跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/15 23:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂晉安
研究生(外文):LU, CHIN-AN
論文名稱:氧化鋅奈米粒子負載含氮雜環碳烯作為可回收式綠色觸媒在親核取代反應及羥醛縮合反應的應用
論文名稱(外文):ZnO Nanoparticle-Supported NHCs as Recyclable Catalysts for Nucleophilic Substitution and Aldol Condensation Reactions in Aqueous Solutions
指導教授:于淑君
指導教授(外文):YU, SHU-CHUN
口試委員:吉凱明傅耀賢
口試委員(外文):CHI, KAI-MINGFU, YAO-XIAN
口試日期:2017-12-04
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學暨生物化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:141
中文關鍵詞:催化劑含氮雜環碳烯氧化鋅
外文關鍵詞:catalystN-heterocyclic carbeneszinc oxide
相關次數:
  • 被引用被引用:1
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文參考王建舜學長的研究成功地合成出具含氮雜環碳烯 (NHC) 之間距分子 (Mesbim)(CH2)11SH (8),並以錨定硫醇之金奈米粒子[Au-SR] (R = CH3(CH2)6CH2SH) (9) 作為載體,加入間距分子 (Mesbim)(CH2)11SH (8) 與金奈米粒子表面的硫醇保護基作交換 (place exchange),得到 RS-Au-Smes (10)。另外合成出具 NHC 之分子觸媒 [HOOCMMIM][PF6] (2),並以氧化鋅奈米粒子作為載體,加入分子觸媒 [HOOCMMIM][PF6] (2),得到氧化鋅載體式觸媒 ZnO-[HOOCMMIM][PF6] (3)。由於將有機分子修飾在奈米粒子上時,能使載體式觸媒溶解 (或分散) 於有機溶劑中,因此可利用液相核磁共振光譜儀 (NMR) 快速準確地觀察其結構,另外也利用穿透式電子顯微鏡 (TEM) 鑑定奈米粒子之粒徑大小。
含氮雜環碳烯常用於形成醛基之間的 C-C 鍵,因此我們將 NHC離子液體觸媒及氧化鋅奈米粒子觸媒應用於羥醛縮合反應。也因為此類催化劑能將醛類進行親核化,所以也嘗試催化親核取代反應。結果分子式觸媒 [HOOCMMIM][PF6] (2) 及氧化鋅奈米粒子觸媒ZnO-[HOOCMMIM][PF6] (3) 進行的催化效果極其相似,說明作為載體的氧化鋅並不會影響錨定在表面的分子觸媒之活性。
最後,我們以氧化鋅奈米粒子能夠以簡單的方式從反應系統中分離的特性,測試其重複催化的能力。實驗結果顯示奈米粒子載體催化劑能夠進行 12 次的重複催化實驗,且第 12 次實驗之催化產率能在 85 % 以上,說明利用奈米粒子載體分子式觸媒能夠節省製造催化劑之成本、減少在反應後進行分離作業的時間及減少不必要的浪費。

We refered to Wang’s thesis, sythesized the N-heterocyclic carbenes (NHCs) molecules, (Mesbim)(CH2)11SH (8), used gold nanoparticles anchored thiol protecting groups [Au-SR] (R = CH3(CH2)6CH2SH) (9) as the carrier, and exchanged part of protecting groups to (Mesbim)(CH2)11SH (8), finally we got gold nanoparticles supported catalyst RS-Au-Smes (10). The other side, we sythesized another NHCs molecular catalyst, [HOOCMMIM][PF6] (2), and anchored on ZnO nanoparticles to make the zinc oxide nanoparticles supported catalysts ZnO-[HOOCMMIM][PF6] (3). According to theese nanoparticles supported organic molecules could be well dispersed in organic solvents, we did the quick and accurate structure identification by solution NMR and TEM.
NHCs were usually applicated on forming C-C bond between aldehydes, therefore, we utilized the NHCs molecular catalyst, [HOOCMMIM][PF6] (2), on aldol condensation reaction. In addition, the NHCs ion liquid could make aldehydes nucleophilic during the condensation catalysus, so we also attempted to catalize nucliphilic substution reaction, these catalytic consequents of two reactions were compared with zinc oxide nanoparticles supported catalysts ZnO-[HOOCMMIM][PF6] (3). We discover the catalytic consequents were very close, this result illstrated that the ZnO nanopaticles as carrier would not reduce catalytic activity of organic catalysts.
Finally, we did the recycling and re-catalization test of ZnO-[HOOCMMIM][PF6] (3), we found the nanoparticle catalysts could make 85 % catalysis yield after 12 recycles. That was to say, the nanoparticle-supported molecular catalysts would cut the cost of producing the molecule, by the way, it could decrease the recycling time and the unnecessary wastes.

中文摘要 I
Abstract III
總目錄 V
表目錄 VIII
圖目錄 X
附圖目錄 XII
一、緒論 1
1.1 混成相載體式觸媒 1
1.2 混成相觸媒的組成 3
1.3 混成相觸媒載體分類 5
1.3.1 有機高分子 (organic polymers) 載體 5
1.3.2 矽膠高分子 (silica gel) 載體 7
1.3.3 無機金屬氧化物 (metal oxides) 載體 9
1.3.4 金奈米粒子 (gold nanoparticles) 載體 12
1.4 氧化鋅奈米粒子 16
1.4.1 鋅金屬 16
1.4.2 氧化鋅奈米粒子的催化活性 17
1.4.3 氧化鋅奈米粒子之穩定性及其工業應用價值 20
1.5 含氮雜環碳烯 (N-Heterocyclic Carbenes, NHCs) 22
1.5.1 含氮雜環碳烯的發現 22
1.5.2 含氮雜環碳烯的合成 23
1.5.3 含氮雜環碳烯的催化應用 25
1.6 親核取代 (Nucleophilic Substitution) 反應之介紹 29
1.7 羥醛縮合 (Aldol Condensation) 反應之介紹 35
1.7.1 羥醛縮合反應之催化機制 35
1.7.2 羥醛縮合反應之發展 36
1.8 研究動機 41
二、實驗部分 42
2.1 氧化鋅奈米粒子觸媒製備 44
2.1.1 化合物 [HOOCMMIM][Br] (1) 的製備 44
2.1.2 離子液體 [HOOCMMIM][PF6] (2) 製備 45
2.1.3 氧化鋅奈米粒子載體分子式觸媒 ZnO-[HOOCMMIM][PF6] (3) 製備 46
2.2 金奈米粒子載體式觸媒製備 47
2.2.1 化合物 1-mesityl-1H-imidazole (4) 的製備 47
2.2.2 11-bromoundec-1-ene (5) 製備 48
2.2.3 11-bromoundecyl ethanethioate (6) 的製備 49
2.2.4 11-bromoundecane-1-thiol (7) 的製備 50
2.2.5 間距分子 (Mesbim)(CH2)11SH (8) 的製備 50
2.2.6 金奈米粒子載體 [Au-SR (R = C8H17)] (9) 製備 51
2.2.7 RS-Au-SMes (10) 製備 53
2.3 氧化鋅奈米粒子觸媒在親核取代反應之應用 54
2.3.1 產物光譜數據 54
2.4 氧化鋅奈米粒子在羥醛縮合反應之應用 57
2.4.1 產物光譜數據 57
2.5 載體式觸媒的回收再利用 60
三、結果與討論 61
3.1載體式分子觸媒 ZnO-[HOOCMMIM][PF6] (3) 和 RS-Au-SMes (10) 的合成策略 62
3.1.1 ZnO-[HOOCMMIM][PF6] (3) 的合成探討 62
3.1.2 載體式分子觸媒 RS-Au-SMes (10) 的合成探討 63
3.2載體式觸媒 ZnO-[HOOCMMIM][PF6] (3) 結構鑑定 64
3.2.1核磁共振光譜儀 (1H-NMR) 之結構鑑定 64
3.2.2 TEM 影像及 EDS 鑑定 65
3.3 載體式觸媒 RS-Au-SMes (10) 結構鑑定 66
3.3.1 核磁共振光譜儀 (1H-NMR) 之結構鑑定 66
3.3.2 TEM 影像及 EDS 鑑定 67
3.4 載體式觸媒定量分析及 NMR 定量法 68
3.4.1 載體式觸媒 ZnO-[HOOCMMIM][PF6] (3) 定量分析 68
3.5 氧化鋅奈米粒子觸媒對親核取代反應之應用 71
3.5.1 分子式觸媒 [HOOCMMIM][PF6] (2) 催化親核取代反應條件探討 71
3.5.2 分子式觸媒 [HOOCMMIM][PF6] (2) 對多種苯甲基類分子於親核取代反應之應用 73
3.5.3 氧化鋅奈米粒子載體式觸媒對分子式觸媒之催化效果比較 79
3.5.4 氧化鋅奈米粒子對親核取代反應之重複利用 81
3.5.5 親核取代反應之催化機制 84
3.6 分子式觸媒 [HOOCMMIM][PF6] (2) 對羥醛縮合反應的探討 86
3.6.1 羥醛縮合反應催化條件探討 86
3.6.2 以氧化鋅奈米粒子觸媒 ZnO-[HOOCMMIM][PF6] (3) 對多種醛類進行羥醛縮合反應 88
3.6.3 羥醛縮合反應之催化機制 90
四、結論 91
五、參考文獻 92


1.蔡世宗, 過渡金屬在『碳-碳』鍵生成反應之催化作用及利用鹼催化『磷-碳』鍵的裂解反應:觸媒系統的設計、合成、結構鑑定及反應動力學之探討國立中正大學化學暨生物化學系研究所. 2005.
2.https://www.zmescience.com/medicine/gold-nanoparticles-hdl-cholesterol-22012013/.
3.Ahmed, M.; Barrett, A. G.; Braddock, D. C.; Cramp, S. M.; Procopiou, P. A., A Recyclable ‘Boomerang’Polymer-Supported Ruthenium Catalyst for Olefin Metathesis., Tetrahedron Lett., 1999, 40, 8657-8662.
4.Phan, N. T.; Brown, D. H.; Styring, P., A Polymer-Supported Salen-Type Palladium Complex as a Catalyst for the Suzuki–Miyaura Cross-Coupling Reaction., Tetrahedron Lett., 2004, 45, 7915-7919.
5.Girard, C.; Önen, E.; Aufort, M.; Beauvière, S.; Samson, E.; Herscovici, J., Reusable Polymer-Supported Catalyst for the [3+2] Huisgen Cycloaddition in Automation Protocols. Org. Lett., 2006, 8, 1689-1692.
6.Ebelmen, M., On the Synthesis of Silica Gels from Alkoxides, Ann. Chim. Phys., 1846, 318-327.
7.Graham, T., XXXV.—On the Properties of Silicic Acid and Other Analogous Colloidal Substances., J. Chem. Soc., 1864, 17, 318-327.
8.Polshettiwar, V.; Len, C.; Fihri, A., Silica-Supported Palladium: Sustainable Catalysts for Cross-Coupling Reactions., Coordin. Chem. Rev., 2009, 253, 2599-2626.
9.Al-Hashimi, M.; Sullivan, A. C.; Wilson, J. R., Palladium Ethylthioglycolate Modified Silica—A New Heterogeneous Catalyst for Suzuki and Heck Cross-Coupling Reactions. J. Mol. Catal. A-Chem, 2007, 273, 298-302.
10.Che, M.; Fournier, M.; Launay, J. P., The Analog of Surface Molybdenyl Ion in Mo/SiO2 Supported Catalysts: The Isopolyanion Mo6O193− Studied by EPR and UV‐Visible Spectroscopy. Comparison with Other Molybdenyl Compounds., J. Chem. Phys., 1979, 71, 1954-1960.
11.Soga, K.; Kim, H. J.; Shiono, T., Polymerization of Propene with Highly Isospecific. SiO2‐Supported Zirconocene Catalysts Activated with Common Alkylaluminiums. Macromol. Chem. Phys., 1994, 195, 3347-3360.
12.Au, C.; Wang, H., Mechanistic Studies of Methane Partial Oxidation to Syngas Over SiO2-Supported Rhodium Catalysts. J. Catal., 1997, 167, 337-345.
13.Rousset, J. L.; Stievano, L.; Cadete Santos Aires, F. J.; Geantet, C.; Renouprez, A. J.; Pellarin, M., Hydrogenation of Tetralin in the Presence of Sulfur over γ-Al2O3-Supported Pt, Pd, and Pd–Pt Model Catalysts. J. Catal., 2001, 202, 163-168.
14.Bus, E.; Miller, J. T.; van Bokhoven, J. A., Hydrogen Chemisorption on Al2O3-Supported Gold Catalysts. J. Phys. Chem. B, 2005, 109, 14581-14587.
15.Solsona, B. E.; Edwards, J. K.; Landon, P.; Carley, A. F.; Herzing, A.; Kiely, C. J.; Hutchings, G. J., Direct Synthesis of Hydrogen Peroxide from H2 and O2 Using Al2O3 Supported Au−Pd Catalysts. Chem. Mater., 2006, 18, 2689-2695.
16.Bessell, S., Investigation of Bifunctional Zeolite Supported Cobalt Fischer-Tropsch Catalysts. Appl. Catal. A-Gen., 1995, 126, 235-244.
17.Yasuda, H.; Yoshimura, Y., Hydrogenation of Tetralin Over Zeolite-Supported Pd-Pt Catalysts in the Presence of Dibenzothiophene. Catal. Lett., 1997, 46, 43-48.
18.Pieterse, J. A. Z.; Mul, G.; Melian-Cabrera, I.; van den Brink, R. W., Synergy Between Metals in Bimetallic Zeolite Supported Catalyst for NO-Promoted N2O Decomposition. Catal. Lett., 2005, 99, 41-44.
19.Kudo, D.; Masui, Y.; Onaka, M., An Efficient Heterogeneous Pd Catalyst for the Suzuki Coupling: Pd/Al2O3. Chem. Lett., 2007, 36, 918-919.
20.Kabalka, G. W.; Pagni, R. M.; Hair, C. M., Solventless Suzuki Coupling Reactions on Palladium-Doped KF/Al2O3. Org. Lett., 1999, 1, 1423-1425.
21.Hosseinzadeh, R.; Tajbakhsh, M.; Mohadjerani, M.; Ghorbani, E., CuI‐catalyzed Coupling Reactions of Aryl Iodides with Amides Using L‐Proline and KF/Al2O3. Chinese J. Chem., 2008, 26, 2120-2124.
22.Jin, M.-J.; Taher, A.; Kang, H.-J.; Choi, M.; Ryoo, R., Palladium Acetate Immobilized in a Hierarchical MFI Zeolite-Supported Ionic Liquid: A Highly Active and Recyclable Catalyst for Suzuki Reaction in Water. Green Chem., 2009, 11, 309-313.
23.Adima, A.; Moreau, J. J. E.; Man, M. W. C., Immobilization of Rhodium Complexes in Chiral Organic–Inorganic Hybrid Materials. Chirality, 2000, 12, 411-420.
24.Li, H.; Luk, Y.-Y.; Mrksich, M., Catalytic Asymmetric Dihydroxylation by Gold Colloids Functionalized with Self-Assembled Monolayers. Langmuir, 1999, 15, 4957-4959.
25.Sommer, W. J.; Weck, M., Facile Functionalization of Gold Nanoparticles via Microwave-Assisted 1, 3 Dipolar Cycloaddition. Langmuir, 2007, 23, 11991-11995.
26.Kumar, B. V.; Naik, H. S. B.; Girija, D.; Kumar, B. V., ZnO Nanoparticle as Catalyst for Efficient Green One-Pot Synthesis of Coumarins Through Knoevenagel Condensation. J. Chem. Sci., 2011, 123, 615-621.
27.MaGee, D. I.; Dabiri, M.; Salehi, P.; Torkian, L., Highly Efficient One-Pot Three-Component Mannich Reaction Catalyzed by ZnO-Nanoparticles in Water. Arkivoc, 2011, 11, 156-164.
28.Hosseini-Sarvari, M.; Sharghi, H.; Etemad, S., Nanocrystalline ZnO for Knoevenagel Condensation and Reduction of the Carbon,Carbon Double Bond in Conjugated Alkenes. Helv. Chim. Acta, 2008, 91, 715-724.
29.Hosseini-Sarvari, M.; Etemad, S., Nanosized Zinc Oxide as a Catalyst For the Rapid and Green Synthesis of β-Phosphono Malonates. Tetrahedron, 2008, 64, 5519-5523.
30.Alinezhad, H.; Salehian, F.; Biparva, P., Synthesis of Benzimidazole Derivatives Using Heterogeneous ZnO Nanoparticles. Synthetic Commun., 2012, 42, 102-108.
31.Mirjafary, Z.; Saeidian, H.; Sadeghi, A.; Moghaddam, F. M., ZnO Nanoparticles: An Efficient Nanocatalyst for the Synthesis of β-Acetamido Ketones/Esters via a Multi-Component Reaction. Catal. Commun. 2008, 9, 299-306.
32.Hekmatshoar, R.; Kenary, G. N.; Sadjadi, S.; Beheshtiha, Y. S., ZnO Nanoparticles: A Mild and Efficient Reusable Catalyst for the One-Pot Synthesis of 4-Amino-5-Pyrimidinecarbonitriles Under Aqueous Conditions. Synthetic Commun., 2010, 40, 2007-2013.
33.Kassaee, M. Z.; Masrouri, H.; Movahedi, F., ZnO-Nanoparticle-Promoted Synthesis of Polyhydroquinoline Derivatives via Multicomponent Hantzsch Reaction. Monatsh. Chem. - Chemical Monthly, 2010, 141, 317-322.
34.Yavari, I.; Beheshti, S., ZnO Nanoparticles Catalyzed Efficient One-Pot Three-Component Synthesis of 2,3-Disubstituted Quinalolin-4(1H)-Ones Under Solvent-Free Conditions. J. Iran. Chem. Soc., 2011, 8, 1030-1035.
35.Banerjee, S.; Payra, S.; Saha, A.; Sereda, G., ZnO Nanoparticles: a Green Efficient Catalyst for the Room Temperature Synthesis of Biologically Active 2-Aryl-1, 3-Benzothiazole and 1, 3-Benzoxazole Derivatives. Tetrahedron Lett., 2014, 55, 5515-5520.
36.Sharma, H.; Kaur, N.; Pandiyan, T.; Singh, N., Surface Decoration of ZnO Nanoparticles: A New Strategy to Fine Tune the Recognition Properties of Imine Linked Receptor. Sensor. and Actuat. B: Chem., 2012, 166, 467-472.
37.Fatehah, M. O.; Aziz, H. A.; Stoll, S., Stability of ZnO Nanoparticles in Solution. Influence of pH, Dissolution, Aggregation and Disaggregation Effects. J. Colloid Sci. Biotechnol., 2014, 3, 75-84.
38.Wanzlick, H., Aspects of Nucleophilic Carbene Chemistry. Angew. Chem. Int. Ed., 1962, 1, 75-80.
39.Arduengo, A. J.; Harlow, R. L.; Kline, M., A Stable Crystalline Carbene. J. Am. Chem. Soc., 1991, 113, 361-363.
40.Guerria, M.; Sekhri, L.; Olivier, C.; Jean-Luc, P., Synthesis of Precursor Imidazolium Salts for the Synthesis of N-Heterocyclic Carbines Used as Ligands for the Enantioselective Preparation of Heterosteroids Compounds. Orient. J. Chem., 2014, 30, 427-434.
41.Lee, H. M.; Zeng, J. Y.; Hu, C.-H.; Lee, M.-T., A New Tridentate Pincer Phosphine/N-Heterocyclic Carbene Ligand: Palladium Complexes, Their Structures, and Catalytic Activities. Inorg. Chem., 2004, 43, 6822-6829.
42.César, V.; Bellemin‐Laponnaz, S.; Wadepohl, H.; Gade, L. H., Designing the “Search Pathway” in the Development of a New Class of Highly Efficient Stereoselective Hydrosilylation Catalysts. Chem.-Eur. J., 2005, 11, 2862-2873.
43.Enders, D.; Han, J.; Henseler, A., Asymmetric Intermolecular Stetter Reactions Catalyzed by a Novel Triazolium Derived N-Heterocyclic Carbene. Chem. Commun., 2008, 3989-3991.
44.Sohn, S. S.; Rosen, E. L.; Bode, J. W., N-Heterocyclic Carbene-Catalyzed Generation of Homoenolates:  γ-Butyrolactones by Direct Annulations of Enals and Aldehydes. J. Am. Chem. Soc., 2004, 126, 14370-14371.
45.Douglas, J.; Churchill, G.; Smith, A. D., NHCs in Asymmetric Organocatalysis: Recent Advances in Azolium Enolate Generation and Reactivity. Synthesis, 2012, 44, 2295-2309.
46.Walden, P., Ueber die Gegenseitige Umwandlung Optischer Antipoden. Ber. Dtsch. Chem. Ges., 1896, 29, 133-138.
47.Sanz, R.; Martínez, A.; Álvarez-Gutiérrez, J. M.; Rodríguez, F., Metal-Free Catalytic Nucleophilic Substitution of Propargylic Alcohols. Eur. J. Org. Chem., 2006, 2006, 1383-1386.
48.Yadav, J. S.; Bhunia, D. C.; Vamshi Krishna, K.; Srihari, P., Niobium(V) Pentachloride: An Efficient Catalyst for C-, N-, O-, and S-Nucleophilic Substitution Reactions of Benzylic Alcohols. Tetrahedron Lett., 2007, 48, 8306-8310.
49.Du, Y.; Han, X.; Lu, X., Alkaloids-Catalyzed Regio- and Enantioselective Allylic Nucleophilic Substitution of tert-Butyl Carbonate of the Morita–Baylis–Hillman Products. Tetrahedron Lett., 2004, 45, 4967-4971.
50.Vanos, C. M.; Lambert, T. H., Development of a Catalytic Platform for Nucleophilic Substitution: Cyclopropenone-Catalyzed Chlorodehydration of Alcohols. Angew. Chem. Int. Ed., 2011, 50, 12222-12226.
51.Kim, D. W.; Chi, D. Y., Polymer-Supported Ionic Liquids: Imidazolium Salts as Catalysts for Nucleophilic Substitution Reactions Including Fluorinations. Angew. Chem. Int. Ed., 2004, 43, 483-485.
52.Claisen, L.; Claparède, A., Condensationen von Ketonen mit Aldehyden. Ber. Dtsch. Chem. Ges., 1881, 14, 2460-2468.
53.Schmidt, J. G., Ueber die Einwirkung von Aceton auf Furfurol und auf Bittermandelöl bei Gegenwart von Alkalilauge. Ber. Dtsch. Chem. Ges., 1881, 14, 1459-1461.
54.Ugai, T.; Tanaka, S.; Dokawa, S. A New Catalyst for Acyloin Condensation, Pharm. Soc. Jpn., 1943, 63, 269-300
55.Enders, D.; Kallfass, U., An Efficient Nucleophilic Carbene Catalyst for the Asymmetric Benzoin Condensation. Angew. Chem. Int. Ed., 2002, 41, 1743-1745.
56.Vermoortele, F.; Ameloot, R.; Vimont, A.; Serre, C.; De Vos, D., An Amino-Modified Zr-Terephthalate Metal-Organic Framework as an Acid-Base Catalyst for Cross-Aldol Condensation. Chem. Commun., 2011, 47, 1521-1523.
57.Storey, J. M. D.; Williamson, C., Imidazole Based Solid-Supported Catalysts for the Benzoin Condensation. Tetrahedron Lett., 2005, 46, 7337-7339.
58.Sharma, H.; Singh, N.; Jang, D. O., Imidazole and Imine Coated ZnO Nanoparticles for Nanomolar Detection of Al(III) and Zn(II) in Semi-Aqueous Media. Tetrahedron Lett. 2014, 55, 6623-6626.
59.Ma, C.; Li, J.; Peng, J.; Bai, Y.; Zhang, G.; Xiao, W.; Lai, G., Effect of Carboxyl-Functionalized Imidazolium Salts on the Rhodium-Catalyzed Hydrosilylation of Alkene. J. Organomet. Chem., 2013, 727, 28-36.
60.王建舜, 分子式與金奈米粒子載體式含氮雜環碳烯一價金錯合化物的合成、結構鑑定與催化探討, 國立中正大學化學暨生物化學系研究所. 2015.
61.Hostetler, M. J.; Templeton, A. C.; Murray, R. W., Dynamics of Place-Exchange Reactions on Monolayer-Protected Gold Cluster Molecules. Langmuir, 1999, 15, 3782-3789.
62.An, J.; Denton, R. M.; Lambert, T. H.; Nacsa, E. D., The Development of Catalytic Nucleophilic Substitution Reactions: Challenges, Progress and Future Directions. Org. Biomol. Chem., 2014, 12, 2993-3003.
63.Nair, V.; Menon, R. S.; Biju, A. T.; Sinu, C. R.; Paul, R. R.; Jose, A.; Sreekumar, V., Employing Homoenolates Generated by NHC Catalysis in Carbon-Carbon Bond-Forming Reactions: State of the Art. Chem. Soc. Rev., 2011, 40, 5336-5346.
64. https://www.researchgate.net/post/Synthesis_of_zinc_oxide_nanoparticles_using_zinc_chloride_and_sodium_hydroxide


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top