(3.237.20.246) 您好!臺灣時間:2021/04/16 06:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭政佑
研究生(外文):KUO, CHENG-YU
論文名稱:矽烷偶聯劑TESPT 改質與填料在胎面膠之角色
論文名稱(外文):Role of Modified Coupling Agent TESPT and Filler in Tire-Tread Performance
指導教授:張仁瑞
指導教授(外文):CHANG, JEN-RAY
口試委員:陳慧英李茂田顏叢杬
口試委員(外文):CHEN, HUEY-INGLEE, MAW-TIENYAN, TSOUNG-YUAN
口試日期:2018-06-21
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:88
中文關鍵詞:胎面膠改質矽烷偶聯劑二氧化矽填料TESPT硫化架橋DMA
外文關鍵詞:tire treadmodified coupling agentsilica fillerTESPTvulcanizationDMA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:81
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
二氧化矽(silica)運用於胎面膠補強填料,可降低滾動阻力且提升能源使用效率,然親水性之二氧化矽與疏水性之橡膠相容性不佳,因此添加具有雙官能基之偶聯劑能促使橡膠與填料間相容性有所提升,於商業上之矽烷偶聯劑TESPT [Bis-(triethoxysilyl-propyl)- tetrasulphide]已被廣泛應用於胎面膠,但TESPT價格昂貴造成製作胎面膠成本上升,故本研究透過陰離子聚合來修飾矽烷偶聯劑之結構,將TESPT上一至二個乙氧基取代為聚異戊二烯(PI),以不同分子量(3000、5000、13000g/mole)之改質矽烷偶聯劑(PI-TESPT)進行探討。使用天然橡膠/溶聚丁苯橡膠作為胎面膠之膠料,並以二氧化矽及碳黑作為填料,添加矽烷偶聯劑及硬脂酸進行混煉,採用滾壓機將硫化劑與硫化促進劑與混膠均勻混合,透過無轉子硫化儀、萬能材料試驗機及動態機械分析(DMA)來測試胎面膠之物性,然添加改質矽烷偶聯劑造成硫化架橋程度隨分子量增加而減少且胎面膠物性也不及TESPT。透過調整硫化劑用量後,改質矽烷偶聯劑之高分子鏈上雙鍵能充分與膠料進行硫化架橋,胎面膠於動態機械分析之loss factor(tanδ),顯示抗濕滑能力及滾動阻力皆獲得改善且優於TESPT。為證實偶聯劑接上聚異戊二烯分子鏈之必要性,對改質矽烷偶聯劑與物理混摻等量TESPT及聚異戊二烯進行測試,其物性測試結果顯示改質矽烷偶聯劑比物理混摻效果佳,代表改質矽烷偶聯劑能有效提升填料與橡膠相容性。
Silica is used in tire tread preparation to reduce rolling resistance and thus to increase fuel efficiency. Because of rather low compatibility between hydrophilic silica and hydrophobic rubber, bi-functional coupling agent are added in rubber compounding to connect between rubber and fillers. TESPT [Bis-(triethoxysilyl-propyl)- tetrasulphide] has widely been used in tire tread manufacturing. However, the cost of commercial TESPT is rather high;therefore, the profit margin will be suppressed by addition of TESPT. In this research, TESPT was modified by substituting polyisoprenyl (PI) carbanions for the ethoxy groups at silicon center with different molecular weight (3000, 5000, 13000 g/mole); the sample is noted as PI-TESPT. For testing the roles of this substitution modification, tire-tread samples for mechanical testing were first prepared by mixing SSBR, NR, silica filler, carbon black, stearic acid, and PI-TESPT (or TESPT for comparison) in a home-made mixing and kneading machine with an in-situ torque measurement apparatus; the functions of this machine are similar to those of Brabender machine. Then, the rubber dough was mixed with sulfur and vulcanization accelerator and kneaded in a roller machine and the cross-linking properties of the resulting material were tested by a moving die rheometer. The mechanical properties of the tire-tread samples are tested by moving die rheometer, universal testing machine, and dynamic mechanical analysis (DMA). It could be due to insufficient vulcanization of double bond containing in the PI-TESPT, with the same amount of sulfur used in preparation, the experimental results show that cross-linking density in the vulcanization of PI-TESPT is decreased with increasing PI molecular weight and the physical properties of the PI-TESPT prepared samples are also inferior to those of TESPT. The drawbacks, however, can be remedied by adjusting sulfur usage. After optimizing sulfur used, the cross-linking density was greatly improved. Moreover, DMA measurements showed loss factor (tan⁡δ) decreasing in high temperature while increasing in low temperature, indicating that both wet grip and rolling resistance are improved. To prove the necessity for the substitution reaction, physical mixing of TESPT with the equivalent amount of polyisoprene used as coupling agent was also tested. The results reveal that the performance of PI-TESPT is better than that of the mixing one, confirming polyisoprenyl (PI) substitution modification of TESPT enhance the compatibility between silica and rubber effectively.
摘要
Abstract
目錄
圖目錄
表目錄
第一章 緒論
1.1 研究動機與背景
1.2 文獻回顧
1.2.1 橡膠原料
1.2.2 填料
1.2.3 矽烷偶聯劑
1.2.4 橡膠軟化油
第二章 研究方法與流程
2.1 前言
2.2 實驗規劃
2.2.1 實驗規劃流程圖
2.3 橡膠試片之製備
2.4 橡膠物性測試
2.4.1 工作扭力測試
2.4.2 硫化試驗
2.4.3 拉伸試驗
2.4.4 硬度試驗
2.4.5 動態機械分析(DMA-Dynamic Mechanical Analyze)
第三章 結果討論
3.1 改質矽烷偶聯劑
3.1.1 改質矽烷偶聯劑於胎面橡膠評估
3.1.2 硫含量對改質矽烷偶聯劑之影響
3.1.3 聚異戊二烯合成於矽烷偶聯劑之影響
3.2 廢觸媒作為橡膠填料之開發
3.3 結論
3.4 未來展望
3.4.1 改質矽烷偶聯劑
3.4.2 廢觸媒於胎面膠
第四章 鋰離子電池矽碳材料
4.1 前言
4.2 研究動機
4.3 實驗規劃
4.3.1 實驗流程圖
4.4 鋰離子電池製備
4.5 結果討論
4.6 未來展望
參考文獻

1.Toki, S., T. Fujimaki, and M. Okuyama, Strain-induced crystallization of natural rubber as detected real-time by wide-angle X-ray diffraction technique. Polymer, 2000. 41(14): p. 5423-5429.
2.Tosaka, M., et al., Orientation and crystallization of natural rubber network as revealed by WAXD using synchrotron radiation. Macromolecules, 2004. 37(9): p. 3299-3309.
3.HAYASHI, M. and A. IMAI, Development of the Solution SBRs for High-performance Tires.
4.张春生, 绿色环保型轮胎技术的发展探讨. 轮胎工业, 2016. 36(12): p. 707-710.
5.Thaptong, P., P. Sae‐Oui, and C. Sirisinha, Effects of silanization temperature and silica type on properties of silica‐filled solution styrene butadiene rubber (SSBR) for passenger car tire tread compounds. Journal of Applied Polymer Science, 2016. 133(17).
6.Li, Z., J. Zhang, and S. Chen, Effects of carbon blacks with various structures on vulcanization and reinforcement of filled ethylene-propylene-diene rubber. Express Polymer Letters, 2008. 2(10): p. 695-704.
7.Brennan, J., T. Jermyn, and B. Boonstra, Carbon black–polymer interaction: a measure of reinforcement. Journal of Applied Polymer Science, 1964. 8(6): p. 2687-2706.
8.Litvinov, V. and P. Steeman, EPDM− Carbon black interactions and the reinforcement mechanisms, as studied by low-resolution 1H NMR. Macromolecules, 1999. 32(25): p. 8476-8490.
9.Ou, Y.-C., et al., Effects of alkylation of silica filler on rubber reinforcement. Rubber chemistry and technology, 1994. 67(5): p. 834-844.
10.Donnet, J.-B., Black and white fillers and tire compound. Rubber chemistry and technology, 1998. 71(3): p. 323-341.
11.Sae-oui, P., et al., Effects of Blend Ratio and SBR Type on Properties of Carbon Black-Filled and Silica-Filled SBR/BR Tire Tread Compounds. Advances in Materials Science and Engineering, 2017. 2017.
12.Rahiman, K.H., et al., Cure characteristics and mechanical properties of styrene–butadiene rubber/acrylonitrile butadiene rubber. Materials Letters, 2005. 59(6): p. 633-639.
13.胡生泳 and 杨鑫莉, 硫化促进剂 CZ 合成方法进展. 精细石油化工, 1997(1): p. 12-14.
14.潘小国 and 吴宇, 硫化促进剂 DM 的合成. 化学推进剂与高分子材料, 1998(4): p. 38-38.
15.Kadlcak, J., et al. The effect of ZnO modification on rubber compound properties. in Proceedings of the 4th WSEAS international conference on Energy and development-environment-biomedicine. 2011. World Scientific and Engineering Academy and Society (WSEAS.
16.Dogadkin, B., The mechanism of vulcanization and the action of accelerators. Journal of Polymer Science Part A: Polymer Chemistry, 1958. 30(121): p. 351-361.
17.Walter, D., Primary particles–agglomerates–aggregates. Nanomaterials, 2013: p. 9-24.
18.Fröhlich, J., W. Niedermeier, and H.-D. Luginsland, The effect of filler–filler and filler–elastomer interaction on rubber reinforcement. Composites Part A: Applied Science and Manufacturing, 2005. 36(4): p. 449-460.
19.Ten Brinke, J., et al., Mechanistic aspects of the role of coupling agents in silica–rubber composites. Composites Science and Technology, 2003. 63(8): p. 1165-1174.
20.Cataldo, F., O. Ursini, and G. Angelini, Biodiesel as a plasticizer of a SBR-based tire tread formulation. ISRN Polymer Science, 2013. 2013.
21.Lee, J.-Y., et al., Influence of the silanes on the crosslink density and crosslink structure of silica-filled solution styrene butadiene rubber compounds. Composite Interfaces, 2017. 24(7): p. 711-727.
22.Ramesan, M., R. Alex, and N. Khanh, Studies on the cure and mechanical properties of blends of natural rubber with dichlorocarbene modified styrene–butadiene rubber and chloroprene rubber. Reactive and Functional Polymers, 2005. 62(1): p. 41-50.
23.Hamed, G.R., Materials and compounds. Engeneering with rubber, how to design rubber components, 1992: p. 21.
24.Mohan, V. and A. Kuriakose, Studies on new processing aids and other compounding ingredients in special purpose rubbers. 2001, Cochin University of Science & Technology.
25.El-Sabbagh, S. and A. Yehia, Detection of crosslink density by different methods for natural rubber blended with SBR and NBR. Egyptian Journal of Solids, 2007. 30(2): p. 157-173.
26.Heinrich, G. and T.A. Vilgis, Contribution of entanglements to the mechanical properties of carbon black-filled polymer networks. Macromolecules, 1993. 26(5): p. 1109-1119.
27.Henning, S.K. and R. Costin. Fundamentals of Curing Elastomers with Peroxides and Coagents I: Coagent Structure-Property Relationships. in Proceedings of the Technical Meeting of the Rubber Division, American Chemical Society, San Antonio, TX, USA. 2005.
28.Ding, R. and A. Leonov, A kinetic model for sulfur accelerated vulcanization of a natural rubber compound. Journal of applied polymer science, 1996. 61(3): p. 455-463.
29.Committee, A., Standard test methods for vulcanized rubber and thermoplastic rubbers and thermoplastic elastomers-Tension [D 412-98]. New York: American National Standards Institute, 1998.
30.ASTM, Standard test method for rubber property—Durometer hardness. ASTM D2240, 2005.
31.赵红娟, 不同组分及硫化条件对轮胎胎面胶料物理性能的影响. 橡胶参考资料, 2001. 3: p. 004.
32.ten Brinke, J.W., Silica reinforced tyre rubbers: mechanistic aspects of the role of coupling agents. 2002.
33.Willett, P., Hysteretic losses in rolling tires. Rubber chemistry and Technology, 1973. 46(2): p. 425-441.
34.Payne, A.R., The dynamic properties of carbon black‐loaded natural rubber vulcanizates. Part I. Journal of applied polymer science, 1962. 6(19): p. 57-63.
35.Payne, A. and R. Whittaker, Low strain dynamic properties of filled rubbers. Rubber chemistry and technology, 1971. 44(2): p. 440-478.
36.Li, Y., et al., Surface modification of silica by two-step method and properties of solution styrene butadiene rubber (SSBR) nanocomposites filled with modified silica. Composites Science and Technology, 2013. 88: p. 69-75.
37.Etacheri, V., et al., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 2011. 4(9): p. 3243-3262.
38.Nitta, N., et al., Li-ion battery materials: present and future. Materials today, 2015. 18(5): p. 252-264.
39.Luo, W., et al., Critical thickness of phenolic resin-based carbon interfacial layer for improving long cycling stability of silicon nanoparticle anodes. Nano Energy, 2016. 27: p. 255-264.
40.Ng, S.H., et al., Highly Reversible Lithium Storage in Spheroidal Carbon‐Coated Silicon Nanocomposites as Anodes for Lithium‐Ion Batteries. Angewandte Chemie International Edition, 2006. 45(41): p. 6896-6899.
41.Lu, Z., et al., Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes. Acs Nano, 2015. 9(3): p. 2540-2547.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔