, N. Itagaki, K. Koga and M. Shiratani, "Polymer counter electrode of poly(3,4-ethylenedioxythiophene):Poly(4-styrenesulfonate) containing TiO2 nano-particles for dye-sensitized solar cells," Journal of Power Sources, vol. 307, pp. 25-30, Mar. 2016.
[51]P. Gemeiner, N. Peřinka, Ľ. Švorc, M. Hatala, L. Gál, M. Belovičová, T. Syrový, M. Mikula, "Pt–free counter electrodes based on modified screen–printed PEDOT:PSS catalytic layers for dye–sensitized solar cells," Materials Science in Semiconductor Processing, vol. 66, pp. 162-169, Apr. 2017.
[52]T. Y. Chen, Y. J. Huang, C. T. Li, C. W. Kung, R. Vittal and K. C. Ho, "Metal-organic framework/sulfonated polythiophene on carbon cloth as a flexible counter electrode for dye-sensitized solar cells," Nano Energy, vol. 32, pp. 19-27, Feb. 2017.
[53]M. H. Yeh, C. P. Lee, L. Y. Lin, P. C. Nien, P. Y. Chen, R. Vittal and K. C. Ho, "A composite poly(3,3-diethyl-3,4-dihydro-2H-thieno-[3,4-b][1,4]-dioxepine) and Pt film as a counter electrode catalyst in dye-sensitized solar cells," Electrochimica Acta, vol. 56, pp. 6157-6164, Jul. 2011.
[54]K. M. Lee, P. Y. Chen, C. Y. Hsu, J. H. Huang, W. H. Ho, H. C. Chen and K. C. Ho, "A high-performance counter electrode based on poly(3,4-alkylenedioxythiophene) for dye-sensitized solar cells," Journal of Power Sources, vol. 188, pp. 313-318, Mar. 2009.
[55]Y. S. Ye, J. Rick and B. J. Hwang, "Ionic liquid polymer electrolytes," Journal of Materials Chemistry A, vol. 1, pp. 2719-2743, Nov. 2012.
[56]T. Y. Wu, S. G. Su, S. T. Gung, M. W. Lin, Y. C. Lin, C. A. Lai and I. W. Sun, "Ionic liquids containing an alkyl sulfate group as potential electrolytes," Electrochimica Acta, vol. 55, pp. 4475-4482, Mar. 2010.
[57]陳韋林,"不對稱結構雙陽離子液體及環胺類離子液體的合成及結構之改變對物理性質的影響之探討," 國立成功大學化學系,碩士論文,2012。
[58]P. Wasserscheid and W. Keim, "Ionic liquids—new “solutions” for transition metal catalysis," Angewandte Chemie International Edition, vol. 39, pp. 3772–3789, Oct. 2000.
[59]T. Y. Wu, S. G. Su, H. P. Wang and I. W. Sun, "Glycine-based ionic liquids as potential electrolyte for electrochemical studies of organometallic and organic redox couples," Electrochemistry Communications, vol. 13, pp. 237-241, Mar. 2011.
[60]張啟修,"硫化鎘量子點在染料敏化太陽能電池應用的研究," 國立成功大學化學工程學系碩博士班,2007。
[61]T. F. Budinger, "Emerging nuclear magnetic resonance technologies health and safetya," Annals of the New York Academy of Sciences, vol. 649, pp. 1-18, Mar. 1992.
[62]http://chem.ch.huji.ac.il/nmr/whatisnmr/whatisnmr.html.
[63]http://www.ncku.edu.tw/~facility/facility/index.htm.
[64]D. N. Leonard, G. W. Chandler and S. Seraphin, "Scanning Electron Microscopy," in Characterization of Materials, ed: John Wiley & Sons, Inc., Oct. 2012.
[65]T. Y. Wu, M. H. Tsao, F. L. Chen, S. G. Su, C. W. Chang, H. P. Wang, Y. C. Lin and I. W. Sun, "Synthesis and characterization of three organic dyes with various donors and rhodanine ring acceptor for use in dye-sensitized solar cells," Journal of the Iranian Chemical Society, vol. 7, pp. 707-720, Sep. 2010.
[66]C. T. Li, C. T. Lee, S. R. Li, C. P. Lee, I. T. Chiu, R. Vittal, N. L. Wu, S. S. Sun and K. C. Ho, "Composite films of carbon black nanoparticles and sulfonated-polythiophene as flexible counter electrodes for dye-sensitized solar cells," Journal of Power Sources, vol. 302, pp. 155-163, Jan. 2016.
[67]T. Y. Wu, L. Hao, C. W. Kuo, Y. C. Lin, S. G. Su, P. L. Kuo and I. W. Sun, "Ionic conductivity and diffusion in lithium tetrafluoroborate-doped 1-methyl-3-pentylimidazolium tetrafluoroborate ionic liquid," International Journal of Electrochemical Science, vol. 7, pp. 2047-2064, Mar. 2012.
[68]T. Y. Wu, Y. H. Wang, S. G. Su, Y. C. Lin, C. W. Kuo, J. K. Chang and I. W. Sun, "Influence of LiTFSI addition on conductivity, diffusion coefficient, spin–lattice relaxation times, and chemical shift of one-dimensional NMR spectroscopy in LiTFSI-doped dual-functionalized imidazolium-based ionic liquids," Journal of Chemical & Engineering Data, vol. 60, pp. 471-483, Mar. 2015.
[69]Y. C. Lin, C. W. Kuo, P. L. Kuo, L. Hao, L. Y. Tseng and T. Y. Wu, "Impact of lithium salt addition on ionic transporting properties in a binary ionic liquid electrolyte composed of 4-(2-methoxyethyl)-4-methylmorpholinium bis(trifluoromethanesulfonyl)imide and LiTFSI," Journal of the Taiwan Institute of Chemical Engineers, vol. 53, pp. 22-31, Aug. 2015.
[70]Q. Che, B. Sun and R. He, "Preparation and characterization of new anhydrous, conducting membranes based on composites of ionic liquid trifluoroacetic propylamine and polymers of sulfonated poly (ether ether) ketone or polyvinylidenefluoride," Electrochimica Acta, vol. 53, pp. 4428-4434, May 2008.
[71]J. Vila, L. M. Varela and O. Cabeza, "Cation and anion sizes influence in the temperature dependence of the electrical conductivity in nine imidazolium based ionic liquids," Electrochimica Acta, vol. 52, pp. 7413-7417, Sep. 2007.
[72]Z. Lan, J. Wu, J. Lin, M. Huang, S. Yin, and T. Sato, "Influence of molecular weight of PEG on the property of polymer gel electrolyte and performance of quasi-solid-state dye-sensitized solar cells," Electrochimica Acta, vol. 52, pp. 6673-6678, Aug. 2007.
[73]C. Zafer, K. Ocakoglu, C. Ozsoy and S. Icli, "Dicationic bis-imidazolium molten salts for efficient dye sensitized solar cells: Synthesis and photovoltaic properties," Electrochimica Acta, vol. 54, pp. 5709-5714, May. 2009.
[74]C. T. Li, C. P. Lee, C. T. Lee, S. R. Li, S. S. Sun and K. C. Ho, "Iodide-free ionic liquid with dual redox couples for dye-sensitized solar cells with high open-circuit voltage," ChemSusChem, vol. 8, pp. 1244-1253, Mar. 2015.
[75]J. L. Lan, T. C. Wei, S. P. Feng, C. C. Wan and G. Cao, "Effects of iodine content in the electrolyte on the charge transfer and power conversion efficiency of dye-sensitized solar cells under low light intensities," The Journal of Physical Chemistry C, vol. 116, pp. 25727-25733, Nov. 2012.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊