跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/15 18:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:支馬楠
研究生(外文):Ma-Nan Zhi
論文名稱:氧化石墨烯/多壁奈米碳管奈米複合材料薄膜製程與性能探究
論文名稱(外文):Fabrication and Characterization of Graphene Oxide/Multi-Walled Carbon Nanotube Hybrid Nanocomposite Film
指導教授:何旭川
指導教授(外文):Shiuh-Chuan Her
口試委員:余念一尹慶中
口試委員(外文):N.YuChing-Chung Yin
口試日期:106-07-29
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:125
中文關鍵詞:氧化石墨烯多壁奈米碳管楊氏係數導電率熱裂解溫度
外文關鍵詞:Graphene oxidemulti-walled carbon nanotubeshybrid nanocomposite filmmechanical propertyconductivity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氧化石墨烯(GO)和多壁奈米碳管(MWCNT)在去離子水中混合。用超聲探針對GO/MWCNT水溶液進行超音波處理。表面活性劑Trixon X-100能使GOs和MWCNTs在水中更好的分散。使用真空泵,使懸浮液通過PTFE膜過濾,GO和MWCNT混合水溶液沉積在PTFE過濾膜上形成奈米複合材料薄膜。進行拉伸和奈米壓痕試驗以檢測奈米複合材料薄膜的機械性能,包括楊氏係數,降伏強度,抗拉強度,破壞應變和韌性模數。進行霍爾效應量測以檢測奈米複合材料薄膜的電阻率和電導率。熱重分析儀用於研究奈米複合材料薄膜的熱穩定性。應用場發射掃描電子顯微鏡觀察奈米複合材料薄膜中GOs和MWCNTs的結合和堆積。研究GO和MWCNT之間的混合比例對奈米複合薄膜的機械和電學性能的影響。實驗結果表明,混合比為1:1的奈米複合材料薄膜達到最大楊氏係數。隨著MWCNTs的增加,製備的奈米複合材料薄膜的導電率增加。而熱處理後奈米複合材料薄膜的導電率隨MWCNTs的增加而降低。在奈米複合材料薄膜的TGA中出現了多於一種的分解溫度。
Graphene oxide (GO) and multi-walled carbon nanotube (MWCNT) were mixed in deioned water. The aqueous solution of GO/MWCNT was sonicated with a sonication probe. The surfactant Trixon X-100 was used to provide a better dispersion of GOs and MWCNTs. Using a Vacuum pump, the suspension was filtered through a PTFE membrane, resulting in the deposition of GOs and MWCNTs on the PTFE filter to form the hybrid nanocomposite film. Tensile and nanoindentation tests were conducted to determine the mechanical properties of the hybrid nanocomposite film including the Young’s modulus, yielding strength, tensile strength, break strain and modulus of toughness. Hall effect measurements were performed to evaluate the resistivity and conductivity of the hybrid nanocomposite film. Thermograviticmetric analyzer was used to study the thermal stability of the hybrid nanocomposite film. Field emission scanning electron microscope was employed to examine the binding and stacking of GOs and MWCNTs in the hybrid nanocomposite film. The effect of mixed ratio between the GO and MWCNT on the mechanical and electrical properties of the hybrid nanocomposite film were investigated. Experimental results show that the hybrid nanocomposite film with mixed ratio of 1:1 achieves the maximum Young’s modulus. The conductivity of the hybrid nanocomposite film as prepared is increasing with the increase of the MWCNTs. While the conductivity of the hybrid nanocomposite film after heat treatment is decreasing with the increase of the MWCNTs. There are more than one decomposition temperature appeared in the TGA for the hybrid nanocomposite films.
書名頁 i
摘要 ii
ABSTRACT iii
致謝 iv
目錄 v
表目錄 vi
圖目錄 ix
第一章 緒論 1
1.1 研究動機 2
1.2 文獻回顧 4
1.3 研究內容 8
第二章 氧化石墨烯與多壁奈米碳管奈米複合材料薄膜製程設備與製作方法 9
2.1 氧化石墨烯與多壁奈米碳管奈米複合材料薄膜製程設備 9
2.2 奈米材料 11
2.3 奈米複合材料薄膜製程 11
2.4 奈米複合材料薄膜外觀結構 13
2.5 奈米複合材料薄膜顯微結構 14
第三章 氧化石墨烯與多壁奈米碳管奈米複合材料薄膜機械性質 16
3.1 拉伸實驗理論與方法 16
3.2 奈米壓痕測量薄膜楊氏係數與硬度 19
3.3 拉伸實驗檢測結果與討論 21
3.4 奈米壓痕實驗檢測結果與討論 25
第四章 氧化石墨烯與多壁奈米碳管奈米複合材料薄膜導電性質 28
4.1 霍爾效應基本理論 28
4.2 霍爾效應量測理論 30
4.3 熱處理 32
4.4 霍爾量測實驗結果與討論 33
第五章 氧化石墨烯與多壁奈米碳管奈米複合材料薄膜熱學性質 36
5.1 熱重分析 36
5.2 熱重分析理論與方法 37
5.3 熱重分析結果與討論 37
第六章 結論 40
參考文獻 46
[1]Rivera, W., Perez, J. M., Ruoff, R. S., Lorents, D. C., Malhotra, R., Lim, S., and Pinizzotto, R. F. “Scanning tunneling microscopy current–voltage characteristics of carbon nanotubes,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena,”13(2), pp 327-330, 1995.
[2] Filleter, T., and Espinosa, H. D. “Multi-scale mechanical improvement produced in carbon nanotube fibers by irradiation cross-linking,”Carbon, 56, pp 1-11, 2013.
[3]Dikin, D. A., Stankovich, S., Zimney, E. J., Piner, R. D., Dommett, G. H., Evmenenko, G., and Ruoff, R. S. “Preparation and characterization of graphene oxide paper,” Nature, 448(7152), pp 457-460. 2007
[4]Ruoff, R. S., and Lorents, D. C. “Mechanical and thermal properties of carbon nanotubes,”carbon, 33(7), pp 925-930,1995.
[5]Cadek, M., Coleman, J. N., Barron, V., Hedicke, K., and Blau, W. J. “Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites,”Applied physics letters, 81(27), pp 5123-5125, 2002.
[6]Wagner, H. D., Lourie, O., Feldman, Y., and Tenne, R. “Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix,” Applied physics letters, 72(2), pp 188-190,1998.
[7]Lee, C., Wei, X., Kysar, J. W., and Hone, J. “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” science, 321(5887), pp 385-388, 2008
[8]Lu, X., Dou, H., Gao, B., Yuan, C., Yang, S., Hao, L.,. and Zhang, X.. “A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors,”Electrochimica Acta, 56(14), pp 5115-5121, 2011.
[9]Li, W., Dichiara, A., and Bai, J. “Carbon nanotube–graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites,”Composites Science and Technology, 74, pp 221-227, 2013.
[10]Liang, J., Zhao, Y., Guo, L., and Li, L. “Flexible free-standing graphene/SnO2 nanocomposites paper for Li-ion battery,” ACS applied materials & interfaces, 4(11), pp 5742-5748, 2012.
[11]Cao, H., Zhou, X., Shi, J., and Liu, Z. “Flexible free-standing porous graphene/Ni film electrode with enhanced rate capability for lithium-ion batteries,” Materials Science and Engineering: B,213, pp 51-56, 2016.
[12]Eda, G., and Chhowalla, M.. “Chemically derived graphene oxide: towards large‐area thin‐film electronics and optoelectronics,” Advanced materials, 22(22), pp 2392-2415, 2010.
[13]Wu, J., Agrawal, M., Becerril, H. A., Bao, Z., Liu, Z., Chen, Y., and Peumans, P. “Organic light-emitting diodes on solution-processed graphene transparent electrodes,” ACS nano, 4(1), pp 43-48, 2009.
[14]Eda, G., Lin, Y. Y., Miller, S., Chen, C. W., Su, W. F., and Chhowalla, M. . “Transparent and conducting electrodes for organic electronics from reduced graphene oxide,”Applied Physics Letters, 92(23), pp 233-235, 2008.
[15]Wang, X., Zhi, L., and M#westeur061#llen, K. “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano letters, 8(1), pp 323-327, 2008.
[16]王永祯, 王艳, 韩非, 蔡晓岚.“还原热处理对石墨烯薄膜导电性的影响,” 新型碳材料, 27(04), pp 266-270, 2012
[17]刘燕珍, 李永锋, 杨永岗, 温月芳, 王茂章. “低温热处理对氧化石墨烯薄膜的影响. 新型碳材料,” 26(01), pp 41-45, 2011.
[18]Li, D., M#westeur061#ller, M. B., Gilje, S., Kaner, R. B., and Wallace, G. G. “Processable aqueous dispersions of graphene nanosheets,”Nature nanotechnology, 3(2), pp 101-105, 2008
[19]Eda, G., Fanchini, G., and Chhowalla, M. “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material,” Nature nanotechnology, 3(5), pp 270-274, 2008
[20]Wang, C., Li, D., Too, C. O., and Wallace, G. G. “Electrochemical properties of graphene paper electrodes used in lithium batteries,” Chemistry of Materials, 21(13), pp 2604-2606, 2009.
[21]Lin, X., Liu, X., Jia, J., Shen, X., and Kim, J. K. “Electrical and mechanical properties of carbon nanofiber/graphene oxide hybrid papers,”Composites Science and Technology, 100, pp 166-173, 2014..
[22]Abouimrane, A., Compton, O. C., Amine, K., & Nguyen, S. T. “Non-annealed graphene paper as a binder-free anode for lithium-ion batteries,”The Journal of Physical Chemistry C, 114(29), pp 12800-12804, 2010.
[23]Zhao, X., Hayner, C. M., Kung, M. C., and Kung, H. H. .“Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications,”ACS nano, 5(11), pp 8739-8749, 2011.
[24]Shiu, S. C., and Tsai, J. L. “Characterizing thermal and mechanical properties of graphene/epoxy nanocomposites,”Composites Part B: Engineering, 56, pp 691-697, 2014.
[25]Gou, J. “Single‐walled nanotube bucky paper and nanocomposite,”Polymer International, 55(11), pp 1283-1288, 2006.
[26]Duggal, R., Hussain, F., and Pasquali, M. “Self‐Assembly of Single‐Walled Carbon Nanotubes into a Sheet by Drop Drying. Advanced Materials,” 18(1), pp 29-34,2006.
[27]Berhan, L., Yi, Y. B., Sastry, A. M., Munoz, E., Selvidge, M., and Baughman, R. . “Mechanical properties of nanotube sheets: Alterations in joint morphology and achievable moduli in manufacturable materials,” Journal of Applied Physics, 95(8), pp 4335-4345, 2004
[28]Shankar, K. R.. "Preparation and characterization of magnetically aligned carbon nanotube buckypaper and composite." Florida State University, Master thesis,2003.
[29]Dettlaff-Weglikowska, U., Sk#westeur034#kalov#westeur034#, V., Graupner, R., Jhang, S. H., Kim, B. H., Lee, H. J., . and Roth, S. “Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks,” Journal of the American Chemical Society, 127(14), pp 5125-5131, 2005.
[30]Shi, K., and itomirsky, I. “Electrophoretic nanotechnology of graphene–carbon nanotube and graphene–polypyrrole nanofiber composites for electrochemical supercapacitors,” Journal of colloid and interface science, 407, pp 474-481, 2013.
[31]Ata, M. S., Sun, Y., Li, X., & Zhitomirsky, I. “Electrophoretic deposition of graphene, carbon nanotubes and composites using aluminon as charging and film forming agent,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 398, pp 9-16,2012
[32]Fan, W., Miao, Y. E., Huang, Y., Tjiu, W. W., and Liu, T. “Flexible free-standing 3D porous N-doped graphene–carbon nanotube hybrid paper for high-performance supercapacitors,” RSC Advances, 5(12),, pp 9228-9236, 2015.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊