跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/18 19:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃彥庭
研究生(外文):Yen-Ting Huang
論文名稱:質子交換膜水電解器內部之微觀診斷技術開發
論文名稱(外文):Technological development of microscopic diagnosis inside proton exchange membrane water electrolysis
指導教授:李其源
指導教授(外文):Chi-Yuan Lee
口試委員:沈家傑楊龍杰
口試委員(外文):Chia-Chieh ShenLung-Jieh Yang
口試日期:2017-01-16
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:81
中文關鍵詞:質子交換水電解器微機電系統可撓式整合型微感測器即時微觀感測與診斷
外文關鍵詞:proton exchange water electrolysisproton exchange water electrolysisflexible integrated microsensorreal-time microscopic sensing and diagnosis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:295
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
質子交換膜水電解器內部的去離子水流速、去離子水溫度、電壓及電流四種內部物理數據對質子交換膜水電解器的性能與壽命有著關鍵性的影響。去離子水的流速太低會使質子交換膜水電解器的產氫效率變低,而流速太高又有膜電極組(Membrane Electrode Assembly, MEA)破孔的風險。去離子水的溫度太低達不到MEA的工作溫度也會使質子交換膜水電解器的產氫效率變低,而溫度太高也有可能破壞MEA。因此找到最適當的工作條件是本研究的重點。
本研究利用微機電系統(Micro-electro-mechanical systems, MEMS)技術開發出具有流量、溫度、電壓與電流的可撓式整合型微感測器並嵌入質子交換膜水電解器內部即時微觀感測與診斷。透過可撓式整合型微感測器所擷取的內部物理資訊即可找出最適合質子交換膜水電解器的工作參數。對提升質子交換膜水電解器的產氫效率與工作壽命有很大的幫助。
The four internal physical data of proton exchange membrane water electrolysis, including the DI water flow velocity, DI water temperature, voltage and current, have critical effect on the performance and life of proton exchange membrane water electrolysis. If the flow velocity of DI water is too low, the hydrogen production efficiency of proton exchange membrane water electrolysis is low, but the MEA may be breached if the flow velocity is too high. The working temperature of MEA is failed if the temperature of DI water is too low, the hydrogen production efficiency of proton exchange membrane water electrolysis is also reduced, and the MEA may be damaged if the temperature is too high. Therefore, the key point of this study is to find out the optimal working conditions.
This study uses Micro-electro-mechanical systems (MEMS) technology to develop a flexible integrated microsensor for flow, temperature, voltage and current, which is embedded in the proton exchange membrane water electrolysis for real-time microscopic sensing and diagnosis. The optimal working parameters for proton exchange membrane water electrolysis can be found out of the internal physical information extracted by the flexible integrated microsensor. It is very helpful to enhancing the hydrogen production efficiency and operating life of proton exchange membrane water electrolysis
目錄
封面 ..…………………………………………………………………… i
書名頁 ..………………………………………………………………... ii
論文口試委員審定書 ..…………………………………………………. iii
授權書 ..……………………………………………………….………. iv
中文摘要 ..…………………………………………………………..…. v
英文摘要 ..……………………………………………………….……. vi
目錄 ………………………………………………………..…………. viii
圖目錄 …………………………………………………………………. xi
表目錄 ………………………………………………………………… xv
第一章 緒論 1
1.1 前言 1
1.2 燃料電池 5
1.3 質子交換膜水電解器 7
1.4 研究背景與目的 8
1.5 文獻回顧 10
1.5.1 質子交換膜水電解器設計及測試 10
1.5.2 流量診斷 14
1.5.3 溫度診斷 18
1.5.4 電壓診斷 21
1.5.5 電流診斷 24
1.6 研究方法 27

第二章 可撓式整合型微感測器之設計與製程開發 29
2.1 可撓式整合型微感測器之感測原理 29
2.1.1 微流量感測器 29
2.1.2 微溫度感測器 31
2.1.3 微電壓感測器 34
2.1.4 微電流感測器 34
2.2 可撓式整合型微感測器之整合設計 35
2.3 可撓式整合型微感測器之製作流程 36
2.3.1 濕蝕刻 37
第三章 質子交換膜水電解器 46
3.1 端板與集電板 46
3.2 雙極板 48
3.2.1 雙極板流道設計 48
3.2.2 雙極板材料選擇 49
3.3 膜電極組 50
3.4 質子交換膜水電解器組裝程序 53
3.5 質子交換膜水電解器測試設備 54
第四章 整合質子交換膜水電解器與可撓式整合型微感測器 56
4.1 可撓式整合型微感測器之封裝 56
4.2 可撓式整合型微感測器之可靠度測試 57
4.2.1 微溫度感測器之可靠度測試 (溫度校正) 58
4.2.2 微流量感測器之可靠度測試 (流量校正) 61
4.3 質子交換膜水電解器活化 63
4.4 可撓式整合型微感測器嵌入於質子交換膜水電解器 64
第五章 質子交換膜水電解器之即時微觀診斷 66
5.1 質子交換膜水電解器性能測試 66
5.1.1 溫度測試 66
5.1.2 流量測試 67
5.2 質子交換膜水電解器測試環境 68
5.2.1 質子交換膜水電解器之局部流量分佈 68
5.2.2 質子交換膜水電解器之局部溫度分佈 70
5.2.3 質子交換膜水電解器之局部電壓分佈 72
5.2.4 質子交換膜水電解器之局部電流分佈 73
5.3 產氫量 75
第六章 結論與未來展望 76
6.1 結論 76
6.2 未來展望 76
1. OPEC Annual Statistical Bulletin (2016).
2. BP Statistical Review of World Energy (2016).
3. IEA Special Report on Energy and Climate Change (2015).
4. 經濟部能源局,「能源產業技術白皮書」 (2016)。
5. 謝耀慶,「燃料電池淺談」,國立東華大學。
6. Fuel Cell Today, The Fuel cell Industry Review 2014.
7. 陳立誠,「能源與氣候的迷思:2兆元的政策失誤」 (2012).
8. W. Kreuter, H. Hofmann, Hydrogen Energy Process XI, 1, 537, 1966.
9. E. Rasten, G. Hagen, R. Tunold, “ Electrocatalysis in water electrolysis with solid polymer electrolyte, ” Electrochimica Acta, 48, pp. 3945-3952, 2003.
10. C. Rozain, P. Millet, “ Electrochemical characterization of Polymer Electrolyte Membrane Water Electrolysis Cells, ” Electrochimica Acta, 131, pp. 160-167, 2014.
11. P. Millet, R. Nagameni, S. A. Grigoriev, N. Mbemba, F. Brisset, A. Ranjbari, C. Etievant, “ PEM water electrolyzers:From electrocatalysis to stack development, ” International Journal of Hydrogen Energy, 35, pp. 5043-5052, 2010.
12. S. A. Grigoriev, P. Millet, S. V. Korobtsev, V. I. Porembskiy, M. Pepic, C. Etievant, C. Puyenchet, V. N. Fateev, “ Hydrogen safety aspects related to high-pressure polymer electrolyte membrane water electrolysis, ” International Journal of Hydrogen Energy, 34, pp. 5986-5991, 2009.
13. O. F. Selamet, F. Becerikli, M. D. Mat, Y. Kaplan, “ Development and testing of a highly efficient proton exchange membrane (PEM) electrolyzer stack, ” International Journal of Hydrogen Energy, 36, pp. 11480-11487, 2011.
14. S. Siracusano, V. Baglio, N. Briguglio, G. Brunaccini, A. D. Blasi, A. Stassi, R. Ornelas, E. Trifoni, V. Antonucci, A. S. Arico, “ An electrochemical study of a PEM stack for water electrolysis, ” International Journal of Hydrogen Energy, 37, pp. 1939-1946, 2012.
15. S. A. Grigoriev, P. Millet, S. A. Volobuev, V. N. Fateev, “ Optimization of porous current collectors for PEM water electrolysis, ” International Journal of Hydrogen Energy, 34, pp. 4968-4973, 2009.
16. S. Sun, Z. Shao, H. Yu, G. Li, B. Yi, “ Investigations on degradation of the long-term proton exchange membrane water electrolysis stack, ” Journal of Power Sources, 267, pp. 515-520, 2014.
17. S. Siracusano, A. D. Blasi, V. Baglio, G. Brunaccini, N. Briguglio, A. Stassi, R. Ornelas, E. Trifoni, V. Antonucci, A. S. Arico, “ Optimization of components and assembling in a PEM electrolyzer stack, ” International Journal of Hydrogen Energy, 36, pp. 3333-3339, 2011.
18. F. Marangio, M. Santarelli, M. Cali, “ Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production, ” International Journal of Hydrogen Energy, 34, pp. 1143-1158, 2009.
19. O. F. Selamet, M. S. Ergoktas, “ Effects of bolt torque and contact resistance on the performance of the polymer electrolyte membrane electrolyzers, ” Journal of Power Sources, 281, pp. 103-113, 2015.
20. N. Briguglio, G. Brunaccini, S. Siracusano, N. Randazzo, G. Dispenza, M. Ferraro, R. Ornelas, A. S. Arico, V. Antonucci, “ Design and testing of a compact PEM electrolyzer system, ” International Journal of Hydrogen Energy, 38, pp. 11519-11529, 2013.
21. H. Ito, T. Maeda, A. Nakano, Y. Hasegawa, N. Yokoi, C. M. Hwang, M. Ishida, A. Kato, T. Yoshida, “ Effect of flow regime of circulating water on a proton exchange membrane electrolyzer, ” International Journal of Hydrogen Energy, 35, pp. 9550-9560, 2010.
22. F. Barreras, A. Lozano, L. Valino, R. Mustata, C. Marin, “ Field dynamics performance of different bipolar plates Part 1. Velocity and pressure fields, ” Journal of Power Sources, 175, pp. 841-850, 2008.
23. K. Jiao, B. Zhou, P. Quan, “ Liquid water transport in parallel serpentine channels with manifolds on cathode side of a PEM fuel cell stack, ” Journal of Power Sources, 154, pp. 124-137, 2006.
24. J. Nie, Y. Chen, S. Cohen, B. D. Carter, R. F. Boehm, “ Numerical and experimental study of three-dimensional fluid flow in the bipolar plate of a PEM electrolysis, ” International Journal of Thermal Sciences, 48, pp. 1914-1922, 2009.
25. J. Nie, Y. Chen, R. F. Boehm, S. Katukota, “ A photoelectrochemical model of proton exchange water electrolysis for hydrogen production, ” Journal of Heat Transfer, 130(2), 2008.
26. S. Siracusano, N. V. Dijk, E. P. Johnson, V. Baglio, A. S. Arico, “ Nanosized Irox and IrRuOx electrocatalysts for the O2 evolution reaction in PEM water electrolysis, ” Applied Catalysis B: Environmental, 164, pp. 488-495, 2015
27. S. Siracusano, V. Baglio, E. Moukheuber, L. Merlo, A. S. Arico, “ Performance of a PEM water electrolyser combining an IrRu-oxide anode electrocatalyst and a short-side chain Aquivion membrane, ” International Journal of Hydrogen Energy, 40, pp. 14430-14435, 2015.
28. R. G. Valverde, N. Espinosa, A. Urbina, “ Simple PEM water electrolyser model and experimental validation, ” International Journal of Hydrogen Energy, 37, pp. 1927-1938, 2012.
29. F. M. Sapountzi, S. C. Divane, E. I. Papaioannou, S. Souentie, C. G. Vayemas, “ The role of Nafion content in sputtered IrO2 based anodes for low temperature PEM water electrolysis, ” Journal of Electroanalytical Chemistry, 662, pp. 116-122, 2011.
30. C. C. Sung, C. Y. Liu, “ A novel micro protective layer applied on a simplified PEM water electrolyser, ” International Journal of Hydrogen Energy, 38, pp. 10063-10067, 2013.
31. R. Balaji, N. Senthil, S. Vasudevan, S. Ravichandran, S. Mohan, G. Sozhan, S. Madhu, J. Kennedy, S. Pushpavanam, M. Pushpavanam, “ Development and performance evaluation of Proton Exchange Membrane (PEM) based hydrogen generator for portable applications, ” International Journal of Hydrogen Energy, 36, pp. 1399-1403, 2011.
32. P. Millet, D. Dragoe, S. Grigoriev, V. Fateev, C. Etievant, “ GenHyPEM: A research program on PEM water electrolysis supported by the European Commission, ” International Journal of Hydrogen Energy, 34, pp. 4974-4982, 2009.
33. C. Rozain, E. Mayousse, N. Guillet, P. Millet, “ Influence of iridium oxide loadings on the performance of MEA water electrolysis cells: Part 2 – Advanced oxygen electrodes, ” Applied Catalysis B: Environmental, 182, pp. 123-131, 2016.
34. P. Millet, A. Ranjbari, F. Guglielmo, S. A. Grigoriev, F. Aupretre, “ Cell failure mechanisms in PEM water electrolyzers, ” International Journal of Hydrogen Energy, 37, pp. 17478-17487, 2012.
35. C. Rozain, E. Mayousse, N. Guillet, P. Millet, “ Influence of iridium oxide loadings on the performance of PEM water electrolysis cell: Part 1 – Pure IrO2 – based anodes, ” Applied Catalysis B: Environmental, 182, pp. 153-160, 2016.
36. S. Ravichandran, R. Venkatkarthick, A. Sankari, S. Vasudevan, D. J. Davidson, “ Platinum deposition on the nafion membrane by impregnation reduction using nonionic surfactant for water electrolysis – An alternate approach, ” Energy, 68, pp. 148-151, 2014.
37. E. Slavcheva, I. Radev, S. Bliznakov, G. Topalov, P. Andreev, E. Budevski, “ Sputtered iridium oxide films as electrocatalysts for water splitting via PEM electrolysis, ” Electrochimica Acta, 52, pp. 3889-3894, 2007.
38. 劉范暄,可撓式微型感測器應用於高溫質子交換膜燃料電池堆內即時微觀診斷暨遠端系統驗證,元智大學機械工程研究所碩士論文,民國一百零三年。
39. W. He, B. Wang, “ A current-sensor electrochemical device for accurate gas diffusivity measurement in fuel cells, ” Journal of Power Sources, 232, pp. 93-98, 2005.
40. D. Fofana, S. K. Natarajan, J. Hamelin, P. Benard, “ Low platinum, high limiting current density of the PEMFC (proton exchange membrane fuel cell) based on multilayer cathode catalyst approach, ” Energy, 64, pp. 398-403, 2014.
41. Wilson JS. Sensor technology handbook. Butterworth-Heinemaann, 2005.
42. Chroma,可程式直流電子負載6310系列操作/編程手冊,2003。
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top