|
1.蔡世宗, 過渡金屬在『碳-碳』鍵生成反應之催化作用及利用鹼催化『磷-碳』鍵的裂解反應:觸媒系統的設計、合成、結構鑑定及反應動力學之探討國立中正大學化學暨生物化學系研究所. 2005. 2.https://www.zmescience.com/medicine/gold-nanoparticles-hdl-cholesterol-22012013/. 3.Ahmed, M.; Barrett, A. G.; Braddock, D. C.; Cramp, S. M.; Procopiou, P. A., A Recyclable ‘Boomerang’Polymer-Supported Ruthenium Catalyst for Olefin Metathesis., Tetrahedron Lett., 1999, 40, 8657-8662. 4.Phan, N. T.; Brown, D. H.; Styring, P., A Polymer-Supported Salen-Type Palladium Complex as a Catalyst for the Suzuki–Miyaura Cross-Coupling Reaction., Tetrahedron Lett., 2004, 45, 7915-7919. 5.Girard, C.; Önen, E.; Aufort, M.; Beauvière, S.; Samson, E.; Herscovici, J., Reusable Polymer-Supported Catalyst for the [3+2] Huisgen Cycloaddition in Automation Protocols. Org. Lett., 2006, 8, 1689-1692. 6.Ebelmen, M., On the Synthesis of Silica Gels from Alkoxides, Ann. Chim. Phys., 1846, 318-327. 7.Graham, T., XXXV.—On the Properties of Silicic Acid and Other Analogous Colloidal Substances., J. Chem. Soc., 1864, 17, 318-327. 8.Polshettiwar, V.; Len, C.; Fihri, A., Silica-Supported Palladium: Sustainable Catalysts for Cross-Coupling Reactions., Coordin. Chem. Rev., 2009, 253, 2599-2626. 9.Al-Hashimi, M.; Sullivan, A. C.; Wilson, J. R., Palladium Ethylthioglycolate Modified Silica—A New Heterogeneous Catalyst for Suzuki and Heck Cross-Coupling Reactions. J. Mol. Catal. A-Chem, 2007, 273, 298-302. 10.Che, M.; Fournier, M.; Launay, J. P., The Analog of Surface Molybdenyl Ion in Mo/SiO2 Supported Catalysts: The Isopolyanion Mo6O193− Studied by EPR and UV‐Visible Spectroscopy. Comparison with Other Molybdenyl Compounds., J. Chem. Phys., 1979, 71, 1954-1960. 11.Soga, K.; Kim, H. J.; Shiono, T., Polymerization of Propene with Highly Isospecific. SiO2‐Supported Zirconocene Catalysts Activated with Common Alkylaluminiums. Macromol. Chem. Phys., 1994, 195, 3347-3360. 12.Au, C.; Wang, H., Mechanistic Studies of Methane Partial Oxidation to Syngas Over SiO2-Supported Rhodium Catalysts. J. Catal., 1997, 167, 337-345. 13.Rousset, J. L.; Stievano, L.; Cadete Santos Aires, F. J.; Geantet, C.; Renouprez, A. J.; Pellarin, M., Hydrogenation of Tetralin in the Presence of Sulfur over γ-Al2O3-Supported Pt, Pd, and Pd–Pt Model Catalysts. J. Catal., 2001, 202, 163-168. 14.Bus, E.; Miller, J. T.; van Bokhoven, J. A., Hydrogen Chemisorption on Al2O3-Supported Gold Catalysts. J. Phys. Chem. B, 2005, 109, 14581-14587. 15.Solsona, B. E.; Edwards, J. K.; Landon, P.; Carley, A. F.; Herzing, A.; Kiely, C. J.; Hutchings, G. J., Direct Synthesis of Hydrogen Peroxide from H2 and O2 Using Al2O3 Supported Au−Pd Catalysts. Chem. Mater., 2006, 18, 2689-2695. 16.Bessell, S., Investigation of Bifunctional Zeolite Supported Cobalt Fischer-Tropsch Catalysts. Appl. Catal. A-Gen., 1995, 126, 235-244. 17.Yasuda, H.; Yoshimura, Y., Hydrogenation of Tetralin Over Zeolite-Supported Pd-Pt Catalysts in the Presence of Dibenzothiophene. Catal. Lett., 1997, 46, 43-48. 18.Pieterse, J. A. Z.; Mul, G.; Melian-Cabrera, I.; van den Brink, R. W., Synergy Between Metals in Bimetallic Zeolite Supported Catalyst for NO-Promoted N2O Decomposition. Catal. Lett., 2005, 99, 41-44. 19.Kudo, D.; Masui, Y.; Onaka, M., An Efficient Heterogeneous Pd Catalyst for the Suzuki Coupling: Pd/Al2O3. Chem. Lett., 2007, 36, 918-919. 20.Kabalka, G. W.; Pagni, R. M.; Hair, C. M., Solventless Suzuki Coupling Reactions on Palladium-Doped KF/Al2O3. Org. Lett., 1999, 1, 1423-1425. 21.Hosseinzadeh, R.; Tajbakhsh, M.; Mohadjerani, M.; Ghorbani, E., CuI‐catalyzed Coupling Reactions of Aryl Iodides with Amides Using L‐Proline and KF/Al2O3. Chinese J. Chem., 2008, 26, 2120-2124. 22.Jin, M.-J.; Taher, A.; Kang, H.-J.; Choi, M.; Ryoo, R., Palladium Acetate Immobilized in a Hierarchical MFI Zeolite-Supported Ionic Liquid: A Highly Active and Recyclable Catalyst for Suzuki Reaction in Water. Green Chem., 2009, 11, 309-313. 23.Adima, A.; Moreau, J. J. E.; Man, M. W. C., Immobilization of Rhodium Complexes in Chiral Organic–Inorganic Hybrid Materials. Chirality, 2000, 12, 411-420. 24.Li, H.; Luk, Y.-Y.; Mrksich, M., Catalytic Asymmetric Dihydroxylation by Gold Colloids Functionalized with Self-Assembled Monolayers. Langmuir, 1999, 15, 4957-4959. 25.Sommer, W. J.; Weck, M., Facile Functionalization of Gold Nanoparticles via Microwave-Assisted 1, 3 Dipolar Cycloaddition. Langmuir, 2007, 23, 11991-11995. 26.Kumar, B. V.; Naik, H. S. B.; Girija, D.; Kumar, B. V., ZnO Nanoparticle as Catalyst for Efficient Green One-Pot Synthesis of Coumarins Through Knoevenagel Condensation. J. Chem. Sci., 2011, 123, 615-621. 27.MaGee, D. I.; Dabiri, M.; Salehi, P.; Torkian, L., Highly Efficient One-Pot Three-Component Mannich Reaction Catalyzed by ZnO-Nanoparticles in Water. Arkivoc, 2011, 11, 156-164. 28.Hosseini-Sarvari, M.; Sharghi, H.; Etemad, S., Nanocrystalline ZnO for Knoevenagel Condensation and Reduction of the Carbon,Carbon Double Bond in Conjugated Alkenes. Helv. Chim. Acta, 2008, 91, 715-724. 29.Hosseini-Sarvari, M.; Etemad, S., Nanosized Zinc Oxide as a Catalyst For the Rapid and Green Synthesis of β-Phosphono Malonates. Tetrahedron, 2008, 64, 5519-5523. 30.Alinezhad, H.; Salehian, F.; Biparva, P., Synthesis of Benzimidazole Derivatives Using Heterogeneous ZnO Nanoparticles. Synthetic Commun., 2012, 42, 102-108. 31.Mirjafary, Z.; Saeidian, H.; Sadeghi, A.; Moghaddam, F. M., ZnO Nanoparticles: An Efficient Nanocatalyst for the Synthesis of β-Acetamido Ketones/Esters via a Multi-Component Reaction. Catal. Commun. 2008, 9, 299-306. 32.Hekmatshoar, R.; Kenary, G. N.; Sadjadi, S.; Beheshtiha, Y. S., ZnO Nanoparticles: A Mild and Efficient Reusable Catalyst for the One-Pot Synthesis of 4-Amino-5-Pyrimidinecarbonitriles Under Aqueous Conditions. Synthetic Commun., 2010, 40, 2007-2013. 33.Kassaee, M. Z.; Masrouri, H.; Movahedi, F., ZnO-Nanoparticle-Promoted Synthesis of Polyhydroquinoline Derivatives via Multicomponent Hantzsch Reaction. Monatsh. Chem. - Chemical Monthly, 2010, 141, 317-322. 34.Yavari, I.; Beheshti, S., ZnO Nanoparticles Catalyzed Efficient One-Pot Three-Component Synthesis of 2,3-Disubstituted Quinalolin-4(1H)-Ones Under Solvent-Free Conditions. J. Iran. Chem. Soc., 2011, 8, 1030-1035. 35.Banerjee, S.; Payra, S.; Saha, A.; Sereda, G., ZnO Nanoparticles: a Green Efficient Catalyst for the Room Temperature Synthesis of Biologically Active 2-Aryl-1, 3-Benzothiazole and 1, 3-Benzoxazole Derivatives. Tetrahedron Lett., 2014, 55, 5515-5520. 36.Sharma, H.; Kaur, N.; Pandiyan, T.; Singh, N., Surface Decoration of ZnO Nanoparticles: A New Strategy to Fine Tune the Recognition Properties of Imine Linked Receptor. Sensor. and Actuat. B: Chem., 2012, 166, 467-472. 37.Fatehah, M. O.; Aziz, H. A.; Stoll, S., Stability of ZnO Nanoparticles in Solution. Influence of pH, Dissolution, Aggregation and Disaggregation Effects. J. Colloid Sci. Biotechnol., 2014, 3, 75-84. 38.Wanzlick, H., Aspects of Nucleophilic Carbene Chemistry. Angew. Chem. Int. Ed., 1962, 1, 75-80. 39.Arduengo, A. J.; Harlow, R. L.; Kline, M., A Stable Crystalline Carbene. J. Am. Chem. Soc., 1991, 113, 361-363. 40.Guerria, M.; Sekhri, L.; Olivier, C.; Jean-Luc, P., Synthesis of Precursor Imidazolium Salts for the Synthesis of N-Heterocyclic Carbines Used as Ligands for the Enantioselective Preparation of Heterosteroids Compounds. Orient. J. Chem., 2014, 30, 427-434. 41.Lee, H. M.; Zeng, J. Y.; Hu, C.-H.; Lee, M.-T., A New Tridentate Pincer Phosphine/N-Heterocyclic Carbene Ligand: Palladium Complexes, Their Structures, and Catalytic Activities. Inorg. Chem., 2004, 43, 6822-6829. 42.César, V.; Bellemin‐Laponnaz, S.; Wadepohl, H.; Gade, L. H., Designing the “Search Pathway” in the Development of a New Class of Highly Efficient Stereoselective Hydrosilylation Catalysts. Chem.-Eur. J., 2005, 11, 2862-2873. 43.Enders, D.; Han, J.; Henseler, A., Asymmetric Intermolecular Stetter Reactions Catalyzed by a Novel Triazolium Derived N-Heterocyclic Carbene. Chem. Commun., 2008, 3989-3991. 44.Sohn, S. S.; Rosen, E. L.; Bode, J. W., N-Heterocyclic Carbene-Catalyzed Generation of Homoenolates: γ-Butyrolactones by Direct Annulations of Enals and Aldehydes. J. Am. Chem. Soc., 2004, 126, 14370-14371. 45.Douglas, J.; Churchill, G.; Smith, A. D., NHCs in Asymmetric Organocatalysis: Recent Advances in Azolium Enolate Generation and Reactivity. Synthesis, 2012, 44, 2295-2309. 46.Walden, P., Ueber die Gegenseitige Umwandlung Optischer Antipoden. Ber. Dtsch. Chem. Ges., 1896, 29, 133-138. 47.Sanz, R.; Martínez, A.; Álvarez-Gutiérrez, J. M.; Rodríguez, F., Metal-Free Catalytic Nucleophilic Substitution of Propargylic Alcohols. Eur. J. Org. Chem., 2006, 2006, 1383-1386. 48.Yadav, J. S.; Bhunia, D. C.; Vamshi Krishna, K.; Srihari, P., Niobium(V) Pentachloride: An Efficient Catalyst for C-, N-, O-, and S-Nucleophilic Substitution Reactions of Benzylic Alcohols. Tetrahedron Lett., 2007, 48, 8306-8310. 49.Du, Y.; Han, X.; Lu, X., Alkaloids-Catalyzed Regio- and Enantioselective Allylic Nucleophilic Substitution of tert-Butyl Carbonate of the Morita–Baylis–Hillman Products. Tetrahedron Lett., 2004, 45, 4967-4971. 50.Vanos, C. M.; Lambert, T. H., Development of a Catalytic Platform for Nucleophilic Substitution: Cyclopropenone-Catalyzed Chlorodehydration of Alcohols. Angew. Chem. Int. Ed., 2011, 50, 12222-12226. 51.Kim, D. W.; Chi, D. Y., Polymer-Supported Ionic Liquids: Imidazolium Salts as Catalysts for Nucleophilic Substitution Reactions Including Fluorinations. Angew. Chem. Int. Ed., 2004, 43, 483-485. 52.Claisen, L.; Claparède, A., Condensationen von Ketonen mit Aldehyden. Ber. Dtsch. Chem. Ges., 1881, 14, 2460-2468. 53.Schmidt, J. G., Ueber die Einwirkung von Aceton auf Furfurol und auf Bittermandelöl bei Gegenwart von Alkalilauge. Ber. Dtsch. Chem. Ges., 1881, 14, 1459-1461. 54.Ugai, T.; Tanaka, S.; Dokawa, S. A New Catalyst for Acyloin Condensation, Pharm. Soc. Jpn., 1943, 63, 269-300 55.Enders, D.; Kallfass, U., An Efficient Nucleophilic Carbene Catalyst for the Asymmetric Benzoin Condensation. Angew. Chem. Int. Ed., 2002, 41, 1743-1745. 56.Vermoortele, F.; Ameloot, R.; Vimont, A.; Serre, C.; De Vos, D., An Amino-Modified Zr-Terephthalate Metal-Organic Framework as an Acid-Base Catalyst for Cross-Aldol Condensation. Chem. Commun., 2011, 47, 1521-1523. 57.Storey, J. M. D.; Williamson, C., Imidazole Based Solid-Supported Catalysts for the Benzoin Condensation. Tetrahedron Lett., 2005, 46, 7337-7339. 58.Sharma, H.; Singh, N.; Jang, D. O., Imidazole and Imine Coated ZnO Nanoparticles for Nanomolar Detection of Al(III) and Zn(II) in Semi-Aqueous Media. Tetrahedron Lett. 2014, 55, 6623-6626. 59.Ma, C.; Li, J.; Peng, J.; Bai, Y.; Zhang, G.; Xiao, W.; Lai, G., Effect of Carboxyl-Functionalized Imidazolium Salts on the Rhodium-Catalyzed Hydrosilylation of Alkene. J. Organomet. Chem., 2013, 727, 28-36. 60.王建舜, 分子式與金奈米粒子載體式含氮雜環碳烯一價金錯合化物的合成、結構鑑定與催化探討, 國立中正大學化學暨生物化學系研究所. 2015. 61.Hostetler, M. J.; Templeton, A. C.; Murray, R. W., Dynamics of Place-Exchange Reactions on Monolayer-Protected Gold Cluster Molecules. Langmuir, 1999, 15, 3782-3789. 62.An, J.; Denton, R. M.; Lambert, T. H.; Nacsa, E. D., The Development of Catalytic Nucleophilic Substitution Reactions: Challenges, Progress and Future Directions. Org. Biomol. Chem., 2014, 12, 2993-3003. 63.Nair, V.; Menon, R. S.; Biju, A. T.; Sinu, C. R.; Paul, R. R.; Jose, A.; Sreekumar, V., Employing Homoenolates Generated by NHC Catalysis in Carbon-Carbon Bond-Forming Reactions: State of the Art. Chem. Soc. Rev., 2011, 40, 5336-5346. 64. https://www.researchgate.net/post/Synthesis_of_zinc_oxide_nanoparticles_using_zinc_chloride_and_sodium_hydroxide
|