|
1.Megahed, S.; Ebner, W., Lithium-ion battery for electronic applications. Journal of Power Sources 1995, 54 (1), 155-162. 2.Matsumura, Y.; Wang, S.; Mondori, J., Interactions between disordered carbon and lithium in lithium ion rechargeable batteries. Carbon 1995, 33 (10), 1457-1462. 3.Rahimi-Eichi, H.; Ojha, U.; Baronti, F.; Chow, M., Battery Management System: An Overview of Its Application in the Smart Grid and Electric Vehicles. IEEE Industrial Electronics Magazine 2013, 7 (2), 4-16. 4.Manganese Dioxide, S.; Kozawa, A.; Brodd, R. J.; Electrochemical, S.; Cleveland, S.; Office, I. C. S. In Manganese Dioxide Symposium : vol. 1, Cleveland, 1975, Cleveland, 1975; I.C. Sample Office: Cleveland. 5.Cameron, J. M.; Hughes, R. W.; Zhao, Y.; Gregory, D. H., Ternary and higher pnictides; prospects for new materials and applications. Chemical Society Reviews 2011, 40 (7), 4099-4118. 6.Hwang, J.-Y.; Myung, S.-T.; Sun, Y.-K., Sodium-ion batteries: present and future. Chemical Society Reviews 2017, 46 (12), 3529-3614. 7.Zhou, H.; Zhang, Y.; Cao, Y.; Zhou, X., Bimetallic sulfide microflowers as an advanced anode for sodium-ion batteries. Materials Letters 2019, 238, 222-225. 8.Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S., Sodium-Ion Batteries. 2013, 23 (8), 947-958. 9.Pollak, E.; Geng, B.; Jeon, K.-J.; Lucas, I. T.; Richardson, T. J.; Wang, F.; Kostecki, R., The Interaction of Li+ with Single-Layer and Few-Layer Graphene. Nano Letters 2010, 10 (9), 3386-3388. 10.Tang, Q.; Zhou, Z.; Chen, Z., Graphene-related nanomaterials: tuning properties by functionalization. Nanoscale 2013, 5 (11), 4541-4583. 11.Dutta, S.; Pati, S. K., Novel properties of graphene nanoribbons: a review. Journal of Materials Chemistry 2010, 20 (38), 8207-8223. 12.David, L.; Bhandavat, R.; Singh, G., MoS2/Graphene Composite Paper for Sodium-Ion Battery Electrodes. ACS Nano 2014, 8 (2), 1759-1770. 13.Bhandavat, R.; David, L.; Singh, G., Synthesis of Surface-Functionalized WS2 Nanosheets and Performance as Li-Ion Battery Anodes. The Journal of Physical Chemistry Letters 2012, 3 (11), 1523-1530. 14.Jing, Y.; Zhou, Z.; Cabrera, C. R.; Chen, Z., Metallic VS2 Monolayer: A Promising 2D Anode Material for Lithium Ion Batteries. The Journal of Physical Chemistry C 2013, 117 (48), 25409-25413. 15.Liu, B.; Luo, T.; Mu, G.; Wang, X.; Chen, D.; Shen, G., Rechargeable Mg-Ion Batteries Based on WSe2 Nanowire Cathodes. ACS Nano 2013, 7 (9), 8051-8058. 16.Tao, Z.-L.; Xu, L.-N.; Gou, X.-L.; Chen, J.; Yuan, H.-T., TiS2 nanotubes as the cathode materials of Mg-ion batteries. Chemical Communications 2004, (18), 2080-2081. 17.Pang, J.; Mendes, R. G.; Bachmatiuk, A.; Zhao, L.; Ta, H. Q.; Gemming, T.; Liu, H.; Liu, Z.; Rummeli, M. H., Applications of 2D MXenes in energy conversion and storage systems. Chemical Society Reviews 2019, 48 (1), 72-133. 18.Lin, Z.; Sun, D.; Huang, Q.; Yang, J.; Barsoum, M. W.; Yan, X., Carbon nanofiber bridged two-dimensional titanium carbide as a superior anode for lithium-ion batteries. Journal of Materials Chemistry A 2015, 3 (27), 14096-14100. 19.Sun, Q.; Dai, Y.; Ma, Y.; Jing, T.; Wei, W.; Huang, B., Ab Initio Prediction and Characterization of Mo2C Monolayer as Anodes for Lithium-Ion and Sodium-Ion Batteries. The Journal of Physical Chemistry Letters 2016, 7 (6), 937-943. 20.Yadav, A.; Dashora, A.; Patel, N.; Miotello, A.; Press, M.; Kothari, D. C., Study of 2D MXene Cr2C material for hydrogen storage using density functional theory. Applied Surface Science 2016, 389, 88-95. 21.Zhou, J.; Gao, S.; Guo, Z.; Sun, Z., Ti-enhanced exfoliation of V2AlC into V2C MXene for lithium-ion battery anodes. Ceramics International 2017, 43 (14), 11450-11454. 22.Mei, Z.-G.; Bhattacharya, S.; Yacout, A. M., First-principles study of fracture toughness enhancement in transition metal nitrides. Surface and Coatings Technology 2019, 357, 903-909. 23.Liu, H.; Zhou, H.; Chen, L.; Tang, Z.; Yang, W., Electrochemical insertion/deinsertion of sodium on NaV6O15 nanorods as cathode material of rechargeable sodium-based batteries. Journal of Power Sources 2011, 196 (2), 814-819. 24.Liu, H.; Zhang, H.; Su, C.; Li, X.; Guo, Y., Three-dimensional NaTi2(PO4)3@C microsphere as a high-performance anode material for advanced sodium-ion batteries. Solid State Ionics 2018, 322, 79-84. 25.Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novák, P., Insertion Electrode Materials for Rechargeable Lithium Batteries. 1998, 10 (10), 725-763. 26.Gao, N.; Wu, X.; Jiang, X.; Bai, Y.; Zhao, J., Structure and stability of bilayer borophene: The roles of hexagonal holes and interlayer bonding. FlatChem 2018, 7, 48-54. 27.Wu, X.; Dai, J.; Zhao, Y.; Zhuo, Z.; Yang, J.; Zeng, X. C., Two-Dimensional Boron Monolayer Sheets. ACS Nano 2012, 6 (8), 7443-7453. 28.Campbell, G. P.; Mannix, A. J.; Emery, J. D.; Lee, T.-L.; Guisinger, N. P.; Hersam, M. C.; Bedzyk, M. J., Resolving the Chemically Discrete Structure of Synthetic Borophene Polymorphs. Nano Letters 2018, 18 (5), 2816-2821. 29.Mannix, A. J.; Zhou, X.-F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X.; Fisher, B. L.; Santiago, U.; Guest, J. R.; Yacaman, M. J.; Ponce, A.; Oganov, A. R.; Hersam, M. C.; Guisinger, N. P., Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350 (6267), 1513. 30.Liu, Y.; Penev, E. S.; Yakobson, B. I., Probing the Synthesis of Two-Dimensional Boron by First-Principles Computations. 2013, 52 (11), 3156-3159. 31.Zhang, X.; Hu, J.; Cheng, Y.; Yang, H. Y.; Yao, Y.; Yang, S. A., Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries. Nanoscale 2016, 8 (33), 15340-15347. 32.Kistanov, A. A.; Cai, Y.; Zhou, K.; Srikanth, N.; Dmitriev, S. V.; Zhang, Y.-W., Exploring the charge localization and band gap opening of borophene: a first-principles study. Nanoscale 2018, 10 (3), 1403-1410. 33.Kong, W.; Zhu, J.; Zhang, M.; Liu, Y.; Hu, J., Three-dimensional N- and S-codoped graphene hydrogel with in-plane pores for high performance supercapacitor. Microporous and Mesoporous Materials 2018, 268, 260-267. 34.Hafner, J., Ab-initio simulations of materials using VASP: Density-functional theory and beyond. Journal of Computational Chemistry 2008, 29 (13), 2044-2078. 35.Burke, K.; Perdew, J. P.; Wang, Y., Derivation of a Generalized Gradient Approximation: The PW91 Density Functional. In Electronic Density Functional Theory: Recent Progress and New Directions, Dobson, J. F.; Vignale, G.; Das, M. P., Eds. Springer US: Boston, MA, 1998; pp 81-111. 36.Hohenberg, P.; Kohn, W., Inhomogeneous Electron Gas. Physical Review 1964, 136 (3B), B864-B871. 37.Wang, Y.; Perdew, J. P., Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Physical Review B 1991, 44 (24), 13298-13307. 38.Bylander, D. M.; Kleinman, L.; Lee, S., Self-consistent calculations of the energy bands and bonding properties of B12C3. Physical Review B 1990, 42 (2), 1394-1403. 39.Johnson, D. D., Modified Broyden's method for accelerating convergence in self-consistent calculations. Physical Review B 1988, 38 (18), 12807-12813. 40.Parthé, E.; Cenzual, K.; Gladyshevskii, R. E., Standardization of crystal structure data as an aid to the classification of crystal structure types. Journal of Alloys and Compounds 1993, 197 (2), 291-301. 41.Koch, E.; Fischer, W., Normalizers of space groups: A useful tool in crystal-structure description, comparison and determination. 2006; Vol. 221, p 1-14. 42.Grosso, G.; Parravicini, G. P., Chapter 2 - Geometrical Description of Crystals: Direct and Reciprocal Lattices. In Solid State Physics (Second Edition), Grosso, G.; Parravicini, G. P., Eds. Academic Press: Amsterdam, 2014; pp 67-105. 43.Hinuma, Y.; Pizzi, G.; Kumagai, Y.; Oba, F.; Tanaka, I. Band structure diagram paths based on crystallography, Computational Materials Science, 2016, 128 (25), 140-184. 44.Grenier, B.; Ballou, R. J. E. W. o. C., Crystallography: Symmetry groups and group representations. 2012, 22, 00006. 45.De La Flor Martin, G.; Tasci, E.; Elcoro, L.; Vidal, S.; Madariaga, G.; Perez-Mato, J. M.; Aroyo, M. I., Crystallography online by the Bilbao Crystallographic Server. Acta Crystallographica Section A 2017, 73 (a2), C137. 46.Aldon, L.; Kubiak, P.; Womes, M.; Jumas, J. C.; Olivier-Fourcade, J.; Tirado, J. L.; Corredor, J. I.; Pérez Vicente, C., Chemical and Electrochemical Li-Insertion into the Li4Ti5O12 Spinel. Chemistry of Materials 2004, 16 (26), 5721-5725. 47.Ahuja, R.; Auluck, S.; Wills, J. M.; Alouani, M.; Johansson, B.; Eriksson, O., Optical properties of graphite from first-principles calculations. Physical Review B 1997, 55 (8), 4999-5005. 48.He, C.; Torija, M. A.; Wu, J.; Lynn, J. W.; Zheng, H.; Mitchell, J. F.; Leighton, C., Non-Griffiths-like clustered phase above the Curie temperature of the doped perovskite cobaltite. Physical Review B 2007, 76 (1), 014401. 49.Guo, G. Y.; Lin, J. C., Systematic ab initio study of the optical properties of BN nanotubes. Physical Review B 2005, 71 (16), 165402. 50.Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S., Electronic structure of graphene tubules based on C60. Physical Review B 1992, 46 (3), 1804-1811. 51.Popov, V. N.; Henrard, L., Comparative study of the optical properties of single-walled carbon nanotubes within orthogonal and nonorthogonal tight-binding models. Physical Review B 2004, 70 (11), 115407. 52.Ichida, M.; Mizuno, S.; Tani, Y.; Saito, Y.; Nakamura, A., Exciton Effects of Optical Transitions in Single-Wall Carbon Nanotubes. Journal of the Physical Society of Japan 1999, 68 (10), 3131-3133. 53.Green, J. C.; Green, M. L. H.; Parkin, G., The occurrence and representation of three-centre two-electron bonds in covalent inorganic compounds. Chemical Communications 2012, 48 (94), 11481-11503. 54.Feng, B.; Zhang, J.; Zhong, Q.; Li, W.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K., Experimental realization of two-dimensional boron sheets. Nature Chemistry 2016, 8, 563. 55.Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R., Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. Journal of the Chemical Society, Perkin Transactions 2 1987, (12), S1-S19. 56.Heine, T.; Merino, G., What Is the Maximum Coordination Number in a Planar Structure? 2012, 51 (18), 4275-4276.
|