1. OPEC Annual Statistical Bulletin (2016).
2. BP Statistical Review of World Energy (2016).
3. IEA Special Report on Energy and Climate Change (2015).
4. 經濟部能源局,「能源產業技術白皮書」 (2016)。
5. 謝耀慶,「燃料電池淺談」,國立東華大學。
6. Fuel Cell Today, The Fuel cell Industry Review 2014.
7. 陳立誠,「能源與氣候的迷思:2兆元的政策失誤」 (2012).
8. W. Kreuter, H. Hofmann, Hydrogen Energy Process XI, 1, 537, 1966.
9. E. Rasten, G. Hagen, R. Tunold, “ Electrocatalysis in water electrolysis with solid polymer electrolyte, ” Electrochimica Acta, 48, pp. 3945-3952, 2003.
10. C. Rozain, P. Millet, “ Electrochemical characterization of Polymer Electrolyte Membrane Water Electrolysis Cells, ” Electrochimica Acta, 131, pp. 160-167, 2014.
11. P. Millet, R. Nagameni, S. A. Grigoriev, N. Mbemba, F. Brisset, A. Ranjbari, C. Etievant, “ PEM water electrolyzers:From electrocatalysis to stack development, ” International Journal of Hydrogen Energy, 35, pp. 5043-5052, 2010.
12. S. A. Grigoriev, P. Millet, S. V. Korobtsev, V. I. Porembskiy, M. Pepic, C. Etievant, C. Puyenchet, V. N. Fateev, “ Hydrogen safety aspects related to high-pressure polymer electrolyte membrane water electrolysis, ” International Journal of Hydrogen Energy, 34, pp. 5986-5991, 2009.
13. O. F. Selamet, F. Becerikli, M. D. Mat, Y. Kaplan, “ Development and testing of a highly efficient proton exchange membrane (PEM) electrolyzer stack, ” International Journal of Hydrogen Energy, 36, pp. 11480-11487, 2011.
14. S. Siracusano, V. Baglio, N. Briguglio, G. Brunaccini, A. D. Blasi, A. Stassi, R. Ornelas, E. Trifoni, V. Antonucci, A. S. Arico, “ An electrochemical study of a PEM stack for water electrolysis, ” International Journal of Hydrogen Energy, 37, pp. 1939-1946, 2012.
15. S. A. Grigoriev, P. Millet, S. A. Volobuev, V. N. Fateev, “ Optimization of porous current collectors for PEM water electrolysis, ” International Journal of Hydrogen Energy, 34, pp. 4968-4973, 2009.
16. S. Sun, Z. Shao, H. Yu, G. Li, B. Yi, “ Investigations on degradation of the long-term proton exchange membrane water electrolysis stack, ” Journal of Power Sources, 267, pp. 515-520, 2014.
17. S. Siracusano, A. D. Blasi, V. Baglio, G. Brunaccini, N. Briguglio, A. Stassi, R. Ornelas, E. Trifoni, V. Antonucci, A. S. Arico, “ Optimization of components and assembling in a PEM electrolyzer stack, ” International Journal of Hydrogen Energy, 36, pp. 3333-3339, 2011.
18. F. Marangio, M. Santarelli, M. Cali, “ Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production, ” International Journal of Hydrogen Energy, 34, pp. 1143-1158, 2009.
19. O. F. Selamet, M. S. Ergoktas, “ Effects of bolt torque and contact resistance on the performance of the polymer electrolyte membrane electrolyzers, ” Journal of Power Sources, 281, pp. 103-113, 2015.
20. N. Briguglio, G. Brunaccini, S. Siracusano, N. Randazzo, G. Dispenza, M. Ferraro, R. Ornelas, A. S. Arico, V. Antonucci, “ Design and testing of a compact PEM electrolyzer system, ” International Journal of Hydrogen Energy, 38, pp. 11519-11529, 2013.
21. H. Ito, T. Maeda, A. Nakano, Y. Hasegawa, N. Yokoi, C. M. Hwang, M. Ishida, A. Kato, T. Yoshida, “ Effect of flow regime of circulating water on a proton exchange membrane electrolyzer, ” International Journal of Hydrogen Energy, 35, pp. 9550-9560, 2010.
22. F. Barreras, A. Lozano, L. Valino, R. Mustata, C. Marin, “ Field dynamics performance of different bipolar plates Part 1. Velocity and pressure fields, ” Journal of Power Sources, 175, pp. 841-850, 2008.
23. K. Jiao, B. Zhou, P. Quan, “ Liquid water transport in parallel serpentine channels with manifolds on cathode side of a PEM fuel cell stack, ” Journal of Power Sources, 154, pp. 124-137, 2006.
24. J. Nie, Y. Chen, S. Cohen, B. D. Carter, R. F. Boehm, “ Numerical and experimental study of three-dimensional fluid flow in the bipolar plate of a PEM electrolysis, ” International Journal of Thermal Sciences, 48, pp. 1914-1922, 2009.
25. J. Nie, Y. Chen, R. F. Boehm, S. Katukota, “ A photoelectrochemical model of proton exchange water electrolysis for hydrogen production, ” Journal of Heat Transfer, 130(2), 2008.
26. S. Siracusano, N. V. Dijk, E. P. Johnson, V. Baglio, A. S. Arico, “ Nanosized Irox and IrRuOx electrocatalysts for the O2 evolution reaction in PEM water electrolysis, ” Applied Catalysis B: Environmental, 164, pp. 488-495, 2015
27. S. Siracusano, V. Baglio, E. Moukheuber, L. Merlo, A. S. Arico, “ Performance of a PEM water electrolyser combining an IrRu-oxide anode electrocatalyst and a short-side chain Aquivion membrane, ” International Journal of Hydrogen Energy, 40, pp. 14430-14435, 2015.
28. R. G. Valverde, N. Espinosa, A. Urbina, “ Simple PEM water electrolyser model and experimental validation, ” International Journal of Hydrogen Energy, 37, pp. 1927-1938, 2012.
29. F. M. Sapountzi, S. C. Divane, E. I. Papaioannou, S. Souentie, C. G. Vayemas, “ The role of Nafion content in sputtered IrO2 based anodes for low temperature PEM water electrolysis, ” Journal of Electroanalytical Chemistry, 662, pp. 116-122, 2011.
30. C. C. Sung, C. Y. Liu, “ A novel micro protective layer applied on a simplified PEM water electrolyser, ” International Journal of Hydrogen Energy, 38, pp. 10063-10067, 2013.
31. R. Balaji, N. Senthil, S. Vasudevan, S. Ravichandran, S. Mohan, G. Sozhan, S. Madhu, J. Kennedy, S. Pushpavanam, M. Pushpavanam, “ Development and performance evaluation of Proton Exchange Membrane (PEM) based hydrogen generator for portable applications, ” International Journal of Hydrogen Energy, 36, pp. 1399-1403, 2011.
32. P. Millet, D. Dragoe, S. Grigoriev, V. Fateev, C. Etievant, “ GenHyPEM: A research program on PEM water electrolysis supported by the European Commission, ” International Journal of Hydrogen Energy, 34, pp. 4974-4982, 2009.
33. C. Rozain, E. Mayousse, N. Guillet, P. Millet, “ Influence of iridium oxide loadings on the performance of MEA water electrolysis cells: Part 2 – Advanced oxygen electrodes, ” Applied Catalysis B: Environmental, 182, pp. 123-131, 2016.
34. P. Millet, A. Ranjbari, F. Guglielmo, S. A. Grigoriev, F. Aupretre, “ Cell failure mechanisms in PEM water electrolyzers, ” International Journal of Hydrogen Energy, 37, pp. 17478-17487, 2012.
35. C. Rozain, E. Mayousse, N. Guillet, P. Millet, “ Influence of iridium oxide loadings on the performance of PEM water electrolysis cell: Part 1 – Pure IrO2 – based anodes, ” Applied Catalysis B: Environmental, 182, pp. 153-160, 2016.
36. S. Ravichandran, R. Venkatkarthick, A. Sankari, S. Vasudevan, D. J. Davidson, “ Platinum deposition on the nafion membrane by impregnation reduction using nonionic surfactant for water electrolysis – An alternate approach, ” Energy, 68, pp. 148-151, 2014.
37. E. Slavcheva, I. Radev, S. Bliznakov, G. Topalov, P. Andreev, E. Budevski, “ Sputtered iridium oxide films as electrocatalysts for water splitting via PEM electrolysis, ” Electrochimica Acta, 52, pp. 3889-3894, 2007.
38. 劉范暄,可撓式微型感測器應用於高溫質子交換膜燃料電池堆內即時微觀診斷暨遠端系統驗證,元智大學機械工程研究所碩士論文,民國一百零三年。39. W. He, B. Wang, “ A current-sensor electrochemical device for accurate gas diffusivity measurement in fuel cells, ” Journal of Power Sources, 232, pp. 93-98, 2005.
40. D. Fofana, S. K. Natarajan, J. Hamelin, P. Benard, “ Low platinum, high limiting current density of the PEMFC (proton exchange membrane fuel cell) based on multilayer cathode catalyst approach, ” Energy, 64, pp. 398-403, 2014.
41. Wilson JS. Sensor technology handbook. Butterworth-Heinemaann, 2005.
42. Chroma,可程式直流電子負載6310系列操作/編程手冊,2003。