跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/03/16 15:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳俞安
研究生(外文):CHEN, YU-AN
論文名稱(外文):N-doped Beta-12 Borophene as anode material for Li-ion and Na-ion Batteries
指導教授:李錫隆李錫隆引用關係
指導教授(外文):LEE, SHYI-LONG
口試委員:王伯昌張文昇
口試委員(外文):WANG, BO-CHENGCHAHG, WEN-SHENG
口試日期:2019-07-15
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學暨生物化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:75
中文關鍵詞:第一原理計算陽極材料氮摻雜 β 12 硼烯鋰鈉離子電池
外文關鍵詞:First principle calculationsanode materialN doped β12 borophenelithium/sodium ion battery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:334
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
β12 borophene是一個新型的二維材料,在超真空的環境下,在銀表面上成功合成出來。然而,如果要使其從銀表面分離出,β12 borophene會變得非常不穩定。所以我們用加入雜質的方式來破壞原本晶格的週期,改變其電子性質。
本研究以氮摻雜的β12 borophene當鋰/鈉離子電池的陽極材料,使用VASP軟體搭配密度泛函數理論中的Perdew-Burke-Ernzerhof (PBE) 廣義梯度近似法(GGA)方法,計算了結構、總能量、共聚能、電子性質、吸附行為、遷移能障和最大電容量。結構方面,氮摻雜的β12 borophene比純的β12 borophene還要來得穩定;吸附方面,鋰/鈉離子在氮摻雜的β12 borophene最穩定的吸附位點為中空位點,吸附能分別為-2.315 e和-1.710 eV;電子性質方面,純的β12 borophene為金屬性質,加氮之後的β12 borophene,由於能帶沒有交雜在費米能階,所以轉變為半導體性質;遷移方面,鋰/鈉離子在氮摻雜的β12 borophene遷移能障比純的β12 borophene還要來得小,分別為0.239 eV和0.089 eV;最後,電容量方面,鋰/鈉離子在氮摻雜的β12 borophene最大電容量分別為602和482 mA h/g。
因此,我們的計算結果指出,氮摻雜的β12 borophene比純的β12 borophene充放電速率還要來得高。

β12 Borophene is a new type of two-dimensional material which has been successfully synthesized on Ag (111) surface under ultrahigh-vacuum conditions. Borophenes are unstable when they are separated from Ag(111) substrates, but it can be improved by doping nitrogen to change the electronic properties by breaking the lattice periodicity.
In this work, N-doped β12 borophenes were considered as the anode material of Li-ion and Na-ion batteries. Theoretical methods were adopted to calculate the structures, total energies, cohesive energies, electronic properties, adsorption behavior, migration barrier and maximal capacity at GGA-PBE level based on first-principle calculations using Vienna ab initio simulation package (VASP). N4-doped β12 borophene is more stable than primitive β12 borophene. The most favorable adsorption sites for Li-ion and Na-ion on N4-doped β12 borophene are hole sites with the adsorption energy of -2.315 eV and -1.710 eV, respectively. Comparing to primitive β12 borophene, the band structure converts from metallic into semiconducting due to the non-crossing band on Fermi level and thus lower adsorption energy. The migration barrier of Li and Na are 0.239 eV and 0.089 eV, much lower than that of primitive β12 borophene. Finally, the maximum capacity for Li and Na cations on N4-doped β12 borophene are 602 and 482 mA h/g, respectively.
Therefore, our results suggest that N-doped β12 borophene has a higher charge-discharge performance than primitive borophene.

Abstract...................................................................V
中文摘要..................................................................VII
Chapter 1. Introduction....................................................1
Chapter 2. Computational Methods...........................................5
2-1. Details of the calculation............................................5
2-2. Density Functional Theory.............................................6
2-2-1. Hohenberg-Kohn theorem..............................................6
2-2-2 Kohn and Sham approach...............................................7
2-2-3. Generalized gradient approximation..................................9
2-3. Vienna ab initio simulation package (VASP)...........................14
2-4. Plane-wave Pseudopotential Method....................................17
2-4-1.Projector Augmented Wave (PAW) Method...............................18
2-5. Bloch's theorem......................................................20
2-5-1. Band structure.....................................................21
2.6 Atomic positions and Wyckoff positions................................24
2.6 Calculation of Adsorption Energy (Ead) and Cohesive energy (Ecoh).....28
Chapter 3. Results and discussion.........................................30
3-1. The optimized structure of β12 borophene and N-doped β12 borophene unit cell......................................................................30
3-2. The stability of β12 borophene and N-doped β12 borophene.............38
3-3. The electronic band structures of primitive β12 borophene and N-doped β12 borophenes............................................................40
3-4. Adsorption for Li/Na cation on the N4-doped β12 borophene............43
3-5. Migration of Li/Na cations on the N4-doped and primitive β12 borophene ..........................................................................49
3-5-1. Migration pathways along polyacenic direction......................50
3-5-2. Migration pathway along polyphenylic direction.....................57
3-5-3. Summary of migration pathways along polyacenic and polyphenylic direction.................................................................61
3-6. Maximal capacity for Li/Na on the N4-doped and β12 primitive borophene ..........................................................................64
Chapter4. Conclusion......................................................67
References................................................................69
Supplementary information.................................................74

1.Megahed, S.; Ebner, W., Lithium-ion battery for electronic applications. Journal of Power Sources 1995, 54 (1), 155-162.
2.Matsumura, Y.; Wang, S.; Mondori, J., Interactions between disordered carbon and lithium in lithium ion rechargeable batteries. Carbon 1995, 33 (10), 1457-1462.
3.Rahimi-Eichi, H.; Ojha, U.; Baronti, F.; Chow, M., Battery Management System: An Overview of Its Application in the Smart Grid and Electric Vehicles. IEEE Industrial Electronics Magazine 2013, 7 (2), 4-16.
4.Manganese Dioxide, S.; Kozawa, A.; Brodd, R. J.; Electrochemical, S.; Cleveland, S.; Office, I. C. S. In Manganese Dioxide Symposium : vol. 1, Cleveland, 1975, Cleveland, 1975; I.C. Sample Office: Cleveland.
5.Cameron, J. M.; Hughes, R. W.; Zhao, Y.; Gregory, D. H., Ternary and higher pnictides; prospects for new materials and applications. Chemical Society Reviews 2011, 40 (7), 4099-4118.
6.Hwang, J.-Y.; Myung, S.-T.; Sun, Y.-K., Sodium-ion batteries: present and future. Chemical Society Reviews 2017, 46 (12), 3529-3614.
7.Zhou, H.; Zhang, Y.; Cao, Y.; Zhou, X., Bimetallic sulfide microflowers as an advanced anode for sodium-ion batteries. Materials Letters 2019, 238, 222-225.
8.Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S., Sodium-Ion Batteries. 2013, 23 (8), 947-958.
9.Pollak, E.; Geng, B.; Jeon, K.-J.; Lucas, I. T.; Richardson, T. J.; Wang, F.; Kostecki, R., The Interaction of Li+ with Single-Layer and Few-Layer Graphene. Nano Letters 2010, 10 (9), 3386-3388.
10.Tang, Q.; Zhou, Z.; Chen, Z., Graphene-related nanomaterials: tuning properties by functionalization. Nanoscale 2013, 5 (11), 4541-4583.
11.Dutta, S.; Pati, S. K., Novel properties of graphene nanoribbons: a review. Journal of Materials Chemistry 2010, 20 (38), 8207-8223.
12.David, L.; Bhandavat, R.; Singh, G., MoS2/Graphene Composite Paper for Sodium-Ion Battery Electrodes. ACS Nano 2014, 8 (2), 1759-1770.
13.Bhandavat, R.; David, L.; Singh, G., Synthesis of Surface-Functionalized WS2 Nanosheets and Performance as Li-Ion Battery Anodes. The Journal of Physical Chemistry Letters 2012, 3 (11), 1523-1530.
14.Jing, Y.; Zhou, Z.; Cabrera, C. R.; Chen, Z., Metallic VS2 Monolayer: A Promising 2D Anode Material for Lithium Ion Batteries. The Journal of Physical Chemistry C 2013, 117 (48), 25409-25413.
15.Liu, B.; Luo, T.; Mu, G.; Wang, X.; Chen, D.; Shen, G., Rechargeable Mg-Ion Batteries Based on WSe2 Nanowire Cathodes. ACS Nano 2013, 7 (9), 8051-8058.
16.Tao, Z.-L.; Xu, L.-N.; Gou, X.-L.; Chen, J.; Yuan, H.-T., TiS2 nanotubes as the cathode materials of Mg-ion batteries. Chemical Communications 2004, (18), 2080-2081.
17.Pang, J.; Mendes, R. G.; Bachmatiuk, A.; Zhao, L.; Ta, H. Q.; Gemming, T.; Liu, H.; Liu, Z.; Rummeli, M. H., Applications of 2D MXenes in energy conversion and storage systems. Chemical Society Reviews 2019, 48 (1), 72-133.
18.Lin, Z.; Sun, D.; Huang, Q.; Yang, J.; Barsoum, M. W.; Yan, X., Carbon nanofiber bridged two-dimensional titanium carbide as a superior anode for lithium-ion batteries. Journal of Materials Chemistry A 2015, 3 (27), 14096-14100.
19.Sun, Q.; Dai, Y.; Ma, Y.; Jing, T.; Wei, W.; Huang, B., Ab Initio Prediction and Characterization of Mo2C Monolayer as Anodes for Lithium-Ion and Sodium-Ion Batteries. The Journal of Physical Chemistry Letters 2016, 7 (6), 937-943.
20.Yadav, A.; Dashora, A.; Patel, N.; Miotello, A.; Press, M.; Kothari, D. C., Study of 2D MXene Cr2C material for hydrogen storage using density functional theory. Applied Surface Science 2016, 389, 88-95.
21.Zhou, J.; Gao, S.; Guo, Z.; Sun, Z., Ti-enhanced exfoliation of V2AlC into V2C MXene for lithium-ion battery anodes. Ceramics International 2017, 43 (14), 11450-11454.
22.Mei, Z.-G.; Bhattacharya, S.; Yacout, A. M., First-principles study of fracture toughness enhancement in transition metal nitrides. Surface and Coatings Technology 2019, 357, 903-909.
23.Liu, H.; Zhou, H.; Chen, L.; Tang, Z.; Yang, W., Electrochemical insertion/deinsertion of sodium on NaV6O15 nanorods as cathode material of rechargeable sodium-based batteries. Journal of Power Sources 2011, 196 (2), 814-819.
24.Liu, H.; Zhang, H.; Su, C.; Li, X.; Guo, Y., Three-dimensional NaTi2(PO4)3@C microsphere as a high-performance anode material for advanced sodium-ion batteries. Solid State Ionics 2018, 322, 79-84.
25.Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novák, P., Insertion Electrode Materials for Rechargeable Lithium Batteries. 1998, 10 (10), 725-763.
26.Gao, N.; Wu, X.; Jiang, X.; Bai, Y.; Zhao, J., Structure and stability of bilayer borophene: The roles of hexagonal holes and interlayer bonding. FlatChem 2018, 7, 48-54.
27.Wu, X.; Dai, J.; Zhao, Y.; Zhuo, Z.; Yang, J.; Zeng, X. C., Two-Dimensional Boron Monolayer Sheets. ACS Nano 2012, 6 (8), 7443-7453.
28.Campbell, G. P.; Mannix, A. J.; Emery, J. D.; Lee, T.-L.; Guisinger, N. P.; Hersam, M. C.; Bedzyk, M. J., Resolving the Chemically Discrete Structure of Synthetic Borophene Polymorphs. Nano Letters 2018, 18 (5), 2816-2821.
29.Mannix, A. J.; Zhou, X.-F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X.; Fisher, B. L.; Santiago, U.; Guest, J. R.; Yacaman, M. J.; Ponce, A.; Oganov, A. R.; Hersam, M. C.; Guisinger, N. P., Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350 (6267), 1513.
30.Liu, Y.; Penev, E. S.; Yakobson, B. I., Probing the Synthesis of Two-Dimensional Boron by First-Principles Computations. 2013, 52 (11), 3156-3159.
31.Zhang, X.; Hu, J.; Cheng, Y.; Yang, H. Y.; Yao, Y.; Yang, S. A., Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries. Nanoscale 2016, 8 (33), 15340-15347.
32.Kistanov, A. A.; Cai, Y.; Zhou, K.; Srikanth, N.; Dmitriev, S. V.; Zhang, Y.-W., Exploring the charge localization and band gap opening of borophene: a first-principles study. Nanoscale 2018, 10 (3), 1403-1410.
33.Kong, W.; Zhu, J.; Zhang, M.; Liu, Y.; Hu, J., Three-dimensional N- and S-codoped graphene hydrogel with in-plane pores for high performance supercapacitor. Microporous and Mesoporous Materials 2018, 268, 260-267.
34.Hafner, J., Ab-initio simulations of materials using VASP: Density-functional theory and beyond. Journal of Computational Chemistry 2008, 29 (13), 2044-2078.
35.Burke, K.; Perdew, J. P.; Wang, Y., Derivation of a Generalized Gradient Approximation: The PW91 Density Functional. In Electronic Density Functional Theory: Recent Progress and New Directions, Dobson, J. F.; Vignale, G.; Das, M. P., Eds. Springer US: Boston, MA, 1998; pp 81-111.
36.Hohenberg, P.; Kohn, W., Inhomogeneous Electron Gas. Physical Review 1964, 136 (3B), B864-B871.
37.Wang, Y.; Perdew, J. P., Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Physical Review B 1991, 44 (24), 13298-13307.
38.Bylander, D. M.; Kleinman, L.; Lee, S., Self-consistent calculations of the energy bands and bonding properties of B12C3. Physical Review B 1990, 42 (2), 1394-1403.
39.Johnson, D. D., Modified Broyden's method for accelerating convergence in self-consistent calculations. Physical Review B 1988, 38 (18), 12807-12813.
40.Parthé, E.; Cenzual, K.; Gladyshevskii, R. E., Standardization of crystal structure data as an aid to the classification of crystal structure types. Journal of Alloys and Compounds 1993, 197 (2), 291-301.
41.Koch, E.; Fischer, W., Normalizers of space groups: A useful tool in crystal-structure description, comparison and determination. 2006; Vol. 221, p 1-14.
42.Grosso, G.; Parravicini, G. P., Chapter 2 - Geometrical Description of Crystals: Direct and Reciprocal Lattices. In Solid State Physics (Second Edition), Grosso, G.; Parravicini, G. P., Eds. Academic Press: Amsterdam, 2014; pp 67-105.
43.Hinuma, Y.; Pizzi, G.; Kumagai, Y.; Oba, F.; Tanaka, I. Band structure diagram paths based on crystallography, Computational Materials Science, 2016, 128 (25), 140-184.
44.Grenier, B.; Ballou, R. J. E. W. o. C., Crystallography: Symmetry groups and group representations. 2012, 22, 00006.
45.De La Flor Martin, G.; Tasci, E.; Elcoro, L.; Vidal, S.; Madariaga, G.; Perez-Mato, J. M.; Aroyo, M. I., Crystallography online by the Bilbao Crystallographic Server. Acta Crystallographica Section A 2017, 73 (a2), C137.
46.Aldon, L.; Kubiak, P.; Womes, M.; Jumas, J. C.; Olivier-Fourcade, J.; Tirado, J. L.; Corredor, J. I.; Pérez Vicente, C., Chemical and Electrochemical Li-Insertion into the Li4Ti5O12 Spinel. Chemistry of Materials 2004, 16 (26), 5721-5725.
47.Ahuja, R.; Auluck, S.; Wills, J. M.; Alouani, M.; Johansson, B.; Eriksson, O., Optical properties of graphite from first-principles calculations. Physical Review B 1997, 55 (8), 4999-5005.
48.He, C.; Torija, M. A.; Wu, J.; Lynn, J. W.; Zheng, H.; Mitchell, J. F.; Leighton, C., Non-Griffiths-like clustered phase above the Curie temperature of the doped perovskite cobaltite. Physical Review B 2007, 76 (1), 014401.
49.Guo, G. Y.; Lin, J. C., Systematic ab initio study of the optical properties of BN nanotubes. Physical Review B 2005, 71 (16), 165402.
50.Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S., Electronic structure of graphene tubules based on C60. Physical Review B 1992, 46 (3), 1804-1811.
51.Popov, V. N.; Henrard, L., Comparative study of the optical properties of single-walled carbon nanotubes within orthogonal and nonorthogonal tight-binding models. Physical Review B 2004, 70 (11), 115407.
52.Ichida, M.; Mizuno, S.; Tani, Y.; Saito, Y.; Nakamura, A., Exciton Effects of Optical Transitions in Single-Wall Carbon Nanotubes. Journal of the Physical Society of Japan 1999, 68 (10), 3131-3133.
53.Green, J. C.; Green, M. L. H.; Parkin, G., The occurrence and representation of three-centre two-electron bonds in covalent inorganic compounds. Chemical Communications 2012, 48 (94), 11481-11503.
54.Feng, B.; Zhang, J.; Zhong, Q.; Li, W.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K., Experimental realization of two-dimensional boron sheets. Nature Chemistry 2016, 8, 563.
55.Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R., Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. Journal of the Chemical Society, Perkin Transactions 2 1987, (12), S1-S19.
56.Heine, T.; Merino, G., What Is the Maximum Coordination Number in a Planar Structure? 2012, 51 (18), 4275-4276.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top