跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/15 13:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王惠麗
研究生(外文):Kanchaporn Wongamornpitak
論文名稱:在需求取決於口碑營銷效應時最佳化訂購策略
論文名稱(外文):Demand Uncertainty Mitigation Subject to theWord-of-Mouth Marketing Effect
指導教授:李捷李捷引用關係
指導教授(外文):Chieh Lee
口試委員:丁慶榮許洵
口試委員(外文):Ching-Jung TingXun Xu
口試日期:20 June 2017
學位類別:碩士
校院名稱:元智大學
系所名稱:工業工程與管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:168
中文關鍵詞:電子商務報童模型需求的不確定性利潤最大化
外文關鍵詞:EcommerceNewsvendor modelUncertainties of demandProfit maximization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現今,電子商務是重要的銷售管道之一,隨著社交網路的發達,逐漸影響到人們的生活方式。大多數的公司在網路發達的情況下,必須發展電子商務平台,以便在市場上有足夠的競爭力。由於,顧客會在網路分享產品的正面或負面的評價,造成網路銷售的需求不確定性,即是企業所要面臨的問題。因此,企業必須將不確定性的需求預測風險納入企業的最大化利潤模型。本研究提出了一種報童模型搜索的概念,試圖找尋最大化利潤,並藉由替代產品的最佳定價和數量,受自願營銷影響的替代產品開發,以及可能的正面中斷。考慮供應鏈中批發商對零售商以及零售商對顧客兩個階段之間的關係。
As ecommerce is one of the most capable distribution channel in this era, along with social media trends to play a significant role on people’s thought and lifestyle. Most of firms are developing an online channel in order to be competitive in the world market. However, firms might face an unexpected disruption of demand that generated by shopping website or social media, since the customer can share the information of product both of positive and negative sides instantaneously. Therefore, it is important for firms to incorporate the risk of inaccurate demand forecast into firms’ profit maximization model. We propose a concept of newsvendor model search for the possible maximize profit by developing an optimal pricing and quantity for substituted products subject to voluntary marketing impact along with a possible positive disruption. Considering the relationship between two stage in supply chain which are wholesaler to retailer and retailer to customer.
TABLE OF CONTENTS
摘要 II
Abstract III
ACKNOWLADGEMENTS IV
TABLE OF CONTENTS V
LIST OF FIGURES VIII
LIST OF TABLE XIII
CHAPTER 1 INTRODUCTION 1
1.1 Research Background and Motivation 1
1.2 Research Objectives 8
CHAPTER 2 LITERATURE REVIEW 9
2.1 Newsvendor Model 9
2.2 Effect of WOM on demand 10
2.3 Substitute Product 11
2.4 Supply Chain Coordination 12
2.5 Research Gap 14
CHAPTER 3 MODELING FRAMEWORK 15
3.1 Problem Statement 15
3.2 Model Assumptions 16
3.3 Notation 16
Retail stage 16
Manufacture stage 17
3.4 Formulation 18
Retail stage 19
Manufacture stage 19
Case 1.1: Product 1 dominate product 2 (θ = 0) 19
Retail stage 20
Manufacture stage 22
Case 1.2: Product 2 dominate product 1 (δ = 0) 24
Retail stage 25
Manufacture stage 27
Relationship in supply chain 28
CHAPTER 4 DATA ANALYSIS 30
Supply Chain Joint Optimization 30
Case A: Bilateral contract 30
Case B: Manufacturer dominating 32
Case C: Retailer dominating 33
Case D: Rubinstein bargaining 35
CHAPTER 5 DISCUSSION AND CONCLUSION 39
5.1 Discussion 39
a. Effect of probability of substitution(δandθ) 39
b. Effect of price elastic (b1 and b2) 45
c. Effect of fixed cost (c1 and c2) 46
d. Effect of primary demand (a1 and a2) 49
e. Effect of positive disruption (λ) 52
f. Supply Chain Coordination 55
5.2 Conclusion 68
5.3 Future research 69
REFERENCE 70
APPENDIX 75
Appendix A 75
Appendix B 86
Appendix B1: Data of Effect of probability of substitution(δandθ)and price elasticity (b1 and b2)86
Appendix B2: Data of Effect of probability of substitution (δandθ) 89
Appendix B3: Data of Effect of price elasticity probability of substitution (b1 and b2) 98
Appendix B4: Data of Effect of fixed cost (c1 and c2)113
Appendix B5: Data of Effect of primary demand(a1anda2)138
Appendix B6: Data of Effect of disruption (λ) 160
Appendix B7: Data of Supply Chain Coordination 162
1.Algharabat, R. S., AlSudairi, M., Vasista, T. G., & Zamil, A. M. (2012). Mitigating the Bullwhip Effect with eWord of Mouth: eBusiness Intelligence Perspective. International Journal of Managing Value and Supply Chains 3(4): 27-41.
2.Alkemade, F., & Castaldi, C. (2005). Strategies for the Diffusion of Innovations on Social Networks. Computational Economics 25(1): 3-23.
3.Baykal-Gürsoy, M., Jaśkiewicz, A., & Rubio-Herrero, J., (2015). A Price-setting Newsvendor Problem under Mean-variance Criteria. European Journal of Operational Research 247(2): 575-587.
4.Beese, J. (2016). Social Media Ecommerce: The Complete Guide to Social Shopping. http://sproutsocial.com/insights/social-media-ecommerce/, accessed 6 February 2017.
5.Broad, S., & Burgess, G. (2016). Synthetic Biology Product Substitution and the Battle Against Illegal Wild Life Trade. TRAFFIC Bulletin 28(1): 22-28.
6.Cai, J., Huang, G., Shang, J., & Tadikamalla, P. R. (2017). Optimal Inventory Decisions under Vendor Managed Inventory: Substitution Effects and Replenishment Tactics. Applied Mathematical Modelling 43: 611-629.
7.Carpenter, J. W. (2015). The World's Top 10 Retailers.
http://www.investopedia.com/articles/markets/122415/worlds-top-10-retailers-wmt-cost.asp#ixzz4bqmuPq8z, accessed 20 March 2016.
8.Chen, J. (2011). Returns with Wholesale-price-discount Contract in a Newsvendor Problem. International Journal Production Economics 130(1):104-111.
9.Chen, X., &Wang, C. (2015). Optimal Ordering Policy for a Price-setting Newsvendor with Option Contracts under Demand Uncertainty. International Journal of Production Research 53(20): 6279-6293.
10.Chen, Y., Fang, S., & Wen, U. (2013). Pricing Policies for Substitutable Products in a Supply Chain with Internet and Traditional Channels. European Journal of Operational Research 224(3): 542-551.
11.Chen, Y., Xu, M., & Xu, X. (2010). The Effect of Demand Uncertainty in a Price-setting Newsvendor Model. European Journal of Operational Research 207(2): 946-957.
12.Chidmi, B., Hanson, T., & Nguyen, G. (2012). Substitutions Between Fish and Seafood Products at the US National Retail Level. Marine Resource Economics 27(4): 359-370.
13.Chowdury, A., Jansen, B. J., Sobel, K., & Zhang, M. (2009). Twitter power: Tweets as electronic word of mouth. Journal of the American society for information science and technology 60(11): 2169-2188.
14.Cicek, M., & Erdomu, I. E. (2012). The Impact of Social Media Marketing on Brand Loyalty. Procedia - Social and Behavioral Sciences 58: 1353-1360.
15.Dallery, Y., Jemai, Z., Ma, S., & Sahin, E. (2015, October 21-23). Assortment Decision in the Multi-Product Newsvendor Problem with Demand Substitution. Paper presented at the 6th Industrial Engineering and Systems Management (IESM), Seville, Spain.
16.Dukes, A. J., Geylani, T., & Srinivasan, K. (2007). Strategic Manufacturer Response to a Dominant Retailer. Marketing Science 26(2): 164-178.
17.Eksioglu, B., & Martagan, T. (2013). Game Theoretic Analysis of an Inventory Problem with Substitution, Stochastic Demand, and Uncertain Supply. International Journal Inventory Research 2(1-2): 27-43.
18.Elberg, A., & Noton, C. (2013, October 31 – November 2). Revealing Bargaining Power Through Actual Wholesale Prices. Paper presented at LACEA and LAMES 2013 Annual Meetings, Mexico City.
19.eMarketer (2016). Worldwide Retail Ecommerce Sales Will Reach $1.915 Trillion This Year.
https://www.emarketer.com/Article/Worldwide-Retail-Ecommerce-Sales-Will-Reach-1915-Trillion-This-Year/1014369, accessed 14 December 2016.
20.eMarketer (2016). How Social Media Influences Shopping Behavior.
https://www.emarketer.com/Article/How-Social-Media-Influences-Shopping-Behavior/1013718, accessed 14 December 2016.
21.He, J., He, Y., Zhao, L., & Zhao, X. (2009). Coordinating a Supply Chain with Effort and Price Dependent Stochastic Demand. Applied Mathematical Modelling 33(6): 2777–2790.
22.He, X., Li, T., & Sethi, S. P. (2015). Dynamic Pricing, Production, and Channel Coordination with Stochastic Learning. Production and Operations Management 24(6): 857–882.
23.Herr, P. M., Frank, R. K., & John, K. (1991). Effects of Word-of-mouth and Product-attribute Information on Persuasion: An accessibility-diagnosticity Perspective. Journal of Consumer Research 17(4): 454-462.
24.Horn, K. (2016). The Product Life Cycle Is in Decline.
http://www.sourcingfocus.com/site/opinionscomments/the_product_life_cycle_is_in_decline/, accessed 14 December 2016.
25.Huang, D., Zhao, Q., & Zhou, H. (2011). A Competitive Multiple-product Newsboy Problem with Partial Product Substitution. Omega 39(3): 302-312.
26.IDC (2016). Smartphone Vendor Market Share, 2016 Q3. http://www.idc.com/promo/smartphone-market-share/vendor, accessed 20 December 2016.
27.Jucker, J., & Rosenblatt, M. (1985). Single-period Inventory Models with Demand Uncertainty and Quantity Discounts: Behavioral Implications and a New Solution Procedure. Naval Research Logistics Quarterly 32(4): 537-550.
28.Khouja, M. (1999). The Single-period (News-vendor) Problem: Literature Review and Suggestions for Future Research. Omega 27(5): 537-553.
29.Kramer, L. (2007). In a Battle of Toothpastes, It’s Information vs. Emotion. http://www.nytimes.com/2007/01/17/business/media/17adco.html, accessed 20 December 2016.
30.Kroll, D. E., & Lin, C. S. (1997). The Single-item Newsboy Problem with Dual Performance Measures and Quantity Discounts. European Journal of Operational Research 100(3): 562-565.
31.Lau, H. (1980). The Newsboy Problem under Alternative Optimization Objectives. The Journal of the Operational Research Society 31(6): 525-535.
32.Li, F., & Lin, N. (2016). A Multi-Agent Approach for the Newsvendor Problem with Word-of-Mouth Marketing Strategies. Intelligent Computing Theories and Application, Lecture Notes in Computer Science 9772: 782-792.
33.Li, D., & Zhou, Y. (2007). Coordinating Order Quantity Decisions in the Supply Chain Contract under Random Demand. Applied Mathematical Modelling 31(6): 1029-1038.
34.Liu, K., & Yan, X. (2009). Optimal Control Problems for a New Product with Word-of-mouth. International Journal Production Economics 119(2): 402–414.
35.Luo, S., Sethi, S. P., & Shi, R. (2016). On the Optimality Conditions of a Price-setting Newsvendor Problem. Operations Research Letters 44(6): 697-701.
36.Negahban, A. (2013). A Hybrid Simulation Framework for the Newsvendor Problem with Advertising and Viral Marketing. In Proceedings of the 2013 Winter Simulation Conference: Simulation: Making Decisions in a Complex World: 613-1624, Washington, DC, USA.
37.Ozdaglar A. (2010). Game Theory with Engineering Applications Lecture 14: Nash Bargaining Solution [PowerPoint slides]. Retrieved from http://ocw.mit.edu
38.Rouse, M. (2016). E-commerce (electronic commerce or EC). http://searchcio.techtarget.com/definition/e-commerce, accessed 17 February 2017.
39.Mills, E. S. (1959). Uncertainty and Price Theory. The Quarterly Journal of Economics 73(1): 116–130.
40.Seegers, D., & Vermeulen, I. E. (2009). Tried and Tested: The Impact of Online Hotel Reviews on Consumer Consideration. Tourism Management 30(1): 123-127.
41.Statista (2017). Number of Social Media Users Worldwide from 2010 to 2020. https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/, accessed 6 February 2017.
42.Wang, A., Wang, J., & Wang, Y. (2013). Markup Pricing Strategies between a Dominant Retailer and Competitive Manufacturers. Computers & Industrial Engineering 64(1): 235–246.
43.Wu, D. (2013). Coordination of Competing Supply Chains with News-vendor and Buyback Contract. International Journal Production Economics 144(1): 1-13.
44.Ye, T. (2014). Inventory Management with Simultaneously Horizontal and Vertical Substitution. International Journal Production Economics 156: 316-324.
45.Zhang, J., & Zhang, M. (2011). Supplier Selection and Purchase Problem with Fixed Cost and Constrained Order Quantities under Stochastic Demand. International Journal of Production Economics 129(1): 1–7.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top