跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/05 22:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:阮俊英
研究生(外文):NGUYEN, TUAN-ANH
論文名稱(外文):A Preliminary Study on Virtual Touch Imaging Quantification Elastography in the Evaluation of Thyroid Nodules
指導教授:郭瓊文郭瓊文引用關係
指導教授(外文):KUO, CHIUNG-WEN
口試委員:郭瓊文朱鐵吉黃昭源
口試委員(外文):KUO, CHIUNG-WENCHU, TIEH-CHIHUANG, CHAO-YUAN
口試日期:2017-06-19
學位類別:碩士
校院名稱:元培醫事科技大學
系所名稱:醫學影像暨放射技術系碩士班
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:50
外文關鍵詞:VTIQThyroid NodulesElastographyShear Wave Velocity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:77
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
A Preliminary Study on Virtual Touch Imaging Quantification Elastography in the Evaluation of Thyroid Nodules
Student: Nguyen Tuan Anh Advior: Chiung-Wen Kuo, Ph.D
Department of Medical Imaging and Radiological Technology
Yuanpei University of Medical Technology
Abstract
Objective: To study the diagnostic performance of virtual touch imaging quantification elastography (VTIQ) in the evaluation of thyroid nodules.
Materials and Methods: A total of 35 patients (8 men, 27 women, aged 52.3 ± 16.4 years) with 38 thyroid nodules (34 benign and 4 malignant) were examined by conventional ultrasound and VTIQ (ACUSON S3000, Siemens Medical Solution, Mountain View, CA, USA). The mean of shear wave velocity (SWV) was measured for all nodules and theirs surrounding by using B-mode imaging and gray-scale SWV map simultaneously. SWV ratio (SWR) between mean SWV within nodules and theirs surrounding was also calculated. The pathology of thyroid nodules were confirmed by cytologic or hispathologic examination. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the performance of VTIQ and to determine the best cutoff value of mean SWV and SWR in the differential diagnosis of thyroid nodules.
Results: The mean SWV and SWR value in malignant nodules (4.8 ± 1.8 m/s; 1.6 ± 0.7) were significantly higher than those in benign nodules (3.0 ± 0.7 m/s; 1.1 ± 0.3, respectively). ROC curve analysis showed the area under the curve (AUC) of mean SWV and SWR were 0.809 and 0.824 (p=0.046 and p=0.036), respectively. Using the best cutoff value of mean SWV at 3.66 m/s and SWR at 1.32, the sensitivity, specificity, negative predictive value, positive predictive value and accuracy of VTIQ were (75%, 82.3%, 33.3%, 96.5% and 81.5%, respectively) and (75%, 68%, 21.4%, 95.8% and 68.5 %, respectively).
Conclusion: Our study demonstrated that VTIQ could provide both qualitative and quantitative elasticity measurements. We proposed that using the optimal mean SWV cutoff value of 3.66 m/s, VTIQ provided a good performance in the differential diagnosis of thyroid nodules.
Keywords: VTIQ, thyroid nodules, elastography, shear wave velocity.

Tables and Contents
Verification letter from the thesis oral defense committee I
Acknowledgement II
Abstract III
Table of contents IV
List of Figures VI
List of Table VIII
Abbreviations IX
Chapter 1: Introduction 1
Chapter 2: Background 3
2.1 Thyroid gland anatomy 3
2.2 Thyroid nodules 4
2.3 Diagnostic approaches for thyroid nodules 6
2.3.1 Clinical examination 6
2.3.2 Thyroid function test 6
2.3.3 Imaging Method 6
2.3.4 Fine needle aspiration biopsy 8
2.4 US feature of the normal thyroid gland and thyroid nodule 9
2.4.1 Appearance of normal thyroid gland on US 9
2.4.2 Thyroid Nodules on US 11
2.5 US Elastography 14
2.5.1 Strain US Elastography 14
2.5.2 Shear Wave Elastography 16
2.5.3 ARFI elastography 18
Chapter 3: Materials and methods 21
3.1 Study subjects 21
3.2 Equipment and measurements 22
3.2.1 Conventional US (B-mode and Color Doppler) 23
3.2.2 VTIQ on ARFI Elastography 24
3.3 Pathological diagnoses 26
3.4 Statistical analysis 27
Chapter 4: Results 28
4.1 Gender and age characteristic 28
4.2 Final pathological diagnosis of thyroid nodules 29
4.3 Conventional US characteristics 31
4.4 VTIQ characteristic 33
Chapter 5: Discussions 39
5.1 Baseline characteristic of study population 39
5.2 US characteristic 39
5.3 VTIQ characteristic 40
5.4 Limitations 45
Chapter 6: Conclusions 46
References 47


List of figures
Figure 2.1 Anatomy of the thyroid gland 3
Figure 2.2 Blood supply to the thyroid gland 4
Figure 2.3 Appearance of healthy thyroid and thyroid nodule 5
Figure 2.4 Transverse US image of a normal thyroid gland 9
Figure 2.5 US longitudinal view of a normal thyroid gland 10
Figure 2.6 A normal thyroid gland on color Doppler 10
Figure 2.7 Ultrasound features of thyroid nodule 13
Figure 2.8 Classification of US elastography 14
Figure 2.9 Principle of strain elastography 15
Figure 2.10 B-mode and color coded elastogram 16
Figure 2.11 B-mode and gray scale elastogram 16
Figure 2.12 Diagram depicting the process of SWE 17
Figure 2.13 VTI of a thyroid papillary carcinoma 18
Figure 2.14 Virtual Touch quantification on a thyroid nodule 19
Figure 2.15 VTIQ principle 20
Figure 2.16 VTIQ with Color-coded SWV map 20
Figure 3.1 The flowchart of the selection of thyroid nodules 22
Figure 3.2 Acuson S3000 Ultrasound machine 23
Figure 3.3 Patient positioning 23
Figure 3.4 Display a target nodule in longitudinal view on B-mode 25
Figure 3.5 Placed ROI to create a SWV map 25
Figure 3.6 Measure SWV within nodule and its surrounding 26
Figure 4.1 Gender distribution 28
Figure 4.2 Aged distribution 29
Figure 4.3 Pathologic types of thyroid nodules 30
Figure 4.4 Receiver operating characteristic curve analysis 35
Figure 4.5 A thyroid benign nodule on VTIQ 37
Figure 4.6 A thyroid malignant nodule on VTIQ 38
Figure 5.1 A false negative case when using a cutoff value of mean SWV at 3.66 m/s 44



List of Tables
Table 2.1 The Bethesda System for Reporting Thyroid Cytopathology 8
Table 2.2 Sonographic patterns, estimated risk of malignancy 12
Table 4.1 Comparison of mean age between male and female group 28
Table 4.2 Type of thyroid nodules 30
Table 4.3 Basis US characteristics 32
Table 4.4 Comparison in nodule size between benign
and malignant nodules 33
Table 4.5 Summarization of pathology according to biggest
diameter of nodules 33
Table 4.6 Comparison in SWV of nodule and SWV ratio between benign and malignant thyroid nodules 34
Table 4.7 The mean SWV value in specific type of benign nodule 35
Table 4.8 The area under the curve for SWV and SWR value 36
Table 4.9 The diagnostic performance of SWV mean
and SWR under cutoff points 36
Table 4.10 The summarization of SWV and SWR in nodules according to the cutoff value of 3.66 m/s and 1.32, respectively 36


References
Ahn SS, Kim EK, Kang DR, Lim SK, Kwak JY, Kim MJ. Biopsy of Thyroid Nodules: Comparison of Three Sets of Guidelines. AJR Am J Roentgenol 2010;194(1):31-7.
Azizi G, Keller JM, Mayo ML, Piper K, Puett D, Earp KM, Malchoff CD. Thyroid nodules and shear wave elastography: a new tool in thyroid cancer detection. Ultrasound Med Biol 2015;41(11):2855-65.
Burnside ES, Hall TJ, Sommer AM, Hesley GK, Sisney GA, Svensson WE, Fine JP, Jiang J, Hangiandreou NJ. Differentiating Benign from Malignant Solid Breast Masses with US Strain Imaging. Radiology 2007;245(2):401-10.
Bojunga J, Dauth N, Berner C, Meyer G, Holzer K. Acoustic Radiation Force Impulse Imaging for Differentiation of Thyroid Nodules. PLoS One 2012;7(8): e42735.
Chang JM, Moon WK, Cho N, Kim SJ. Breast Mass Evaluation: Factors Infl uencing the Quality of US Elastography. Radiology 2011;259(1):59-64.
Cetin N, Yücel C, Göçün PU, Kurt SA, Taneri F, Oktar S, Ozdemir H. The Efficiency of Ultrasound Elastography in the Differential Diagnosis of Thyroid Nodules. JBR-BTR 2015;98(1):20-6.
Chen PY, Chiou SC, Ye HY, et al. Correlation of Ultrasonography with Fine Needle Aspiration Cytology and Final Pathological Diagnoses in Patients with Thyroid Nodules. Chin J Radiol 2015;35:1-7.
Cronan JJ. Thyroid Nodules: Is It Time to Turn Off the US Machines. Radiology 2008;247(3):602-4.
Cooper DS, Doherty GM, Haugen BR et al. Management Guidelines for Patients with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2006;16(2):109-42.
Cooper DS, Doherty GM, Haugen BR et al. Revised American Thyroid Association Management Guidelines for Patients with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2009;19(11):1167-214.
Calvete AC, Mestre JD, Gonzalez JM, Martinez ES, Sala BT, Zambudio AR. Acoustic radiation force impulse imaging for evaluation of the thyroid gland. J Ultrasound Med 2014;33(6):1031-40.
Dean DS, Gharib H. Epidemiology of thyroid nodules. Best Pract Res Clin Endocrinol Metab 2008;22(6):901-11.

Friedrich RM, Romenski O, Meyer G et al. Acoustic Radiation Force Impulse-Imaging for the evaluation of the thyroid gland: A limited patient feasibility study. Ultrasonics 2012;52(1):69-74.
Frates MC, Benson CB, Charboneau JW et al. Management of Thyroid Nodules Detected at US: Society of Radiologists in Ultrasound Consensus Conference Statement. Radiology 2005;237(3):794-800.
Gennisson JL, Deffieux T, Fink M, Tanter M. Ultrasound elastography: Principles and techniques. Diagn Interv Imaging 2013;94(5):487-95.
Golatta M, Martin MS, Harcos A et al. Evaluation of Virtual Touch Tissue Imaging Quantification, a New Shear Wave Velocity Imaging Method, for Breast Lesion Assessment by Ultrasound. Biomed Res Int 2014; 2014: 960262.
Guo A, Kaminoh Y, Forward T, Schwartz FL, Jenkinson S. Fine Needle Aspiration of Thyroid Nodules Using the Bethesda System for Reporting Thyroid Cytopathology: An Institutional Experience in a Rural Setting. Int J Endocrinol 2017;2017:9601735.
Hoang JK, Lee WK, Lee M, Johnson D, Farrell S. US Features of Thyroid Malignancy: Pearls and Pitfalls. Radiographics 2007;27(3):847-60.
Hamidi C, Göya C, Hattapoğlu S, Uslukaya Ö, Teke M, Durmaz MS, Yavuz MS, Hamidi A, Tekbaş G. Acoustic Radiation Force Impulse (ARFI) imaging for the distinction between benign and malignant thyroid nodules. Radiol Med 2015;120(6):579-83
Hou XJ, Sun AX, Zhou XL, Ji Q, Wang HB, Wei H, Sun JW, Liu H. The application of Virtual Touch tissue quantification (VTQ) in diagnosis of thyroid lesions: A preliminary study. Eur J Radiol 2013;82(5):797-801.
Haugen BR, Alexander EK, Bible KC et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016; 26(1): 1–133.
Ianculescu V, Ciolovan LM, Dunant A, Vielh P, Mazouni C, Delaloge S, Dromain C, Blidaru A, Balleyguier C. Added value of Virtual Touch IQ shear wave elastographyin the ultrasound assessment of breast lesions. Eur J Radiol 2014 ;83(5):773-7.
John B, Liexiang F. Understanding ARFI and New Elastography Quantification Technologies. Mountain View, CA: Siemens Medical Solutions 2014.
Jeong WK, Lim HK, Lee KL Jo JM, Kim Y. Principles and clinical application of ultrasound elastography for diffuse liver disease. Ultrasonography 2014;33(3): 149–160.
Liu H, Zhao LX, Xu Q, Yao MH, Zhang AH, Xu HX, Wu R. Diagnostic value of virtual touch tissue imaging quantification for benign and malignant breast lesions with different sizes. Int J Clin Exp Med 2015;8(8):13118–13126.
Lin P, Chen M, Liu B, Wang S, Li X. Diagnostic performance of shear wave elastography in the identification of malignant thyroid nodules: a meta-analysis. Eur Radiol 2014;24(11):2729-38.
Luo S, Kim EH, Dighe M, Kim Y. Thyroid nodule classification using ultrasound elastography via linear discriminant analysis. Ultrasonics 2011;51(4):425-31.
Moon WJ, Jung SL, Lee JH, Na DG, Baek JH, Lee YH, Kim J, Kim HS, Byun JS, Lee DH. Benign and Malignant Thyroid Nodules: US Differentiation— Multicenter Retrospective Study. Radiology 2008;247(3):762-70.
Nell S, Kist JW, Debray TP et al. Qualitative elastography can replace thyroid nodule fine-needle aspiration in patients with soft thyroid nodules. A systematic review and meta-analysis. Eur J Radiol 2015;84(4):652-61.
Nguyen QT, Lee EJ, Huang MG et al. Diagnosis and Treatment of Patients with Thyroid Cancer. Am Health Drug Benefits 2015; 8(1): 30–40.
Nguyen H .Acoustic Radiation Force Impulse (ARFI) Imaging of Thyroid Nodules at Medic Center. Congress RANZCR-AOCR 2012.
Nikiforova MN, Nikiforov YE. Molecualar genetics of thyroid cancer : implications for diagnosis, treatment and prognosis. Expert Rev Mol Diagn 2008;8(1):83-95.
Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography. A quantitative method for imaging the elasticity of biological tissues.Ultrasonic Imaging 1991; 13(2):111–134.
Okada R, Suzuki M, Takeuchi K, Horikoshi H, Tsunoda A. Measurement of shear wave velocities coupled with an evaluation of elasticity using ARFI elastography in diagnosis of papillary thyroid carcinoma. Open Journal of Clinical Diagnostics 2013; 3(4):178-182.
Sun J, Cai J, Wang X. Real-time Ultrasound Elastography for Differentiation of Benign and Malignant Thyroid Nodules. J Ultrasound Med 2014;33(3):495-502.
Sun CY, Lei KR, Liu BJ et al. Virtual touch tissue imaging and quantification (VTIQ) in the evaluation of thyroid nodules: the associated factors leading to misdiagnosis. Sci Rep 2017; 7: 41958.
Syed ZA and Edmund SC. The Bethesda System for Reporting Thyroid Cytopathology. Springer , 2010.
Tay SY, Chen CY Chan WP. Sonographic criteria predictive of benign thyroid nodules useful in avoiding unnecessary ultrasound-guided fine needle aspiration. J Formos Med Assoc 2015;114(7):590-7.
Wang C and Crapo LM. The epidemiology of thyroid disease and implications for screening. Endocrinol Metab Clin North Am 1997;26(1):189-218.
Welker MJ, Orlov D. Thyroid Nodules. Americal Family Physican 2003; 67(3):559-566.
Yang YP, Xu XH, Bo XW, Liu BJ, Guo LH, Xu JM, Sun LP, Xu HX. Comparison of virtual touch tissue imaging & quantification (VTIQ) and Virtual touch tissue quantification (VTQ) for diagnosis of thyroid nodules. Clin Hemorheol Microcirc 2017;65(2):137-149.
Zhou H, Zhou XL, Xu HX et al. Virtual Touch Tissue Imaging and Quantification in the Evaluation of Thyroid Nodules. J Ultrasound Med 2017;36(2):251-260.
Zhan J, Jin JM, Diao XH, Chen Y. Acoustic radiation force impulse imaging (ARFI) for differentiation ofbenign and malignant thyroid nodules-A meta-analysis. Eur J Radiol 2015;84(11):2181-6.
Zhang YF, Xu HX, He Y et al. Virtual Touch Tissue Quantification of Acoustic Radiation Force Impulse: A New Ultrasound Elastic Imaging in the Diagnosis of Thyroid Nodules. PLoS One 2012;7(11): e49094.
Zhang FJ, Han RL. The value of acoustic radiation force impulse (ARFI) in the differential diagnosis of thyroid nodules. Eur J Radiol 2013;82(11):e686-90.
Thyroid nodule brochure, American thyroid association, 2017



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top